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Development and validation of DNA 
methylation scores in two European  
cohorts augment 10-year risk prediction  
of type 2 diabetes
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Type 2 diabetes mellitus (T2D) presents a major health and economic 
burden that could be alleviated with improved early prediction and 
intervention. While standard risk factors have shown good predictive 
performance, we show that the use of blood-based DNA methylation 
information leads to a significant improvement in the prediction of 10-year 
T2D incidence risk. Previous studies have been largely constrained by linear 
assumptions, the use of cytosine–guanine pairs one-at-a-time and binary 
outcomes. We present a flexible approach (via an R package, MethylPipeR) 
based on a range of linear and tree-ensemble models that incorporate 
time-to-event data for prediction. Using the Generation Scotland cohort 
(training set ncases = 374, ncontrols = 9,461; test set ncases = 252, ncontrols = 4,526) 
our best-performing model (area under the receiver operating 
characteristic curve (AUC) = 0.872, area under the precision-recall curve 
(PRAUC) = 0.302) showed notable improvement in 10-year onset prediction 
beyond standard risk factors (AUC = 0.839, precision–recall AUC = 0.227). 
Replication was observed in the German-based KORA study (n = 1,451, 
ncases = 142, P = 1.6 × 10−5).

Diabetes mellitus is one of the most prevalent diseases in the world 
and a leading cause of mortality. Around half a billion people live with 
diabetes worldwide, with type 2 diabetes (T2D) making up about 90% 
of these cases1. Individuals with diabetes can suffer from debilitating 
complications including nerve damage, kidney disease and blindness2. 

The disease also increases the future risk of dementia and cardiovas-
cular disease3, with recent studies highlighting obesity and T2D as risk 
factors for coronavirus disease 2019 (COVID-19) disease severity and 
intensive care unit admission4. Furthermore, the risk of complications 
increases over time and is exacerbated if blood glucose levels are poorly 
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DNAm can provide for 10-year T2D risk and the applicability of linear 
and tree-ensemble survival models.

In this study, we use one of the world’s largest studies with paired 
genome-wide DNAm and data linkage to electronic health records, Gen-
eration Scotland (n = 14,613, n = 626 incident T2D cases over 15 years 
of follow-up), to develop and validate epigenetic scores for T2D. We 
show the added contribution of these epigenetic scores to prediction 
over and above standard risk factors, for example, age, sex and BMI and 
externally validate these results in the KORA S4 cohort.

Results
After preprocessing, the mean time-to-onset of T2D was 5.7 and 5.9 
years for the training (n = 374 cases) and test (n = 252 cases) sets, respec-
tively. Mean age at onset was also similar between the training and test 
set at 61.2 and 60.4 years and the mean BMI for cases (at baseline) was 
31.7 and 32.2 kg m−2. The full set of cohort summary details for cases 
and controls in both sets are shown in Table 1. The preprocessing steps 
and sample sizes at each step are shown in Extended Data Fig. 1. The 
machine learning prediction pipeline of the MethylPipeR package is 
shown in Fig. 1.

Null model for the incremental modeling approach
A Cox proportional-hazards model in the test set with age, sex, BMI, 
self-reported hypertension and family history of diabetes as predictors 
yielded good classification metrics: area under the receiver operating 

managed. Despite developments in the way T2D can be managed for 
patients, these treatments are reactive, focusing on patients that have 
already been diagnosed. Early intervention with metformin or lifestyle 
changes have been shown to delay the onset of T2D, although they do 
not reduce the risk of all-cause mortality5.

Beyond public health costs, T2D also presents a substantial finan-
cial burden to the National Health Service (NHS), with estimated annual 
spending of £10 billion on diabetes in the UK. Around 80% of these costs 
are for the treatment of complications, many of which are preventable 
with early intervention6.

While the mechanisms of insulin resistance in T2D are well known, 
the interactions between genetic and environmental factors that 
increase T2D susceptibility are less understood. Previous T2D risk 
prediction models have used a range of health risk factors7. How-
ever, these have not used epigenetic information. Epigenetics is the 
study of heritable changes to DNA that do not modify its nucleo-
tide sequence. A commonly studied form of this is DNA methylation 
(DNAm), whereby methyl groups are attached to the DNA molecule, 
most commonly to the five-carbon on a cytosine in a cytosine–gua-
nine pair (CpG). Due to its involvement with gene expression and gene 
environment interactions, DNAm can provide dynamic predictive 
information for disease risk for an individual. For example, epige-
netic scores built via penalized regression models have been used to 
show that weighted linear CpG predictors can explain a substantial 
proportion of phenotypic variance (R2) of modifiable health factors 
including body mass index (BMI) (12.5%), high-density lipoprotein 
cholesterol (15.6%) and smoking status (60.9%)8. Blood-based DNAm 
is of particular interest in predictive modeling and biomarker devel-
opment because of its comparatively noninvasive sampling proce-
dure. Epigenetic scores have also shown the ability to explain that 
up to 58% of variance in plasma protein levels are associated with 
several incident diseases including T2D and several comorbidities9. 
Epigenome-wide association studies (EWAS) have identified a number 
of CpG sites significantly associated with T2D10–14 and related risk 
factors such as cardiovascular disease15 and obesity16,17. While these 
provide some predictive performance for T2D prevalence, incident 
T2D has been less well studied. One such EWAS with 563 cases and 
701 controls identified 18 CpGs associated with incident T2D but did 
not consider any prediction models10. Given that preventive lifestyle 
changes have been shown to effectively reduce T2D onset18, predic-
tion of T2D incidence years ahead of time would be greatly beneficial 
in stratifying populations so those at high risk can be monitored and 
treated with early interventions.

Currently, most studies generating DNAm predictors consider 
marginal CpG effects or assume only linear additive effects between 
CpGs. The use of predictive models that can incorporate both interac-
tion and nonlinear effects could capture more complex relationships 
between variables, resulting in greater prediction accuracy. Therefore, 
our study aimed to evaluate both the additional predictive benefit that 

Table 1 | Summary information for the Generation Scotland training and test sets

Training Test

Cases Controls Cases Controls

n 374 9,461 252 4,526

TTE (years to onset or censoring) 5.7 (3.4) 11.1 (1.8) 5.9 (3.4) 11.3 (1.7)

Age (onset or censoring) 61.2 (10.7) 58.1 (14.6) 60.4 (9.4) 59.2 (13.9)

Sex (male) 184 (49.2) 3,903 (41.3) 133 (52.8) 1,681 (37.1)

BMI (kg m−2) 31.7 (5.7) 26.3 (4.8) 32.2 (6.2) 26.5 (5.0)

Self-reported parent or sibling diabetes 137 (36.6) 1,553 (16.4) 105 (41.7) 858 (19.0)

Self-reported hypertension 117 (31.3) 1,022 (10.8) 90 (35.7) 575 (12.7)

Summary information is shown as the mean (s.d.) or n (%).

Test 
set

Training 
set

Survival models for epigenetic
score training

Apply epigenetic score to the test set

Incremental modeling and performance 
evaluation

MethylPipeR

DNAm preprocessing

glmnet
BART

randomForestSRC

MLmetrics
ROCR
caret

DescTools

Fig. 1 | The prediction pipeline and functionality provided in MethylPipeR. 
MethylPipeR is an R package designed to facilitate reproducible prediction 
pipelines using DNAm or other types of high-dimensional omics data. The green 
text boxes indicate functionality incorporated from external R packages. The 
blue area indicates the functionality included within MethylPipeR.
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characteristic curve (AUC) = 0.839, area under the precision-recall 
curve (PRAUC) = 0.227.

Incremental model using the direct epigenetic score
In the risk factors plus direct epigenetic score test set model, Cox pro-
portional-hazards with least shrinkage and selection operator (LASSO) 
performed the best, showing an AUC and PRAUC of 0.870 and 0.299, 
respectively (P = 3.6 × 10−27 for the epigenetic score coefficient). This 
corresponds to an increase of 3.1% and 7.2% over the standard risk fac-
tor model.

Overall, the tree-ensemble models used for the direct epigenetic 
score resulted in lower performance compared to the Cox propor-
tional-hazards LASSO. AUC values for random survival forests (RSF) 
and survival Bayesian additive regression trees (sBART) were 0.852 
and 0.840 and the PRAUC values were 0.247 and 0.230, respectively 
(Supplementary Table 1). P values for the epigenetic score coefficients 
and receiver operating characteristic (ROC) curves for all models are 
given in Supplementary Table 2.

Incremental model using the composite protein epigenetic 
score
The composite protein epigenetic score (with 109 possible input protein 
epigenetic score features) derived using a Cox proportional-hazards 
LASSO model showed good performance with AUC and PRAUC of 0.864 
and 0.270, respectively (epigenetic score coefficient P = 1.61 × 10−18). 
The increase in PRAUC was smaller for the composite protein epige-
netic score compared to the direct epigenetic score but still a notable 
improvement over using risk factors only.

Incremental model using composite protein plus direct 
epigenetic scores
The full model (risk factors plus composite protein epigenetic score 
plus direct epigenetic score) with a Cox proportional-hazards LASSO 
direct epigenetic score gave an AUC and PRAUC of 0.872 and 0.302, 
respectively. The full models with RSF and sBART-derived direct epi-
genetic scores showed AUCs of 0.866 and 0.864, respectively. The 
corresponding PRAUC values were 0.273 and 0.270. Therefore, the 
best overall model used direct and composite protein epigenetic scores 
from Cox proportional-hazards LASSO models. The ROC and precision–
recall curves for the full models and risk factor-only model are shown 
in Fig. 2. We also examined if our findings were robust to potential lag 
effects in T2D diagnosis19. Increases to both the AUC and PRAUC were 
observed when adding the epigenetic scores to a risk factor-only model 
after excluding cases diagnosed within the first 2 years of follow-up 
(Supplementary Table 3).

Binary classification metrics and model calibration
Supplementary Table 4 shows how confusion matrix metrics vary for 
the null (risk factor-only) model and the Cox proportional-hazards 
LASSO model across a range of probability classification thresholds. 
As expected, as the classification probability threshold is increased, 
sensitivity and negative predictive value decrease while specificity 
increases. The effects of these differences on the number of true posi-
tives and false negatives are illustrated in Fig. 3. The two models also 
show differences in their calibration plots (Extended Data Fig. 2). In 
addition, the difference in the number of correctly classified individuals 
between the two models are given. These were calculated assuming, 
arbitrarily, a 10-year incidence rate of 33%, for example, in a scenario 
where high-risk individuals have been selected for screening.

Selected CpGs
The Cox proportional-hazards LASSO model assigned nonzero coef-
ficients to 145 CpGs (Supplementary Table 5). After filtering the EWAS 
Catalog by P value (P < 3.6 × 10−8)20 and sample size (n > 1,000), 119 (82%) 
of the model-selected CpGs were present. These CpGs corresponded to 
742 entries and showed epigenome-wide associations with traits includ-
ing serum high-density lipoprotein cholesterol, serum triglycerides, 
smoking, C-reactive protein, BMI and age (Supplementary Table 6).

Selected protein epigenetic scores
The composite protein epigenetic score Cox proportional-hazards 
LASSO model assigned nonzero coefficients to 46 protein epigenetic 
scores. Details on the corresponding proteins and genes are given in 
Supplementary Table 7. Out of the selected protein epigenetic scores, 
21 previously showed associations with incident T2D9.

Validation in the KORA S4 cohort
Prediction of incident diabetes in the KORA S4 cohort using the Cox 
proportional-hazards LASSO model showed good replication of direct 
epigenetic score performance (P = 1.6 × 10−5) with increases of 1.6% in 
absolute terms above the null model values for both AUC and PRAUC. 
Further details are provided in Supplementary Table 8.

Epigenetic score prediction of COVID-19 outcomes
In all models, incident T2D was predictive of hospitalization with 
COVID-19 infection. However, neither the composite protein nor the 
direct epigenetic score were predictive of the same outcome (Supple-
mentary Table 9). Additionally, neither the (direct or protein-based) 
epigenetic scores nor incident T2D were predictive of ongoing symp-
tomatic COVID-19 after COVID-19 infection.

Discussion
Using a large cohort with genome-wide epigenetic data and health 
records linkage to longitudinal primary and secondary care data, we 
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showed that DNAm-based predictors augment standard risk factors 
in the prediction of incident T2D. The best model with traditional risk 
factors yielded an AUC of 0.839 compared to 0.872 when DNAm was 
also considered and the PRAUC increased from 0.227 to 0.305. Using 
several linear and nonlinear survival models, we showed that overall, 
the Cox proportional-hazards LASSO model produced the most pre-
dictive direct epigenetic score. A composite protein epigenetic score 
also notably increased predictive performance. The direct epigenetic 
score also showed good external validation performance in the KORA 
S4 cohort. Beyond the T2D analysis presented in this study, we devel-
oped the MethylPipeR R package, along with a user interface version 
MethylPipeR-UI (shown in Extended Data Fig. 3), to facilitate reproduc-
ible machine learning time-to-event (TTE) and binary prediction using 
DNAm or other types of high-dimensional omics data.

Determining a ‘best’ model is complicated and depends on 
the trade-off that a user wishes to make. In this study, we optimized 
AUC and PRAUC but binary classification metrics vary by method or 
classification threshold. When using classifiers in clinical settings, 
decisions need to be made about the number of patients that can be 
recommended for intervention and the acceptable proportion of false 
positives and false negatives. We showed an increase in the correct iden-
tification of positives and negatives at varying probability thresholds 
when adding direct and composite epigenetic scores above standard 
risk factors. For instance, given an (arbitrary) incidence rate of 33% 
(commonly used as a cutoff for high risk of T2D)21 over 10 years in a 
sample of 10,000 individuals, our best model would correctly classify 
an additional 449 individuals compared to the risk factor-only model at 
a threshold of 0.2 (Supplementary Table 4). Given the costs of treating 
T2D-related complications, our study gives evidence for possible ben-
efits of epigenetic scores on public health that could also alleviate the 

financial burden to the NHS. In addition, an assessment of calibration 
is also critical22,23. Investigation of these related criteria could assist in 
deciding an optimal threshold given clinical constraints and provide 
a more comprehensive assessment of model predictions than AUCs or 
metrics at the commonly used threshold of 0.5.

Several CpGs from the direct epigenetic score were previously 
identified as epigenome-wide significant correlates of traits commonly 
linked to T2D14,17,24–28. Future work could investigate the overlap between 
these and TTE EWAS studies. Further studies could also include DNAm 
predictors for traditional risk factors that are included in the null 
model, such as BMI8.

Limitations include the relatively small number of disease cases 
in the dataset, the limited hyperparameter optimization performed 
for sBART and the relatively simple variable preselection method 
for tree-ensemble methods. Given the lower performance of these 
methods compared to the best models in this study, there is potential 
for additional improvement in predictive performance with further 
investigation of more advanced feature (pre)selection. This is par-
ticularly important when we consider that the preselection step used 
linear models before the nonlinear model fitting. Model fitting and 
preselection were also performed using the same training set, which 
may have introduced issues associated to post-selection inference29,30. 
In addition, factors such as overfitting, related individuals in the test 
set and batch effects between the three rounds of DNAm data pro-
cessing may all have had an effect on the test set AUC. Future studies 
may also take into account multimorbidities because the presence of 
competing risks can lead to bias in onset predictions31. Finally, a small 
proportion of the linkage codes used to define diabetes included broad 
terms that were nonspecific to T2D; however, the late age of onset in 
these individuals meant that there was a high likelihood that they had 
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developed T2D. Epigenetic scores for T2D-associated proteins have 
also been shown to replicate incident T2D–protein associations in 
this sample9, suggesting that the case definitions we used captured 
biological signals relevant to T2D.

There are many strengths to our study. First, the models used 
captured relationships between CpGs and TTE information, which is 
not possible using traditional EWAS methods. Second, data linkage 
to health care measures provided comprehensive T2D incidence data 
in a very large cohort study, that is, Generation Scotland. Validation 
performance in the KORA S4 cohort also strengthened evidence for the 
applicability of the models to other populations. Finally, the R package 
MethylPipeR encourages reproducibility and allows others to develop 
similar predictors on new data with minimal setup.

In conclusion, we have demonstrated the potential for DNAm 
data to provide notable improvement in predictive performance for 
incident T2D, compared to traditional risk factors (age, sex, BMI, hyper-
tension and family history). We evaluated different models with a 
systematic approach and presented a framework with the ability to 
generalize to other traits and datasets for training and testing predic-
tors in future studies.

Methods
Statistics and reproducibility
To enhance reproducibility, the analysis pipeline and results presented 
in this study have been reported using the Transparent Reporting of a 
multivariable prediction model for Individual Prognosis Or Diagnosis 
(TRIPOD) checklist32 (Supplementary File 1). Sample sizes for training, 
testing and validation of the statistical models were determined by the 
cohort sizes. Exclusions were made based on DNAm quality control 
and missingness in health data. Randomization and blinding were not 
applicable during data collection because the study used observational 
data from population-based cohorts. Statistical tests for model coef-
ficients assumed a normal distribution but this was not formally tested.

Generation Scotland
Blood-based DNAm and linked health data were obtained from Gen-
eration Scotland33, a family-structured, population-based cohort. 
The cohort consists of 23,960 volunteers across Scotland aged 18–99 
years at recruitment (between 2006 and 2011), of whom over 18,000 
currently have genome-wide DNAm data available (Illumina EPIC array). 
In DNAm quality control, CpG sites were filtered by removing those 
with a low bead count in 5% or more of the samples or a high detec-
tion P value (>0.05) in more than 5% of samples. Probes on the X and 
Y chromosomes were also removed. Samples were filtered by remov-
ing those with a mismatch between predicted and recorded sex or 1% 
or more of CpGs with a detection P > 0.05. Missing CpG values were 
mean-imputed. To enable the predictors to be applied to existing 
cohort studies with older Illumina array data, CpGs were filtered to 
the intersection of the 450k and EPIC array sites (n = 453,093 CpGs).

This study considered DNAm data from three large subsets of the 
Generation Scotland cohort, with 5,087 (set 1), 4,450 (set 2) and 8,877 
(set 3) individuals. Processing took place in 2017, 2019 and 2021, respec-
tively. Set 1 and set 3 included related individuals within and between 
each set while all individuals in set 2 were unrelated to each other and 
to individuals in set 1 (genetic relationship matrix threshold < 0.05). In 
our experiments, the training set consisted of sets 2 and 3 combined; 
set 1 was used as the test set. To avoid the presence of families with 
individuals across both training and test sets, any individuals in the 
training set from the same family as an individual in the test set were 
excluded from the analysis (nexcluded = 3,138).

Participant health measures including age, BMI, sex, self-reported 
hypertension and family (parent or sibling) history of T2D were taken at 
baseline (DNAm sampling) via questionnaire. BMI was calculated as the 
individual’s weight in kilograms divided by the square of their height 
in meters. Missing values in the set 1 health measures were treated as 

missing completely at random and the corresponding individuals were 
excluded (nset 1 = 99). This was not performed in sets 2 and 3 because 
the health measures were used for incremental modeling (set 1 only).

Disease cases were ascertained through data linkage to NHS Scot-
land health records consisting of hospital (International Statistical 
Classification of Diseases and Related Health Problems, 10th Revision 
(ICD-10) codes) and GP records (Read2 codes). Prevalent cases were 
identified from a baseline questionnaire (self-reported) or from ICD-
10/Read2 codes dated before baseline and removed from the dataset. 
Type 1 and juvenile cases were treated as control observations. A total 
of 757 incident cases were observed over the follow-up period (from 
the recruitment date to January 2022); after preprocessing, 626 cases 
remained. Mean time to T2D onset was 5.9, 5.4 and 6.0 years for sets 
1, 2 and 3, respectively, with ranges of 0.2–14.8 (set 1), 0.2–14.8 (set 
2) and 0.1–14.8 (set 3) years. In GP record-derived cases, 81% of cases 
had a C10F ‘type 2 diabetes mellitus’ code; 12% had a C10 ‘diabetes 
mellitus’ code and 4% had a C109 ‘non-insulin dependent diabetes 
mellitus’ code. The full list of included and excluded terms are given 
in Supplementary Table 10.

Composite protein epigenetic score
A composite protein epigenetic score model for incident T2D was 
trained using a set of 109 protein epigenetic scores previously shown 
to associate with a range of incident diseases9. For each protein, the 
epigenetic score was calculated for each individual in the training 
and test sets. A Cox proportional-hazards LASSO model was fitted to 
the training set with the 109 protein epigenetic scores (scaled within 
set to a mean of 0 and variance of 1) as features. The linear predictor 
from the Cox proportional-hazards LASSO model was then used as the 
composite protein epigenetic score in the incremental test set model.

Direct epigenetic score
The direct epigenetic score Cox proportional-hazards LASSO model 
for incident T2D was fitted to the DNAm data in the training set. Due 
to memory limitations in the model fitting R package (glmnet34), the 
CpGs were filtered to the 200,000 sites with the highest variance. The 
linear predictor from the Cox proportional-hazards LASSO model was 
then used as the direct epigenetic score in the incremental test set 
modeling. For the tree-ensemble models, the Cox proportional-hazards 
LASSO-selected CpGs were used as input and the 10-year onset risk was 
subsequently used as the direct epigenetic score.

Outcome definition for the 10-year onset prediction
The link to NHS Scotland health records provided dates for disease 
diagnoses from which age at onset was calculated. Along with age 
at baseline (DNAm sampling), these were used to calculate the TTE, 
measured in years, for each individual. For incident T2D cases and 
controls, TTE was defined as the time from baseline to disease onset 
and censoring, respectively. Controls were censored at the latest date 
of available GP records (September 2020). In addition, controls who 
died during the follow-up period were censored at time of death.

While all models were trained as survival models, our primary 
prediction outcome was incident T2D diagnosis within 10 years. There-
fore, predictions on the test set were calculated using the 10-year onset 
probability (one minus survival probability). When calculating the 
binary outcome metrics, cases with TTE > 10 were treated as controls. 
These metrics included confusion matrices, AUC and PRAUC. After 
preprocessing and case thresholding (TTE > 10), there were 218 cases 
and 4,560 controls in the test set.

The numbers of individuals, cases and controls after each preproc-
essing step are shown in Extended Data Fig. 1.

Incremental modeling
Composite protein epigenetic scores and direct epigenetic scores were 
generated in the training dataset using different machine learning 
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methods with the MethylPipeR package (Fig. 1), before being applied to 
the test set using an incremental modeling approach (further detail in 
the Supplementary Note). In the test set, a (null) risk factor-only model 
was defined via a Cox proportional-hazards model for T2D with age, 
sex, BMI, self-reported hypertension and self-reported family (sibling 
or parental) history of diabetes as predictors. A multitude of risk factors 
have been used in previous T2D risk prediction tools, most of which 
include the set that we have used in this study. While additional risk 
factors, such as waist:hip ratio, may also be relevant7, we selected the 
null model covariates based on those used in the Diabetes UK: Type 2 
Diabetes Know Your Risk tool (https://riskscore.diabetes.org.uk/start) 
to compare our results to an existing widely used tool. This was with 
the exception of ethnicity because of the relative homogeneity of the 
Generation Scotland cohort. These also closely match the top risk fac-
tors identified in a systematic review of previous T2D risk predictors 
(Fig. 2 in Collins et al.7).

Penalized regression predictors
Because the number of CpGs (nCpG = 200,000) was much greater than 
the number of rows in the training set (n = 9,835 after preprocessing), 
a regularization method was required to reduce overfitting of the Cox 
proportional-hazards regression models.

Penalized regression models reduce overfitting by applying a 
regularization penalty in the model fitting process. This forces regres-
sion parameters to remain small or possibly to shrink them to zero. The 
latter allows the method to be used for variable selection by keeping 
only the variables with resulting nonzero coefficients.

LASSO penalization was fitted to the training set DNAm and pro-
tein epigenetic scores using glmnet34,35 via MethylPipeR with the best 
shrinkage parameter (λ) chosen by nine-fold cross-validation.

Tree-ensemble models
Tree ensembles are nonparametric models capable of estimating 
complex functions using a set of decision trees. Two tree-ensemble 
approaches were used: RSF36 and sBART37. RSF38 is an ensemble machine 
learning model that estimates a function by averaging the output from 
a set of independently trained decision trees. During model fitting, each 
tree is built using a different subset of the variables from the training 
set to prevent individual trees from overfitting to the whole dataset. 
sBART is a nonparametric method that estimates a function as a sum 
over a set of regression trees. sBART incorporates the ability to model 
both additive and interaction effects and has shown high predictive 
performance compared with similar methods37,39.

RSF and sBART were fitted to the training set using the R pack-
ages randomForestSRC (v.2.11.0)40 and BART (v.2.9)41, respectively 
via MethylPipeR. Details on hyperparameter selection are given in the 
Supplementary Note.

Because of computational limitations and probable overfitting 
in using the tree-ensemble models on all CpGs in the dataset, vari-
able preselection was based on the coefficients in the penalized Cox 
proportional-hazards models. Each tree-ensemble model was evalu-
ated with the features corresponding to nonzero coefficients from the 
Cox proportional-hazards LASSO model.

Evaluating predictive performance
Survival models can be used to predict the risk of incident T2D for an 
arbitrary prediction period. In this study, we focused on classification 
performance for the binary outcome defined by a 10-year T2D inci-
dence. Incidence probabilities were calculated as one minus 10-year 
survival probabilities and the binary outcomes were calculated by 
truncating the observed TTE at 10 years (see ‘Outcome definition for 
the 10-year onset prediction’ section of this article).

The AUC and PRAUC were calculated as measures of predictive 
performance because they do not require the choice of a fixed discrimi-
nation threshold. PRAUC is more informative in situations where there 

is a class imbalance in the test set42. Additionally, binary classification 
metrics consisting of sensitivity (recall), specificity, positive predic-
tive value (precision) and negative predictive value were calculated. 
These metrics require selection of a discrimination threshold to assign 
positive and negative class predictions. We evaluated their behavior 
across a range of discrimination thresholds, between 0 and 1 in incre-
ments of 0.1.

Differences in correctly classified individuals between the risk 
factor-only and Cox proportional-hazards LASSO models were calcu-
lated assuming, arbitrarily, a 10-year incidence rate of 33%, for example, 
in a scenario where high-risk individuals have been selected for screen-
ing in a population of 10,000. The numbers of true positives and true 
negatives were calculated as follows:

TP = sensitivity × Nactual positives  and TN = specificity × Nactual negatives  
respectively, where Nactual positives = 3,300 and Nactual negatives = 7,700. The 
difference between the two was then taken at each classification 
threshold.

Model calibration was examined by comparing predicted prob-
abilities with actual case or control proportions43.

Selected CpG comparison with the EWAS Catalog
The CpG sites selected by the Cox proportional-hazards LASSO model 
were queried in the EWAS Catalog44 to identify traits that have previ-
ously been linked to these sites. The EWAS Catalog is a database that 
allows users to search EWAS results from the existing literature. We 
performed a tissue-agnostic query using the selected CpGs and filtered 
results to those with an epigenome-wide significance threshold of 
P < 3.6 × 10−8 (ref. 20) in studies with a sample size greater than 1,000. 
Almost all (739 out of 742; 99.6%) of the results after filtering were 
from blood-based studies. The remaining results were from saliva and 
prefrontal cortex-based studies.

Validation in the KORA S4 cohort
The Cox proportional-hazards LASSO model using the direct epigenetic 
score was applied to the KORA S4 cohort45. This cohort consisted of 1,451 
individuals in southern Germany, aged 25–74 years. Cohort summary 
details are shown in Supplementary Table 11. Individuals with missing 
values in the health measures were removed from the dataset. Missing 
CpG values in the DNAm data were mean-imputed. Like the approach 
in the Generation Scotland test set, an epigenetic score was computed 
for each individual in the KORA S4 dataset. Evaluation was then per-
formed using an incremental modeling approach. Additional cohort 
and methods details such as the outcome definition, follow-up period 
and preprocessing numbers are provided in the Supplementary Note.

Epigenetic score prediction of COVID-19 outcomes
The subset of the Generation Scotland cohort with reported COVID-19 
infection (clinically diagnosed or positive test from linked test data), 
who had also participated in the CovidLife study46 were used to predict 
ongoing symptomatic COVID-19 and hospitalization from COVID-
19 (n = 703). Ongoing symptomatic COVID-19 cases were defined as 
individuals with self-reported symptoms lasting 4 weeks or longer47. 
Hospitalization cases were defined as hospital admissions with accom-
panying ICD-10 codes U07.1 (confirmed COVID-19 test) and U07.2 
(clinically diagnosed), derived from the Scottish Morbidity Records 
(SMR01). Details of the method and summary statistics are shown in 
Supplementary Note and Supplementary Table 12.

Ethics approval and consent to participate
All components of Generation Scotland received ethical approval from 
the NHS Tayside Committee on Medical Research Ethics (research eth-
ics committee (REC) ref. no. 05/S1401/89). Generation Scotland has 
also been granted Research Tissue Bank status by the East of Scotland 
Research Ethics Service (REC ref. no. 20-ES-0021), providing generic 
ethical approval for a wide range of uses within medical research. 
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Written, informed consent was provided by Generation Scotland 
participants.

The KORA S4 studies were approved by the ethics committee of 
the Bavarian Medical Association (no. 99186) and were conducted 
according to the principles expressed in the Declaration of Helsinki 
(World Medical Association Declaration of Helsinki 2008). All study 
participants gave their written informed consent.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
According to the terms of consent for Generation Scotland partici-
pants, access to data must be reviewed by the Generation Scotland 
Access Committee. Applications should be made to access@genera-
tionscotland.org. The informed consent given by the KORA S4 study 
participants does not cover data posting in public databases. However, 
data are available upon request from the KORA Project Application Self-
Service Tool (https://epi.helmholtz-muenchen.de/). Data requests can 
be submitted online and are subject to approval by the KORA board.

Code availability
Analysis scripts for this study are available at https://github.com/mari-
oni-group/episcores-diabetes-prediction and https://doi.org/10.5281/
zenodo.7628959. MethylPipeR v.0.1.0 is available at https://github.
com/marioni-group/MethylPipeR and https://doi.org/10.5281/
zenodo.7628816. MethylPipeR-UI is available at https://github.
com/marioni-group/MethylPipeR-UI and https://doi.org/10.5281/
zenodo.7635952.
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Extended Data Fig. 1 | Preprocessing steps for Generation Scotland and KORA S4. The number of individuals/cases and controls in are given after each step.
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Extended Data Fig. 2 | Calibration plots for incremental models in 
Generation Scotland. Plots are shown for the full model (risk factors + 
composite protein epigenetic score + Cox PH lasso direct epigenetic score) 
(top-left) and the risk factors only model (bottom-left). The black line shows the 
loess calibration regression curve. The grey area shows 95% confidence intervals 
calculated from 2000 bootstrap samples. The ideal calibration line (observed 

= predicted) is shown in red. The histogram shows the distribution of predicted 
probabilities. The wider confidence intervals at higher predicted probabilities 
are due to the small number of predictions in those ranges. Most predictions are 
low in the probability range, emphasised in the zoomed-in plots (top-right and 
bottom-right).
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Extended Data Fig. 3 | An example from the MethylPipeR-UI Shiny app. The left hand panel provides functionality for uploading data and specifying pipeline 
parameters. The right hand tabs show output such as model diagnostics, performance metrics and console output.
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