Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Clinical relevance of animal models in aging-related dementia research

Abstract

Alzheimer’s disease (AD) and other, less prevalent dementias are complex age-related disorders that exhibit multiple etiologies. Over the past decades, animal models have provided pathomechanistic insight and evaluated countless therapeutics; however, their value is increasingly being questioned due to the long history of drug failures. In this Perspective, we dispute this criticism. First, the utility of the models is limited by their design, as neither the etiology of AD nor whether interventions should occur at a cellular or network level is fully understood. Second, we highlight unmet challenges shared between animals and humans, including impeded drug transport across the blood–brain barrier, limiting effective treatment development. Third, alternative human-derived models also suffer from the limitations mentioned above and can only act as complementary resources. Finally, age being the strongest AD risk factor should be better incorporated into the experimental design, with computational modeling expected to enhance the value of animal models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of key discoveries in Alzheimer’s disease research.
Fig. 2: Representative animal models of Alzheimer’s disease.
Fig. 3: A framework to understand the interactions of the hallmarks of aging and Alzheimer’s disease as a function of chronological age.

Similar content being viewed by others

References

  1. Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement. 16, 391–460 (2020).

  2. Sengupta, U. & Kayed, R. Amyloid β, tau, and α-synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog. Neurobiol. 214, 102270 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Jellinger, K. A. & Attems, J. Challenges of multimorbidity of the aging brain: a critical update. J. Neural Transm. 122, 505–521 (2015).

    Article  PubMed  Google Scholar 

  4. Tanne, J. H. Aduhelm: approval of Alzheimer’s drug was highly unorthodox, finds report. BMJ 380, 6 (2023).

    Google Scholar 

  5. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).

    Article  PubMed  Google Scholar 

  6. Perry, R. J. & Hodges, J. R. Attention and executive deficits in Alzheimer’s disease. A critical review. Brain 122, 383–404 (1999).

    Article  PubMed  Google Scholar 

  7. Polanco, J. C. et al. Amyloid-β and tau complexity—towards improved biomarkers and targeted therapies. Nat. Rev. Neurol. 14, 22–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Götz, J. & Ittner, L. M. Animal models of Alzheimer’s disease and frontotemporal dementia. Nat. Rev. Neurosci. 9, 532–544 (2008).

    Article  PubMed  Google Scholar 

  9. Dujardin, S., Colin, M. & Buee, L. Invited review: animal models of tauopathies and their implications for research/translation into the clinic. Neuropathol. Appl. Neurobiol. 41, 59–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Jankowsky, J. L. & Zheng, H. Practical considerations for choosing a mouse model of Alzheimer’s disease. Mol. Neurodegener. 12, 89 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 6, 916–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. de la Torre, J. C. & Mussivand, T. Can disturbed brain microcirculation cause Alzheimer’s disease? Neurol. Res. 15, 146–153 (1993).

    Article  PubMed  Google Scholar 

  14. Grimm, A. & Eckert, A. Brain aging and neurodegeneration: from a mitochondrial point of view. J. Neurochem. 143, 418–431 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heneka, M. T. et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wirths, O. & Zampar, S. Neuron loss in Alzheimer’s disease: translation in transgenic mouse models. Int. J. Mol. Sci. 21, 8144 (2020).

  17. Eimer, W. A. & Vassar, R. Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Aβ42 accumulation and caspase-3 activation. Mol. Neurodegener. 8, 2 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Eersel, J. et al. Early-onset axonal pathology in a novel P301S-tau transgenic mouse model of frontotemporal lobar degeneration. Neuropathol. Appl. Neurobiol. 41, 906–925 (2015).

    Article  PubMed  Google Scholar 

  19. Hatch, R. J., Wei, Y., Xia, D. & Götz, J. Hyperphosphorylated tau causes reduced hippocampal CA1 excitability by relocating the axon initial segment. Acta Neuropathol. 133, 717–730 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roy, D. S. et al. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature 531, 508–512 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oh, H., Razlighi, Q. R. & Stern, Y. Multiple pathways of reserve simultaneously present in cognitively normal older adults. Neurology 90, e197–e205 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stern, Y., Barnes, C. A., Grady, C., Jones, R. N. & Raz, N. Brain reserve, cognitive reserve, compensation, and maintenance: operationalization, validity, and mechanisms of cognitive resilience. Neurobiol. Aging 83, 124–129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ammassari-Teule, M. Neural compensation in presymptomatic hAPP mouse models of Alzheimer’s disease. Learn. Mem. 27, 390–394 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morrone, C. D., Lai, A. Y., Bishay, J., Hill, M. E. & McLaurin, J. Parvalbumin neuroplasticity compensates for somatostatin impairment, maintaining cognitive function in Alzheimer’s disease. Transl. Neurodegener. 11, 26 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Probst, A. et al. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol. 99, 469–481 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Allen, B. et al. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J. Neurosci. 22, 9340–9351 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Santacruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Götz, J., Bodea, L. G. & Goedert, M. Rodent models for Alzheimer disease. Nat. Rev. Neurosci. 19, 583–598 (2018).

    Article  PubMed  Google Scholar 

  29. Saito, T. et al. Single App knock-in mouse models of Alzheimer’s disease. Nat. Neurosci. 17, 661–663 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Sato, K. et al. A third-generation mouse model of Alzheimer’s disease shows early and increased cored plaque pathology composed of wild-type human amyloid β peptide. J. Biol. Chem. 297, 101004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xia, D., Gutmann, J. M. & Götz, J. Mobility and subcellular localization of endogenous, gene-edited tau differs from that of over-expressed human wild-type and P301L mutant tau. Sci. Rep. 6, 29074 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bjorkhem, I. et al. Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J. Lipid Res. 39, 1594–1600 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Huynh, T. V. et al. Lack of hepatic ApoE does not influence early Aβ deposition: observations from a new APOE knock-in model. Mol. Neurodegener. 14, 37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Barisano, G. et al. A ‘multi-omics’ analysis of blood–brain barrier and synaptic dysfunction in APOE4 mice. J. Exp. Med. 219, e20221137 (2022).

  35. Shi, Y. et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549, 523–527 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bales, K. R. et al. Human APOE isoform-dependent effects on brain β-amyloid levels in PDAPP transgenic mice. J. Neurosci. 29, 6771–6779 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Castellano, J. M. et al. Human ApoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci. Transl. Med. 3, 89ra57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hou, J., Chen, Y., Grajales-Reyes, G. & Colonna, M. TREM2 dependent and independent functions of microglia in Alzheimer’s disease. Mol. Neurodegener. 17, 84 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fitz, N. F. et al. Trem2 deficiency differentially affects phenotype and transcriptome of human APOE3 and APOE4 mice. Mol. Neurodegener. 15, 41 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Humpel, C. Organotypic brain slice cultures: a review. Neuroscience 305, 86–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Fath, T., Ke, Y. D., Gunning, P., Götz, J. & Ittner, L. M. Primary support cultures of hippocampal and substantia nigra neurons. Nat. Protoc. 4, 78–85 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Pir, G. J., Choudhary, B. & Mandelkow, E. Caenorhabditis elegans models of tauopathy. FASEB J. 31, 5137–5148 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Griffin, E. F., Caldwell, K. A. & Caldwell, G. A. Genetic and pharmacological discovery for Alzheimer’s disease using Caenorhabditis elegans. ACS Chem. Neurosci. 8, 2596–2606 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Asadzadeh, J. et al. Retromer deficiency in tauopathy models enhances the truncation and toxicity of tau. Nat. Commun. 13, 5049 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saleem, S. & Kannan, R. R. Zebrafish: an emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov. 4, 45 (2018).

    Google Scholar 

  46. Pang, K. et al. An App knock-in rat model for Alzheimer’s disease exhibiting Aβ and tau pathologies, neuronal death and cognitive impairments. Cell Res. 32, 157–175 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Hurley, M. J. et al. Genome sequencing variations in the Octodon degus, an unconventional natural model of aging and Alzheimer’s disease. Front. Aging Neurosci. 14, 894994 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reid, S. J. et al. Alzheimer’s disease markers in the aged sheep (Ovis aries). Neurobiol. Aging 58, 112–119 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Yan, S. et al. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell 173, 989–1002 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, S. E. et al. Production of transgenic pig as an Alzheimer’s disease model using a multi-cistronic vector system. PLoS ONE 12, e0177933 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Walker, L. C. & Jucker, M. The exceptional vulnerability of humans to Alzheimer’s disease. Trends Mol. Med. 23, 534–545 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Haque, R. U. & Levey, A. I. Alzheimer’s disease: a clinical perspective and future nonhuman primate research opportunities. Proc. Natl Acad. Sci. USA 116, 26224–26229 (2019).

  53. Paspalas, C. D. et al. The aged rhesus macaque manifests Braak stage III/IV Alzheimer’s-like pathology. Alzheimers Dement. 14, 680–691 (2018).

    Article  PubMed  Google Scholar 

  54. Sasaguri, H. et al. Recent advances in the modeling of Alzheimer’s disease. Front. Neurosci. 16, 807473 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yoshimatsu, S. et al. Multimodal analyses of a non-human primate model harboring mutant amyloid precursor protein transgenes driven by the human EF1α promoter. Neurosci. Res. 185, 49–61 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Seita, Y. et al. Generation of transgenic cynomolgus monkeys overexpressing the gene for amyloid-β precursor protein. J. Alzheimers Dis. 75, 45–60 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tang, M. et al. Neurological manifestations of autosomal dominant familial Alzheimer’s disease: a comparison of the published literature with the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS). Lancet Neurol. 15, 1317–1325 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lear, A. et al. Understanding them to understand ourselves: the importance of NHP research for translational neuroscience. Curr. Res. Neurobiol. 3, 100049 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kennedy, M. E. et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients. Sci. Transl. Med. 8, 363ra150 (2016).

    Article  PubMed  Google Scholar 

  60. Amin, N. D. & Pasca, S. P. Building models of brain disorders with three-dimensional organoids. Neuron 100, 389–405 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Park, J. et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat. Neurosci. 21, 941–951 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fair, S. R. et al. Electrophysiological maturation of cerebral organoids correlates with dynamic morphological and cellular development. Stem Cell Rep. 15, 855–868 (2020).

    CAS  Google Scholar 

  63. Sun, X. Y. et al. Generation of vascularized brain organoids to study neurovascular interactions. eLife 11, e76707 (2022).

  64. Shin, N. et al. Vascularization of iNSC spheroid in a 3D spheroid-on-a-chip platform enhances neural maturation. Biotechnol. Bioeng. 119, 566–574 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Duque, A., Arellano, J. I. & Rakic, P. An assessment of the existence of adult neurogenesis in humans and value of its rodent models for neuropsychiatric diseases. Mol. Psychiatry 27, 377–382 (2022).

    Article  PubMed  Google Scholar 

  66. Sloan, S. A. et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 95, 779–790 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lopez-Otin, C. & Kroemer, G. Hallmarks of health. Cell 184, 33–63 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2022).

    Article  Google Scholar 

  69. Turturro, A., Duffy, P., Hass, B., Kodell, R. & Hart, R. Survival characteristics and age-adjusted disease incidences in C57BL/6 mice fed a commonly used cereal-based diet modulated by dietary restriction. J. Gerontol. A Biol. Sci. Med. Sci. 57, B379–B389 (2002).

    Article  PubMed  Google Scholar 

  70. Blackmore, D. G. et al. Multimodal analysis of aged wild-type mice exposed to repeated scanning ultrasound treatments demonstrates long-term safety. Theranostics 8, 6233–6247 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van Praag, H., Shubert, T., Zhao, C. & Gage, F. H. Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680–8685 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Blackmore, D. G. et al. Low-intensity ultrasound restores long-term potentiation and memory in senescent mice through pleiotropic mechanisms including NMDAR signaling. Mol. Psychiatry 26, 6975–6991 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nisbet, R. M. et al. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain 140, 1220–1230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pandit, R., Leinenga, G. & Götz, J. Repeated ultrasound treatment of tau transgenic mice clears neuronal tau by autophagy and improves behavioral functions. Theranostics 9, 3754–3767 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xu, G. et al. TAPPing into the potential of inducible tau/APP transgenic mice. Neuropathol. Appl. Neurobiol. 48, e12791 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Beckmann, N., Gerard, C., Abramowski, D., Cannet, C. & Staufenbiel, M. Noninvasive magnetic resonance imaging detection of cerebral amyloid angiopathy-related microvascular alterations using superparamagnetic iron oxide particles in APP transgenic mouse models of Alzheimer’s disease: application to passive Aβ immunotherapy. J. Neurosci. 31, 1023–1031 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lewis, J. et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet. 25, 402–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Coninx, E. et al. Hippocampal and cortical tissue-specific epigenetic clocks indicate an increased epigenetic age in a mouse model for Alzheimer’s disease. Aging 12, 20817–20834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gamache, J. et al. Factors other than hTau overexpression that contribute to tauopathy-like phenotype in rTg4510 mice. Nat. Commun. 10, 2479 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Polanco, J. C., Hand, G. R., Briner, A., Li, C. & Götz, J. Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. Acta Neuropathol. 141, 235–256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thal, D. R. et al. Estimation of amyloid distribution by [18F]flutemetamol PET predicts the neuropathological phase of amyloid β-protein deposition. Acta Neuropathol. 136, 557–567 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Braak, H. & Braak, E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 16, 271–278 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. de Calignon, A. et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73, 685–697 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Asai, H. et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18, 1584–1593 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535–9540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ahmed, Z. et al. A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol. 127, 667–683 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ferris, S. H. et al. Positron emission tomography in the study of aging and senile dementia. Neurobiol. Aging 1, 127–131 (1980).

    Article  CAS  PubMed  Google Scholar 

  89. Palop, J. J. & Mucke, L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 17, 777–792 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sheline, Y. I. et al. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aβ42. J. Neurosci. 30, 17035–17040 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Palmqvist, S. et al. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 8, 1214 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zott, B., Busche, M. A., Sperling, R. A. & Konnerth, A. What happens with the circuit in Alzheimer’s disease in mice and humans? Annu. Rev. Neurosci. 41, 277–297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu, H. et al. Rat brains also have a default mode network. Proc. Natl Acad. Sci. USA 109, 3979–3984 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Whitesell, J. D. et al. Regional, layer, and cell-type-specific connectivity of the mouse default mode network. Neuron 109, 545–559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhou, Y. et al. Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer’s disease and mild cognitive impairment. Alzheimers Dement. 4, 265–270 (2008).

    Article  PubMed  Google Scholar 

  96. Quiroz, Y. T. et al. Hippocampal hyperactivation in presymptomatic familial Alzheimer’s disease. Ann. Neurol. 68, 865–875 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  97. O’Brien, J. L. et al. Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology 74, 1969–1976 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Busche, M. A. et al. Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 109, 8740–8745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55, 697–711 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Padmanabhan, P., Kneynsberg, A. & Götz, J. Super-resolution microscopy: a closer look at synaptic dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 22, 723–740 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Tzioras, M., McGeachan, R. I., Durrant, C. S. & Spires-Jones, T. L. Synaptic degeneration in Alzheimer disease. Nat. Rev. Neurol. 19, 19–38 (2023).

    Article  PubMed  Google Scholar 

  102. Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R. & Zlokovic, B. V. Blood–brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Pardridge, W. M. Tyrosine hydroxylase replacement in experimental Parkinson’s disease with transvascular gene therapy. NeuroRx 2, 129–138 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Neuwelt, E. et al. Strategies to advance translational research into brain barriers. Lancet Neurol. 7, 84–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Golde, T. E. Open questions for Alzheimer’s disease immunotherapy. Alzheimers Res. Ther. 6, 3 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Budd Haeberlein, S. et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J. Prev. Alzheimers Dis. 9, 197–210 (2022).

    CAS  PubMed  Google Scholar 

  107. Schneider, L. A resurrection of aducanumab for Alzheimer’s disease. Lancet Neurol. 19, 111–112 (2020).

    Article  PubMed  Google Scholar 

  108. Ayton, S. Ventricular enlargement caused by aducanumab. Nat. Rev. Neurol. 18, 383–384 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Leinenga, G., Koh, W. K. & Götz, J. A comparative study of the effects of aducanumab and scanning ultrasound on amyloid plaques and behavior in the APP23 mouse model of Alzheimer disease. Alzheimers Res. Ther. 13, 76 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sun, T. et al. Focused ultrasound with anti-pGlu3 Aβ enhances efficacy in Alzheimer’s disease-like mice via recruitment of peripheral immune cells. J. Control. Release 336, 443–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kovacs, Z. I. et al. Disrupting the blood–brain barrier by focused ultrasound induces sterile inflammation. Proc. Natl Acad. Sci. USA 114, E75–E84 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. McMahon, D. & Hynynen, K. Acute inflammatory response following increased blood–brain barrier permeability induced by focused ultrasound is dependent on microbubble dose. Theranostics 7, 3989–4000 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Clausznitzer, D. et al. Quantitative systems pharmacology model for Alzheimer disease indicates targeting sphingolipid dysregulation as potential treatment option. CPT Pharmacometrics Syst. Pharmacol. 7, 759–770 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Madrasi, K. et al. Systematic in silico analysis of clinically tested drugs for reducing amyloid-β plaque accumulation in Alzheimer’s disease. Alzheimers Dement. 17, 1487–1498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vogel, J. W. et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. 27, 871–881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cornblath, E. J. et al. Computational modeling of tau pathology spread reveals patterns of regional vulnerability and the impact of a genetic risk factor. Sci. Adv. 7, eabg6677 (2021).

  117. Meisl, G. et al. In vivo rate-determining steps of tau seed accumulation in Alzheimer’s disease. Sci. Adv. 7, eabh1448 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kunze, T., Hunold, A., Haueisen, J., Jirsa, V. & Spiegler, A. Transcranial direct current stimulation changes resting state functional connectivity: a large-scale brain network modeling study. NeuroImage 140, 174–187 (2016).

    Article  PubMed  Google Scholar 

  119. Geerts, H. et al. A combined PBPK and QSP model for modeling amyloid aggregation in Alzheimer’s disease. CPT Pharmacometrics Syst. Pharmacol. https://doi.org/10.1002/psp4.12912 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Taubes, A. et al. Experimental and real-world evidence supporting the computational repurposing of bumetanide for APOE4-related Alzheimer’s disease. Nat. Aging 1, 932–947 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Haeno, H. et al. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell 148, 362–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Padmanabhan, P., Desikan, R. & Dixit, N. M. Modeling how antibody responses may determine the efficacy of COVID-19 vaccines. Nat. Comput. Sci. 2, 123–131 (2022).

    Article  CAS  Google Scholar 

  123. Suberbielle, E. et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat. Neurosci. 16, 613–621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Thadathil, N. et al. DNA double-strand break accumulation in Alzheimer’s disease: evidence from experimental models and postmortem human brains. Mol. Neurobiol. 58, 118–131 (2021).

    Article  PubMed  Google Scholar 

  125. Rolyan, H. et al. Telomere shortening reduces Alzheimer’s disease amyloid pathology in mice. Brain 134, 2044–2056 (2011).

    Article  PubMed  Google Scholar 

  126. Shu, L. et al. Genome-wide alteration of 5-hydroxymenthylcytosine in a mouse model of Alzheimer’s disease. BMC Genomics 17, 381 (2016).

    Google Scholar 

  127. Cadena-del-Castillo, C. et al. Age-dependent increment of hydroxymethylation in the brain cortex in the triple-transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis. 41, 845–854 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Trishina, E. et al. Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer’s disease. PLoS ONE 7, e32737 (2012).

    Article  Google Scholar 

  129. David, D. C. et al. Proteomic and functional analysis reveal a mitochondrial dysfunction in P301L tau transgenic mice. J. Biol. Chem. 280, 23802–23814 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Ittner, L. M. et al. Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc. Natl Acad. Sci. USA 105, 15997–16002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Duboff, B., Götz, J. & Feany, M. B. Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron 75, 618–632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cummins, N., Tweedie, A., Zuryn, S., Bertran-Gonzalez, J. & Götz, J. Disease-associated tau impairs mitophagy by inhibiting parkin translocation to mitochondria. EMBO J. 38, e99360 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Evans, H. T., Benetatos, J., van Roijen, M., Bodea, L. G. & Götz, J. Decreased synthesis of ribosomal proteins in tauopathy revealed by non-canonical amino acid labelling. EMBO J. 38, e101174 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Saito, T. & Saido, T. C. Neuroinflammation in mouse models of Alzheimer’s disease. Clin. Exp. Neuroimmunol. 9, 211–218 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Reinitz, F. et al. Inhibiting USP16 rescues stem cell aging and memory in an Alzheimer’s model. eLife 11, e66037 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Yu, W. H. et al. Macroautophagy—a novel β-amyloid peptide-generating pathway activated in Alzheimer’s disease. J. Cell Biol. 171, 87–98 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sun, J. et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl. Psychiatry 9, 189 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Dodiya, H. B. et al. Gut microbiota-driven brain Aβ amyloidosis in mice requires microglia. J. Exp. Med. 219, e20200895 (2022).

  139. Seo, D. O. et al. ApoE isoform- and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy. Science 379, eadd1236 (2023).

    Article  CAS  PubMed  Google Scholar 

  140. Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Jiang, S. et al. Proteopathic tau primes and activates interleukin-1β via myeloid-cell-specific MyD88- and NLRP3–ASC–inflammasome pathway. Cell Rep. 36, 109720 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lafay-Chebassier, C. et al. mTOR/p70S6k signalling alteration by Aβ exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer’s disease. J. Neurochem. 94, 215–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Caccamo, A., Majumder, S., Richardson, A., Strong, R. & Oddo, S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and tau: effects on cognitive impairments. J. Biol. Chem. 285, 13107–13120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Dorigatti, A. O. et al. Brain cellular senescence in mouse models of Alzheimer’s disease. Geroscience 44, 1157–1168 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 22, 719–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Tweedale for critical reading of the manuscript. We acknowledge support by the estate of C. Jones, the state government of Queensland (Department of Science, Information Technology and Innovation), the National Health and Medical Research Council of Australia (GNT1176326) and the NHMRC-EU Joint Programme on Neurodegenerative Disease Research to J.G.

Author information

Authors and Affiliations

Authors

Contributions

Both authors discussed and wrote the article.

Corresponding author

Correspondence to Jürgen Götz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmanabhan, P., Götz, J. Clinical relevance of animal models in aging-related dementia research. Nat Aging 3, 481–493 (2023). https://doi.org/10.1038/s43587-023-00402-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-023-00402-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing