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Type 2 diabetes mellitus (T2D) presents a major health and economic
burden that could be alleviated with improved early prediction and
intervention. While standard risk factors have shown good predictive
performance, we show that the use of blood-based DNA methylation
information leads to a significantimprovement in the prediction of 10-year
T2Dincidence risk. Previous studies have been largely constrained by linear
assumptions, the use of cytosine-guanine pairs one-at-a-time and binary
outcomes. We present a flexible approach (via an R package, MethylPipeR)
based on arange of linear and tree-ensemble models that incorporate
time-to-event data for prediction. Using the Generation Scotland cohort
(training set N ,ees = 374, Neonerors = 9,461; test set Neaees = 252, Negnerots = 4,526)
our best-performing model (area under the receiver operating
characteristic curve (AUC) = 0.872, area under the precision-recall curve
(PRAUC) = 0.302) showed notable improvement in 10-year onset prediction
beyond standard risk factors (AUC = 0.839, precision-recall AUC = 0.227).
Replication was observed in the German-based KORA study (n=1,451,
Nepees =142, P=1.6 x107%).

Diabetes mellitus is one of the most prevalent diseases in the world
and aleading cause of mortality. Around halfabillion people live with
diabetes worldwide, with type 2 diabetes (T2D) making up about 90%
of these cases'. Individuals with diabetes can suffer from debilitating
complicationsincluding nerve damage, kidney disease and blindness.

The disease also increases the future risk of dementia and cardiovas-
cular disease’, with recent studies highlighting obesity and T2D as risk
factors for coronavirus disease 2019 (COVID-19) disease severity and
intensive care unitadmission®. Furthermore, the risk of complications
increases over time and is exacerbated if blood glucose levels are poorly
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Table 1| Summary information for the Generation Scotland training and test sets

Training Test
Cases Controls Cases Controls

n 374 9,461 252 4,526

TTE (years to onset or censoring) 5.7(3.4) 111(1.8) 5.9 (3.4) 11.3(1.7)

Age (onset or censoring) 61.2(10.7) 58.1(14.6) 60.4 (9.4) 59.2(13.9)

Sex (male) 184 (49.2) 3,903 (41.3) 133 (52.8) 1,681(371)

BMI (kgm™) 317(5.7) 26.3(4.8) 32.2(6.2) 26.5(5.0)

Self-reported parent or sibling diabetes 137 (36.6) 1,553 (16.4) 105 (41.7) 858 (19.0)

Self-reported hypertension 117 (31.3) 1,022 (10.8) 90 (35.7) 575(12.7)
Summary information is shown as the mean (s.d.) or n (%).
managed. Despite developments in the way T2D can be managed for Training Test
patients, these treatments are reactive, focusing on patients that have set set
already beendiagnosed. Early intervention with metformin or lifestyle I - L

DNAm preprocessing
changes have been shown to delay the onset of T2D, although they do
not reduce the risk of all-cause mortality’.
Beyond public health costs, T2D also presents a substantial finan- MethylPipeR
cialburdento the National Health Service (NHS), withestimated annual | glmnet _ _ _ i
spending of £10 billion on diabetes in the UK. Around 80% of these costs ! BART S“""Vals”;g‘r’:lti;%'ifg'ge”e“c 3
are for the treatment of complications, many of which are preventable | [randomForestSRC i
with early intervention®. 3
While the mechanisms of insulin resistancein T2D are wellknown, ! Apply epigenetic score to the test set !

the interactions between genetic and environmental factors that | l ;
increase T2D susceptibility are less understood. Previous T2D risk | MLR%GCURWCS | Codel oot
prediction models have used a range of health risk factors’. How- | et neremental moce ing and performance 1
ever, these have not used epigenetic information. Epigeneticsisthe | DescTools :

study of heritable changes to DNA that do not modify its nucleo-
tide sequence. Acommonly studied form of this is DNA methylation
(DNAm), whereby methyl groups are attached to the DNA molecule,
most commonly to the five-carbon on a cytosine in a cytosine-gua-
nine pair (CpG). Due to itsinvolvement with gene expression and gene
environment interactions, DNAm can provide dynamic predictive
information for disease risk for an individual. For example, epige-
neticscores built via penalized regression models have been used to
show that weighted linear CpG predictors can explain a substantial
proportion of phenotypic variance (R?) of modifiable health factors
including body mass index (BMI) (12.5%), high-density lipoprotein
cholesterol (15.6%) and smoking status (60.9%)%. Blood-based DNAm
isof particularinterestin predictive modeling and biomarker devel-
opment because of its comparatively noninvasive sampling proce-
dure. Epigenetic scores have also shown the ability to explain that
up to 58% of variance in plasma protein levels are associated with
several incident diseases including T2D and several comorbidities’.
Epigenome-wide association studies (EWAS) have identified anumber
of CpG sites significantly associated with T2D'° and related risk
factors such as cardiovascular disease” and obesity'*". While these
provide some predictive performance for T2D prevalence, incident
T2D has been less well studied. One such EWAS with 563 cases and
701 controlsidentified 18 CpGs associated withincident T2D but did
not consider any prediction models'. Given that preventive lifestyle
changes have been shown to effectively reduce T2D onset'®, predic-
tion of T2D incidence years ahead of time would be greatly beneficial
instratifying populations so those at high risk can be monitored and
treated with early interventions.

Currently, most studies generating DNAm predictors consider
marginal CpG effects or assume only linear additive effects between
CpGs. Theuse of predictive models that canincorporate both interac-
tion and nonlinear effects could capture more complex relationships
between variables, resulting in greater prediction accuracy. Therefore,
our study aimed to evaluate both the additional predictive benefit that

Fig.1| The prediction pipeline and functionality provided in MethyIPipeR.
MethylPipeR is an R package designed to facilitate reproducible prediction
pipelines using DNAm or other types of high-dimensional omics data. The green
text boxes indicate functionality incorporated from external R packages. The
blue areaindicates the functionality included within MethylPipeR.

DNAm can provide for 10-year T2D risk and the applicability of linear
and tree-ensemble survival models.

Inthis study, we use one of the world’s largest studies with paired
genome-wide DNAm and data linkage to electronic health records, Gen-
eration Scotland (n=14,613, n= 626 incident T2D cases over 15 years
of follow-up), to develop and validate epigenetic scores for T2D. We
show the added contribution of these epigenetic scores to prediction
over and above standard risk factors, for example, age, sexand BMIand
externally validate these resultsin the KORA S4 cohort.

Results

After preprocessing, the mean time-to-onset of T2D was 5.7 and 5.9
years for the training (n = 374 cases) and test (n = 252 cases) sets, respec-
tively. Meanage at onset was also similar between the training and test
setat 61.2and 60.4 years and the mean BMI for cases (at baseline) was
31.7 and 32.2 kg m™ The full set of cohort summary details for cases
and controlsinboth sets are shownin Table 1. The preprocessing steps
and sample sizes at each step are shown in Extended Data Fig. 1. The
machine learning prediction pipeline of the MethylPipeR package is
showninFig. 1.

Null model for the incremental modeling approach

A Cox proportional-hazards model in the test set with age, sex, BMI,
self-reported hypertension and family history of diabetes as predictors
yielded good classification metrics: area under the receiver operating
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Fig.2|ROC and precision-recall curves for the full models. Full models
include therisk factors, composite protein epigenetic score and either the Cox
proportional-hazards LASSO, RSF or sBART direct epigenetic score.

characteristic curve (AUC) = 0.839, area under the precision-recall
curve (PRAUC) = 0.227.

Incremental model using the direct epigenetic score

Intherisk factors plus direct epigenetic score test set model, Cox pro-
portional-hazards with least shrinkage and selection operator (LASSO)
performed the best, showing an AUC and PRAUC of 0.870 and 0.299,
respectively (P=3.6 x 107 for the epigenetic score coefficient). This
correspondsto anincrease of 3.1% and 7.2% over the standard risk fac-
tor model.

Overall, the tree-ensemble models used for the direct epigenetic
score resulted in lower performance compared to the Cox propor-
tional-hazards LASSO. AUC values for random survival forests (RSF)
and survival Bayesian additive regression trees (SBART) were 0.852
and 0.840 and the PRAUC values were 0.247 and 0.230, respectively
(Supplementary Table 1). Pvalues for the epigenetic score coefficients
and receiver operating characteristic (ROC) curves for all models are
givenin Supplementary Table 2.

Incremental model using the composite protein epigenetic
score

The composite protein epigenetic score (with109 possibleinput protein
epigenetic score features) derived using a Cox proportional-hazards
LASSO model showed good performance with AUC and PRAUC of 0.864
and 0.270, respectively (epigenetic score coefficient P=1.61 x 107).
Theincrease in PRAUC was smaller for the composite protein epige-
netic score compared to the direct epigenetic score but still anotable
improvement over using risk factors only.

Incremental model using composite protein plus direct
epigenetic scores

The full model (risk factors plus composite protein epigenetic score
plus direct epigenetic score) with a Cox proportional-hazards LASSO
direct epigenetic score gave an AUC and PRAUC of 0.872 and 0.302,
respectively. The full models with RSF and sBART-derived direct epi-
genetic scores showed AUCs of 0.866 and 0.864, respectively. The
corresponding PRAUC values were 0.273 and 0.270. Therefore, the
best overall model used direct and composite protein epigenetic scores
from Cox proportional-hazards LASSO models. The ROC and precision—
recall curves for the fullmodels and risk factor-only model are shown
inFig. 2. We also examined if our findings were robust to potential lag
effects in T2D diagnosis”. Increases to both the AUC and PRAUC were
observed when adding the epigenetic scoresto arisk factor-only model
after excluding cases diagnosed within the first 2 years of follow-up
(Supplementary Table 3).

Binary classification metrics and model calibration
Supplementary Table 4 shows how confusion matrix metrics vary for
the null (risk factor-only) model and the Cox proportional-hazards
LASSO model across a range of probability classification thresholds.
As expected, as the classification probability threshold is increased,
sensitivity and negative predictive value decrease while specificity
increases. The effects of these differences on the number of true posi-
tives and false negatives are illustrated in Fig. 3. The two models also
show differences in their calibration plots (Extended Data Fig. 2). In
addition, the difference inthe number of correctly classified individuals
between the two models are given. These were calculated assuming,
arbitrarily, a10-year incidence rate of 33%, for example, in a scenario
where high-risk individuals have been selected for screening.

Selected CpGs

The Cox proportional-hazards LASSO model assigned nonzero coef-
ficientsto145CpGs (Supplementary Table 5). After filtering the EWAS
Catalogby Pvalue (P<3.6 x107%)** and samplesize (n>1,000), 119 (82%)
ofthe model-selected CpGs were present. These CpGs corresponded to
742 entries and showed epigenome-wide associations with traitsinclud-
ing serum high-density lipoprotein cholesterol, serum triglycerides,
smoking, C-reactive protein, BMI and age (Supplementary Table 6).

Selected protein epigenetic scores

The composite protein epigenetic score Cox proportional-hazards
LASSO model assigned nonzero coefficients to 46 protein epigenetic
scores. Details on the corresponding proteins and genes are given in
Supplementary Table 7. Out of the selected protein epigenetic scores,
21 previously showed associations with incident T2D°.

Validationinthe KORA S4 cohort

Prediction of incident diabetes in the KORA S4 cohort using the Cox
proportional-hazards LASSO model showed good replication of direct
epigenetic score performance (P=1.6 x 107%) with increases of 1.6% in
absolute terms above the null model values for both AUC and PRAUC.
Further details are provided in Supplementary Table 8.

Epigenetic score prediction of COVID-19 outcomes

In all models, incident T2D was predictive of hospitalization with
COVID-19 infection. However, neither the composite protein nor the
direct epigenetic score were predictive of the same outcome (Supple-
mentary Table 9). Additionally, neither the (direct or protein-based)
epigenetic scores nor incident T2D were predictive of ongoing symp-
tomatic COVID-19 after COVID-19 infection.

Discussion
Using a large cohort with genome-wide epigenetic data and health
records linkage to longitudinal primary and secondary care data, we
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Fig.3 | Confusion matrix plot of true positives/false negatives and false positives/true negatives in the Generation Scotland test dataset. In each panel, the full
modelis showninblue and the risk factors only model is shown in red. (The full model uses direct and composite protein epigenetic scores from the Cox proportional-

hazards LASSO model.)

showed that DNAm-based predictors augment standard risk factors
inthe prediction of incident T2D. The best model with traditional risk
factors yielded an AUC of 0.839 compared to 0.872 when DNAm was
also considered and the PRAUC increased from 0.227 to 0.305. Using
several linear and nonlinear survival models, we showed that overall,
the Cox proportional-hazards LASSO model produced the most pre-
dictive direct epigenetic score. A composite protein epigenetic score
alsonotablyincreased predictive performance. The direct epigenetic
score also showed good external validation performance in the KORA
S4 cohort. Beyond the T2D analysis presented in this study, we devel-
oped the MethylPipeR R package, along with a user interface version
MethylPipeR-Ul (shownin Extended DataFig. 3), to facilitate reproduc-
ible machinelearning time-to-event (TTE) and binary prediction using
DNAm or other types of high-dimensional omics data.

Determining a ‘best’ model is complicated and depends on
the trade-off that a user wishes to make. In this study, we optimized
AUC and PRAUC but binary classification metrics vary by method or
classification threshold. When using classifiers in clinical settings,
decisions need to be made about the number of patients that can be
recommended for intervention and the acceptable proportion of false
positivesand false negatives. We showed anincreasein the correctiden-
tification of positives and negatives at varying probability thresholds
when adding direct and composite epigenetic scores above standard
risk factors. For instance, given an (arbitrary) incidence rate of 33%
(commonly used as a cutoff for high risk of T2D)* over 10 yearsin a
sample 0f 10,000 individuals, our best model would correctly classify
anadditional 449 individuals compared to the risk factor-only model at
athreshold of 0.2 (Supplementary Table 4). Given the costs of treating
T2D-related complications, our study gives evidence for possible ben-
efits of epigenetic scores on public health that could also alleviate the

financial burden to the NHS. In addition, an assessment of calibration
isalso critical®**. Investigation of these related criteria could assist in
deciding an optimal threshold given clinical constraints and provide
amore comprehensive assessment of model predictions than AUCs or
metrics at the commonly used threshold of 0.5.

Several CpGs from the direct epigenetic score were previously
identified as epigenome-wide significant correlates of traits commonly
linked to T2D"****%%, Future work could investigate the overlap between
these and TTE EWAS studies. Further studies could alsoinclude DNAm
predictors for traditional risk factors that are included in the null
model, suchas BMI®.

Limitations include the relatively small number of disease cases
in the dataset, the limited hyperparameter optimization performed
for sBART and the relatively simple variable preselection method
for tree-ensemble methods. Given the lower performance of these
methods compared to the best modelsin this study, there is potential
for additional improvement in predictive performance with further
investigation of more advanced feature (pre)selection. This is par-
ticularly important when we consider that the preselection step used
linear models before the nonlinear model fitting. Model fitting and
preselection were also performed using the same training set, which
may haveintroduced issues associated to post-selection inference®.
In addition, factors such as overfitting, related individuals in the test
set and batch effects between the three rounds of DNAm data pro-
cessing may all have had an effect on the test set AUC. Future studies
may also take into account multimorbidities because the presence of
competing risks canlead to biasin onset predictions®. Finally, a small
proportion of the linkage codes used to define diabetes included broad
terms that were nonspecific to T2D; however, the late age of onset in
theseindividuals meant that there was a high likelihood that they had
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developed T2D. Epigenetic scores for T2D-associated proteins have
also been shown to replicate incident T2D-protein associations in
this sample’, suggesting that the case definitions we used captured
biological signals relevant to T2D.

There are many strengths to our study. First, the models used
captured relationships between CpGs and TTE information, which is
not possible using traditional EWAS methods. Second, data linkage
to health care measures provided comprehensive T2D incidence data
in a very large cohort study, that is, Generation Scotland. Validation
performancein the KORA S4 cohortalso strengthened evidence for the
applicability of the models to other populations. Finally, the R package
MethylPipeR encourages reproducibility and allows others to develop
similar predictors on new data with minimal setup.

In conclusion, we have demonstrated the potential for DNAm
data to provide notable improvement in predictive performance for
incident T2D, compared to traditional risk factors (age, sex, BMI, hyper-
tension and family history). We evaluated different models with a
systematic approach and presented a framework with the ability to
generalize to other traits and datasets for training and testing predic-
torsin future studies.

Methods

Statistics and reproducibility

To enhancereproducibility, the analysis pipeline and results presented
inthis study have been reported using the Transparent Reporting ofa
multivariable prediction model for Individual Prognosis Or Diagnosis
(TRIPOD) checklist® (Supplementary File 1). Sample sizes for training,
testing and validation of the statistical models were determined by the
cohort sizes. Exclusions were made based on DNAm quality control
and missingness in health data. Randomization and blinding were not
applicable during data collection because the study used observational
data from population-based cohorts. Statistical tests for model coef-
ficients assumed anormal distribution but this was not formally tested.

Generation Scotland

Blood-based DNAm and linked health data were obtained from Gen-
eration Scotland®, a family-structured, population-based cohort.
The cohort consists 0f 23,960 volunteers across Scotland aged 18-99
years at recruitment (between 2006 and 2011), of whom over 18,000
currently have genome-wide DNAm dataavailable (Illumina EPIC array).
In DNAm quality control, CpG sites were filtered by removing those
with a low bead count in 5% or more of the samples or a high detec-
tion P value (>0.05) in more than 5% of samples. Probes on the X and
Y chromosomes were also removed. Samples were filtered by remov-
ing those with a mismatch between predicted and recorded sex or 1%
or more of CpGs with a detection P> 0.05. Missing CpG values were
mean-imputed. To enable the predictors to be applied to existing
cohort studies with older lllumina array data, CpGs were filtered to
theintersection of the 450k and EPIC array sites (n = 453,093 CpGs).

This study considered DNAm data from three large subsets of the
Generation Scotland cohort, with 5,087 (set1), 4,450 (set 2) and 8,877
(set3) individuals. Processing took placein 2017,2019 and 2021, respec-
tively. Set1and set 3 included related individuals within and between
each set whileallindividualsin set 2 were unrelated to each other and
toindividualsinset1(geneticrelationship matrix threshold < 0.05).In
our experiments, the training set consisted of sets 2 and 3 combined;
set 1 was used as the test set. To avoid the presence of families with
individuals across both training and test sets, any individuals in the
training set from the same family as an individual in the test set were
excluded from the analysis (R, ugeq = 3,138).

Participant health measuresincluding age, BMI, sex, self-reported
hypertension and family (parent or sibling) history of T2D were taken at
baseline (DNAm sampling) via questionnaire. BMIwas calculated as the
individual’s weight in kilograms divided by the square of their height
in meters. Missing values in the set 1 health measures were treated as

missing completely at random and the correspondingindividuals were
excluded (n.,; = 99). This was not performed in sets 2 and 3 because
the health measures were used for incremental modeling (set 1 only).

Disease cases were ascertained through data linkage to NHS Scot-
land health records consisting of hospital (International Statistical
Classification of Diseases and Related Health Problems, 10th Revision
(ICD-10) codes) and GP records (Read2 codes). Prevalent cases were
identified from a baseline questionnaire (self-reported) or from ICD-
10/Read2 codes dated before baseline and removed from the dataset.
Typelandjuvenile cases were treated as control observations. A total
of 757 incident cases were observed over the follow-up period (from
therecruitment date toJanuary 2022); after preprocessing, 626 cases
remained. Mean time to T2D onset was 5.9, 5.4 and 6.0 years for sets
1,2 and 3, respectively, with ranges of 0.2-14.8 (set 1), 0.2-14.8 (set
2) and 0.1-14.8 (set 3) years. In GP record-derived cases, 81% of cases
had a C10F ‘type 2 diabetes mellitus’ code; 12% had a C10 ‘diabetes
mellitus’ code and 4% had a C109 ‘non-insulin dependent diabetes
mellitus’ code. The full list of included and excluded terms are given
inSupplementary Table 10.

Composite protein epigenetic score

A composite protein epigenetic score model for incident T2D was
trained using a set of 109 protein epigenetic scores previously shown
to associate with a range of incident diseases’. For each protein, the
epigenetic score was calculated for each individual in the training
and test sets. A Cox proportional-hazards LASSO model was fitted to
the training set with the 109 protein epigenetic scores (scaled within
set to a mean of 0 and variance of 1) as features. The linear predictor
from the Cox proportional-hazards LASSO model was then used as the
composite protein epigenetic scorein theincremental test set model.

Direct epigenetic score

The direct epigenetic score Cox proportional-hazards LASSO model
for incident T2D was fitted to the DNAm data in the training set. Due
to memory limitations in the model fitting R package (glmnet**), the
CpGswerefiltered tothe 200,000 sites with the highest variance. The
linear predictor fromthe Cox proportional-hazards LASSO model was
then used as the direct epigenetic score in the incremental test set
modeling. For the tree-ensemble models, the Cox proportional-hazards
LASSO-selected CpGs were used as input and the 10-year onset risk was
subsequently used as the direct epigenetic score.

Outcome definition for the 10-year onset prediction
The link to NHS Scotland health records provided dates for disease
diagnoses from which age at onset was calculated. Along with age
at baseline (DNAm sampling), these were used to calculate the TTE,
measured in years, for each individual. For incident T2D cases and
controls, TTE was defined as the time from baseline to disease onset
and censoring, respectively. Controls were censored at the latest date
of available GP records (September 2020). In addition, controls who
died during the follow-up period were censored at time of death.

While all models were trained as survival models, our primary
prediction outcome wasincident T2D diagnosis within 10 years. There-
fore, predictions on the test set were calculated using the 10-year onset
probability (one minus survival probability). When calculating the
binary outcome metrics, cases with TTE > 10 were treated as controls.
These metrics included confusion matrices, AUC and PRAUC. After
preprocessing and case thresholding (TTE > 10), there were 218 cases
and 4,560 controls in the test set.

The numbers ofindividuals, cases and controls after each preproc-
essing step are shown in Extended Data Fig. 1.

Incremental modeling
Composite proteinepigenetic scores and direct epigenetic scores were
generated in the training dataset using different machine learning
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methods withthe MethylPipeR package (Fig.1), before being applied to
the test set using anincremental modeling approach (further detail in
the Supplementary Note). Inthe test set, a (null) risk factor-only model
was defined via a Cox proportional-hazards model for T2D with age,
sex, BMI, self-reported hypertension and self-reported family (sibling
or parental) history of diabetes as predictors. Amultitude of risk factors
have been used in previous T2D risk prediction tools, most of which
include the set that we have used in this study. While additional risk
factors, such as waist:hip ratio, may also be relevant’, we selected the
null model covariates based on those used in the Diabetes UK: Type 2
Diabetes Know Your Risk tool (https://riskscore.diabetes.org.uk/start)
to compare our results to an existing widely used tool. This was with
the exception of ethnicity because of the relative homogeneity of the
Generation Scotland cohort. These also closely match the top risk fac-
tors identified in a systematic review of previous T2D risk predictors
(Fig.2in Collins etal.”).

Penalized regression predictors

Because the number of CpGs (¢, =200,000) was much greater than
the number of rows in the training set (n = 9,835 after preprocessing),
aregularization method was required to reduce overfitting of the Cox
proportional-hazards regression models.

Penalized regression models reduce overfitting by applying a
regularization penalty in the model fitting process. This forces regres-
sion parameters to remain small or possibly to shrink them tozero. The
latter allows the method to be used for variable selection by keeping
only the variables with resulting nonzero coefficients.

LASSO penalization was fitted to the training set DNAm and pro-
tein epigenetic scores using glmnet*** via MethylPipeR with the best
shrinkage parameter (1) chosen by nine-fold cross-validation.

Tree-ensemble models

Tree ensembles are nonparametric models capable of estimating
complex functions using a set of decision trees. Two tree-ensemble
approaches were used: RSF** and sBART*. RSF* is an ensemble machine
learning model that estimates afunction by averaging the output from
asetofindependently trained decision trees. During modelfitting, each
tree is built using a different subset of the variables from the training
set to prevent individual trees from overfitting to the whole dataset.
sBART is a nonparametric method that estimates a function as asum
over asetof regressiontrees. SBART incorporates the ability to model
both additive and interaction effects and has shown high predictive
performance compared with similar methods**.

RSF and sBART were fitted to the training set using the R pack-
ages randomForestSRC (v.2.11.0)*° and BART (v.2.9)*, respectively
viaMethylPipeR. Details on hyperparameter selection are givenin the
Supplementary Note.

Because of computational limitations and probable overfitting
in using the tree-ensemble models on all CpGs in the dataset, vari-
able preselection was based on the coefficients in the penalized Cox
proportional-hazards models. Each tree-ensemble model was evalu-
ated with the features corresponding to nonzero coefficients fromthe
Cox proportional-hazards LASSO model.

Evaluating predictive performance
Survival models can be used to predict the risk of incident T2D for an
arbitrary prediction period. In this study, we focused on classification
performance for the binary outcome defined by a 10-year T2D inci-
dence. Incidence probabilities were calculated as one minus 10-year
survival probabilities and the binary outcomes were calculated by
truncating the observed TTE at 10 years (see ‘Outcome definition for
the10-year onset prediction’ section of this article).

The AUC and PRAUC were calculated as measures of predictive
performance because they do not require the choice of a fixed discrimi-
nation threshold. PRAUCis more informative in situations where there

isaclassimbalancein the test set*”. Additionally, binary classification
metrics consisting of sensitivity (recall), specificity, positive predic-
tive value (precision) and negative predictive value were calculated.
These metrics require selection of adiscrimination threshold to assign
positive and negative class predictions. We evaluated their behavior
across arange of discrimination thresholds, between O and 1inincre-
ments of 0.1.

Differences in correctly classified individuals between the risk
factor-only and Cox proportional-hazards LASSO models were calcu-
lated assuming, arbitrarily, al0-year incidence rate of 33%, for example,
inascenariowhere high-risk individuals have been selected for screen-
ing in a population 0f 10,000. The numbers of true positives and true
negatives were calculated as follows:

TP = sensitivity x Nactualpositives and TN = specificity x Nactualnegatives
respectively, where N, i positives = 3,300 and N,qya negatives = 7,700. The
difference between the two was then taken at each classification
threshold.

Model calibration was examined by comparing predicted prob-
abilities with actual case or control proportions*.

Selected CpG comparison with the EWAS Catalog

The CpGsites selected by the Cox proportional-hazards LASSO model
were queried in the EWAS Catalog** to identify traits that have previ-
ously been linked to these sites. The EWAS Catalog is a database that
allows users to search EWAS results from the existing literature. We
performed atissue-agnostic query using the selected CpGs and filtered
results to those with an epigenome-wide significance threshold of
P<3.6x1078(ref.20) in studies with a sample size greater than 1,000.
Almost all (739 out of 742; 99.6%) of the results after filtering were
fromblood-based studies. The remaining results were from saliva and
prefrontal cortex-based studies.

Validationinthe KORA S4 cohort

The Cox proportional-hazards LASSO model using the direct epigenetic
scorewas applied to the KORA S4 cohort®. This cohort consisted of 1,451
individuals in southern Germany, aged 25-74 years. Cohort summary
details are shown in Supplementary Table 11. Individuals with missing
valuesinthe health measures were removed from the dataset. Missing
CpG values in the DNAm data were mean-imputed. Like the approach
inthe Generation Scotland test set, an epigenetic score was computed
for each individual in the KORA S4 dataset. Evaluation was then per-
formed using an incremental modeling approach. Additional cohort
and methods details such as the outcome definition, follow-up period
and preprocessing numbers are provided in the Supplementary Note.

Epigenetic score prediction of COVID-19 outcomes

The subset of the Generation Scotland cohort with reported COVID-19
infection (clinically diagnosed or positive test from linked test data),
who had also participated in the CovidLife study*® were used to predict
ongoing symptomatic COVID-19 and hospitalization from COVID-
19 (n=703). Ongoing symptomatic COVID-19 cases were defined as
individuals with self-reported symptoms lasting 4 weeks or longer®’.
Hospitalization cases were defined as hospital admissions withaccom-
panying ICD-10 codes U07.1 (confirmed COVID-19 test) and U07.2
(clinically diagnosed), derived from the Scottish Morbidity Records
(SMRO1). Details of the method and summary statistics are shown in
Supplementary Note and Supplementary Table 12.

Ethics approval and consent to participate

Allcomponents of Generation Scotland received ethical approval from
the NHS Tayside Committee on Medical Research Ethics (research eth-
ics committee (REC) ref. no. 05/S1401/89). Generation Scotland has
alsobeen granted Research Tissue Bank status by the East of Scotland
Research Ethics Service (REC ref. no. 20-ES-0021), providing generic
ethical approval for a wide range of uses within medical research.
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Written, informed consent was provided by Generation Scotland
participants.

The KORA S4 studies were approved by the ethics committee of
the Bavarian Medical Association (no. 99186) and were conducted
according to the principles expressed in the Declaration of Helsinki
(World Medical Association Declaration of Helsinki 2008). All study
participants gave their writteninformed consent.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

According to the terms of consent for Generation Scotland partici-
pants, access to data must be reviewed by the Generation Scotland
Access Committee. Applications should be made to access@genera-
tionscotland.org. The informed consent given by the KORA S4 study
participants does not cover data posting in public databases. However,
dataare available uponrequest from the KORA Project Application Self-
Service Tool (https://epi.helmholtz-muenchen.de/). Datarequests can
be submitted online and are subject to approval by the KORA board.

Code availability

Analysis scripts for this study are available at https://github.com/mari-
oni-group/episcores-diabetes-prediction and https://doi.org/10.5281/
zenodo.7628959. MethylIPipeR v.0.1.0 is available at https://github.
com/marioni-group/MethylPipeR and https://doi.org/10.5281/
zenodo.7628816. MethylPipeR-Ul is available at https://github.
com/marioni-group/MethylPipeR-Ul and https://doi.org/10.5281/
zenodo.7635952.
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Extended Data Fig. 1| Preprocessing steps for Generation Scotland and KORA S4. The number of individuals/cases and controls in are given after each step.
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Extended DataFig. 2| Calibration plots for incremental models in
Generation Scotland. Plots are shown for the full model (risk factors +
composite protein epigenetic score + Cox PH lasso direct epigenetic score)
(top-left) and the risk factors only model (bottom-left). The black line shows the
loess calibration regression curve. The grey area shows 95% confidence intervals
calculated from 2000 bootstrap samples. The ideal calibration line (observed

Predicted probability

=predicted) is shownin red. The histogram shows the distribution of predicted
probabilities. The wider confidence intervals at higher predicted probabilities
are due to the small number of predictions in those ranges. Most predictions are
low in the probability range, emphasised in the zoomed-in plots (top-right and
bottom-right).
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X’ The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|X’ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|X| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Data collection  Data collection was performed by Generation Scotland (GS) and Cooperative Health Research in the Region of Augsburg (KORA). For further
information please contact access@generationscotland.org (GS) and kora-studienzentrum@helmholtz-muenchen.de (KORA). Data cannot be
publicly disclosed due to them containing information that could compromise participant consent and confidentiality.

Data analysis All analysis code was written by the authors and is publicly available on GitHub in the following repositories:
https://github.com/marioni-group/episcores-diabetes-prediction
https://github.com/marioni-group/MethylPipeR
https://github.com/marioni-group/MethylPipeR-Ul

R packages:

* BART (version 2.9)

* gbm (version 2.1.8)

¢ glmnet (version 4.1-1)

e randomForestSRC (version 2.11.0)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

According to the terms of consent for GS participants, access to data must be reviewed by the GS Access Committee. Applications should be made to
access@generationscotland.org.
Applications for access to KORA should be made using the KORA.PASST system (http://epi.helmholtz-muenchen.de/).
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Life sciences study design
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Sample size We used 9,537 participants from GS for whom we had DNA methylation data. For model validation, we used data from 1,451 participants in
the KORA S4 study with DNA methylation and incident T2D data available. Sample sizes for training, testing and validation of the statistical
models were determined by the cohort sizes

Data exclusions  Exclusions were made based on DNAm quality control and missingness in health data (outlined under the Generation Scotland section in
Methods)

Replication Replication of model performance was performed through validation in an external cohort, KORA.
Randomization  This study used observational data from a population-based cohort

Blinding This study used observational data from a population-based cohort

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

[] Animals and other organisms
Human research participants
[] Clinical data

|:| Dual use research of concern

MXOXXNXX &

Human research participants

Policy information about studies involving human research participants

Population characteristics Generation Scotland: the Scottish Family Health Study (GS) is a large, family-structured, population-based cohort study of >
24,000 individuals from across Scotland. Of these individuals, 9,537 had DNA methylation measures available. Full summary
statistics are shown in Table 1 and Supplementary Table 4.
KORA is a research platform performing population-based surveys and subsequent follow-ups in the region of Augsburg in
Southern Germany. This study used a subsample of the 1,451 participants of the KORA S4 study with DNA methylation and
incident T2D data available. Summary statistics are provided in Supplementary Table 2.
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Recruitment Recruitment for Generation Scotland: the Scottish Family Health Study (GS) took place between 2006 and 2011 with a clinical
visit where detailed health, cognitive, and lifestyle information was collected along with biological samples (blood, urine,
saliva).

Recruitment for KORA S4 took place between 1999 and 2001. Each participant completed a health questionnaire, providing
details on health status and medication. Blood samples were also taken for assaying of omics data.

Ethics oversight All components of Generation Scotland received ethical approval from the NHS Tayside Committee on Medical Research
Ethics (REC Reference Number: 05/51401/89). Generation Scotland has also been granted Research Tissue Bank status by the
East of Scotland Research Ethics Service (REC Reference Number: 20-ES-0021), providing generic ethical approval for a wide
range of uses within medical research.
The KORA studies were approved by the Ethics Committee of the Bavarian Medical Association (Bayerische
Landesdrztekammer; S4: #99186) and were conducted according to the principles expressed in the Declaration of Helsinki. All
study participants gave their written informed consent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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