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Toward an improved definition of a healthy 
microbiome for healthy aging

Tarini Shankar Ghosh    1,2,4, Fergus Shanahan1,3 & Paul W. O’Toole    1,2 

The gut microbiome is a modifier of disease risk because it interacts with 
nutrition, metabolism, immunity and infection. Aging-related health 
loss has been correlated with transition to different microbiome states. 
Microbiome summary indices including alpha diversity are apparently 
useful to describe these states but belie taxonomic differences that 
determine biological importance. We analyzed 21,000 fecal microbiomes 
from seven data repositories, across five continents spanning participant 
ages 18–107 years, revealing that microbiome diversity and uniqueness 
correlate with aging, but not healthy aging. Among summary statistics 
tested, only Kendall uniqueness accurately reflects loss of the core 
microbiome and the abundance and ranking of disease-associated and 
health-associated taxa. Increased abundance of these disease-associated 
taxa and depletion of a coabundant subset of health-associated taxa are 
a generic feature of aging. These alterations are stronger correlates of 
unhealthy aging than most microbiome summary statistics and thus help 
identify better targets for therapeutic modulation of the microbiome.

Physical and cognitive decline with age is not experienced uniformly; 
delayed age-related decline (healthy aging) is evident in many people. 
One of the determinants of age-related decline is the microbiome. 
The microbiome transduces environmental signals that shape host 
immune, metabolic and neurologic function, and it modifies the risk 
of disease, including age-related diseases. However, the microbiome 
is, itself, modified by age-related impairment and age-related disease1,2. 
Several studies have found alterations in the composition and function 
of the microbiome as the host ages1,3–6 (reviewed also in Ghosh et al.7). 
We have also shown that age-related microbiome alterations are both 
distinct from and overlapping with those in age-related diseases1,8.

There is broad consensus how the microbiome changes with age, 
but specific intervention targets are less clear. Moreover, terms like 
diversity, assumed by many to be desirable9, and ‘uniqueness’, which 
has been cast as a marker of healthy aging6, need greater precision and 
should not be used agnostic of the loss or gain of specific taxa in aging. 
Other summary statistics include different measures of uniqueness 
that capture specific aspects of gut microbiome variability and are 
calculated using different distance measures.

Here, we analyzed microbiome diversity and four measures of 
microbiome uniqueness in 21,000 gut microbiomes for their relation-
ship with aging and health. We show that diversity and uniqueness 
measures are not synonymous; uniqueness is not a uniformly desir-
able feature of the aging microbiome, nor is it an accurate biomarker 
of healthy aging. Different measures of uniqueness show different 
associations with diversity and with markers of health and disease. The 
Kendall uniqueness measure is negatively associated with microbiome 
diversity and health-associated taxa and positively associated with mul-
tiple disease-associated taxa. These health- and disease-associated taxa 
show the strongest association with the unhealthy aging phenotype 
and represent actionable targets for the design of microbiome-based 
therapeutics for older people.

Results
Uniqueness indices show different interactions with diversity
We analyzed 21,041 fecal microbiome datasets (or profiles) from seven 
data repositories (Methods and Table 1)1,10–16. Six of these data reposi-
tories covered participants from Europe, North/South America, Asia 
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and Africa and ranging from 18 to 100 years old. One repository (NU-
AGE) was specific to older individuals15. The combined study popula-
tion derives from 19 nationalities across Europe, North America, South 
America, Asia, Pacific Islands and Africa. Taxonomic profiles at the genus 
and species level and MetaCyc-based functional profiles were also avail-
able for all the 8,430 Shotgun datasets included in this study (Table 1).

We first calculated five microbiome summary statistics, Shan-
non index (or diversity) and four different measures of uniqueness, 
namely, Bray–Curtis (as used by Wilmanski et al.6), Jaccard, Aitchison 
and Kendall (Methods) at the levels of genus, species and functional 
pathways (MetaCyc). Higher values of Bray–Curtis, Jaccard or Aitchison 
uniqueness indicate greater variation in the presence or abundance of 
taxa (or pathways). In contrast, higher Kendall uniqueness indicates 
higher variation of overall microbiome structure and reorganization 
(Extended Data Fig. 1). We then investigated the associations between 
these properties within each individual study cohort and across all 
studies (Supplementary Fig. 1).

Different measures of uniqueness were mutually positively 
correlated to varying extents across studies but showed different 
relationships with microbiome diversity (Shannon index) (Supple-
mentary Tables 1 and 2, Extended Data Fig. 2 and Supplementary  

Fig. 2). Although Bray–Curtis, Jaccard and Aitchison uniqueness values 
(all associated with increased abundance and detection of rarer taxa) 
positively associated with diversity, the Kendall uniqueness meas-
ure (which reflects differences in overall microbiome hierarchy and 
relative rank abundance of individual microbiome members) showed 
significantly negative correlation with Shannon diversity across most 
datasets (Extended Data Fig. 2 and Supplementary Fig. 2). This differ-
ential association of the uniqueness measures with Shannon diversity 
was consistent at both species and genus levels. Kendall uniqueness 
and diversity were also negatively associated at the level of functional 
pathways (Extended Data Fig. 2, Supplementary Fig. 2b and Supplemen-
tary Table 1b). Thus, higher values of Kendall uniqueness, associated 
with loss of gut microbiome organization, occur when there is a loss of 
structure and diversity of the overall gut microbiome.

Uniqueness and diversity show a geography-specific increase 
with age
Because the microbiome is affected by age and geography, we inves-
tigated the separate and combined interaction of these variables with 
age (Fig. 1, Extended Data Fig. 3 and Supplementary Table 3). Overall, in 
21 of 28 datasets (~75%) subjected to diversity or uniqueness analysis at 
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Fig. 1 | Association of measures of microbiome uniqueness, Shannon diversity 
and beta diversity with age in different study cohorts shows region-specific 
variabilities. The names of the study cohorts appear as listed in Table 1, and the 
number of investigated gut microbiomes are indicated in parentheses. The top 
four rows indicate the data type (Shotgun or 16S; as per legend), maximum and 
minimum participant age and the geographical region. The heatmap immediately 
below these panels shows the results of PERMANOVA for associating overall 
beta diversity with age computed using the four microbiome distance matrices 
analyzed at the levels of genus and species. The bottom heatmap shows the 
results of the robust linear regression models for associating species and genus-
level microbiome summary statistics with age across the different individual 
studies. The statistical significance of the associations were computed using 
two-sided robust F-tests. The P values obtained for the association of the different 
microbiome summary indices were corrected on a per-study cohort basis using 

Benjamini–Hochberg correction to compute the Q-values. Also indicated on 
the right of this heatmap are the results of the association meta-analyses of 
these microbiome summary statistics with age for studies grouped based on 
their geographical regions. For a given geographical region, the summarized 
associations are computed using random effect models on the specific individual 
study-specific effect sizes (computed based on robust linear regression models 
(Methods)). As for the previous heatmap, the P values obtained for the association 
of each summary index were corrected on for each geography-specific study 
groups using Benjamini–Hochberg corrections. The results show that age-wise 
association of the gut microbiome with age (association of individual summary 
statistics as well as overall diversity) shows region-specific signatures, with the 
strongest effects being observed for the European and North American cohorts. 
Various measures of uniqueness and diversity strongly associate with age, but 
only for the European and North American cohorts.
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the taxonomic level (Fig. 1), and in 15 of 23 datasets (~65%) examined at 
the pathway level (Extended Data Fig. 3), we detected significant asso-
ciation (P < 0.05) between age and overall microbiome (beta) diversity 
for at least one of the distance measures. This finding indicated that 
for a majority of studies, the gut microbiome composition changed 
with age. The individual distance measures did not show any consist-
ent differences in the number of their associations. Notably however, 
the association of overall gut microbiome composition with age was 
strongest in European and North American individuals (consistently 
significant associations with multiple beta-diversity measurements) 
(Fig. 1). This pattern was even stronger for pathway beta-diversity analy-
sis (Extended Data Fig. 3), where microbiome function significantly 
associated with age in 10 of 11 European/North American cohorts. In 
contrast, we observed significant association between pathway data 
and age in only 4 out of the 13 cohorts from other geographies.

Multiple measures of uniqueness and diversity also positively 
correlated with age, but like beta diversity, primarily for European and 
North American individuals (Fig. 1; Supplementary Table 4 individual 
studies; Supplementary Table 3 Random Effects Model for cohort 
geographies). This was similar to the positive association between 
Bray–Curtis uniqueness and age in a predominantly North American 
study population reported by Wilmanski et al.6. However, across data-
sets from other geographies, neither uniqueness nor diversity associ-
ated with age (Fig. 1 and Supplementary Table 4). Using random effect 
models against geography-specific study groups, the positive associa-
tion of multiple measures of uniqueness and diversity with age shifted 
from being strongly or significantly positive for Europeans and North 
Americans to being nonsignificant for other geographies (Supplemen-
tary Table 5). This pattern was especially pronounced at the taxonomy 
level. Overall, these strong differences in the age-associated alterations 

in the gut microbiome were not associated with either study sample 
size, or the cohort size of older adults, or age-range (Supplementary 
Fig. 3). However, for African cohorts, microbiomes from older adults 
were underrepresented (numbers ranging from 2 to 26). Given the 
strong association between diversity and uniqueness measures, we 
recomputed the associations between aging and uniqueness measures 
after adjusting for the Shannon diversity across all studies (for both 
taxonomy and function). The patterns remained largely unchanged 
(Supplementary Tables 6 and 7 and Extended Data Fig. 4).

Thus, the extent and type of age-specific microbiome associations 
(including summary indices) differ with geography. Most of the excep-
tions in Europe to these data interactions were in the NU-AGE cohort, 
perhaps because of the narrow age range of this targeted-recruitment 
cohort (Fig. 1).

Summary indices show different links with disease-/health-
linked taxa
We next tested if microbiome summary statistics reflected the abun-
dances of taxa consistently reported as showing differential associa-
tions with health. We focused on 107 species-level taxa present in at 
least 5% of the microbiomes, in at least 60% of studies, in both Shotgun-
derived and 16S-datasets. We primarily investigated composition-
ality-tuned clr-transformed taxonomic abundances, although pilot 
evaluation of different normalization strategies identified very similar 
taxon abundances (Methods and Supplementary Figs. 4 and 5).

We detected 288 significant associations between these 107 spe-
cies and the five microbiome summary statistics (Methods, Supple-
mentary Tables 8 for cohort-specific associations, Supplementary 
Table 9 and Extended Data Fig. 5 for across cohort meta-analysis using 
random effect models). The maximum number of associations were 
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Fig. 2 | Identification of species-level groups based on their pattern of 
association with different microbiome summary statistics. Species fall into 
three groups based on their association pattern with Kendall uniqueness. Each 
edge indicates an association with Q ≤ 0.05, with colors blue and red indicating 
significant negative and positive associations, respectively. Based on their 
pattern of association, the microbiome taxa can be resolved into three partitions 
based on their association with Kendall uniqueness. A set of 54 species-level 

taxa containing many of the putatively beneficial symbionts show significantly 
negative association with Kendall uniqueness. A group of 22 species-level taxa 
containing many taxa previously shown to be associated positively with multiple 
diseases/unhealthy measures, like frailty1, associate positively with Kendall 
uniqueness. The disease/unhealthy aging links of the above two groups are 
further validated in Figs. 3 and 5. A third group of 36 taxa (highlighted as ’Others’) 
show no association with Kendall uniqueness.
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with the Shannon index (99 associations) and Kendall uniqueness (76 
associations) (Extended Data Fig. 5). However, the pattern of these asso-
ciations was different. Although almost all associations obtained with 
the Shannon diversity index were positive (98 of 99), the associations 
with Kendall uniqueness included both negative (54 associations) and 

positive associations17. The individual species-level taxa (see heatmap 
in Supplementary Fig. 6) clustered into three groups (Fig. 2) comprising 
54 species-level taxa negatively associated with Kendall uniqueness, 22 
species-level taxa positively associated with Kendall uniqueness and 37 
species-level taxa showing no associations with Kendall uniqueness. 
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determined across the 13 selected studies (Results), along with the study cohort 
size (the number of independent samples/gut metagenomes from each study). 
The y axis shows the −log(Q)base 10, where the Q-value is obtained by correcting 
the overall P values obtained for the same meta-analyses across all species using 
the Benjamini–Hochberg correction. Taxa belonging to the three taxon groups 
identified in Fig. 2 are shown in different colors (pink, Kendall uniqueness 
positive; yellow, Kendall uniqueness negative; blue, others). Only taxa showing 
associations with Q ≤ 0.1 are indicated. Taxa showing significant (Q ≤ 0.1) 
positive associations with age tend to be dominated by those belonging to the 

Kendall uniqueness-positive group. b,c, Overall increase of disease-associated 
group of taxa with increasing age >60 years; forest plots show the results of 
separate random effects (RE) model-based meta-analyses performed the 
group abundances of the Kendall uniqueness-positive and Kendall uniqueness-
negative groups with age (>60 years) (Methods). The highlighted study cohorts 
(highlighted in green for health-associated Kendall uniqueness-negative 
group and in red for disease-associated Kendall uniqueness-positive group) 
are those where the association pattern was similar to the overall pattern. For 
each plot, the effect size of the associations with age is depicted as a line, with 
the mean effect size shown as black squares (the size proportional to the weight 
or power for each study), and the lines indicate the confidence interval of this 
estimate. The summarized effect size is indicated at the bottom in the shape 
of a rhomboid, with the outer edges indicating its confidence interval. The 
two-sided P values of the permutation tests of each random effects model is also 
indicated above each plot.
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We referred to these groups of taxa as Kendall uniqueness negative, 
Kendall uniqueness positive and others, respectively.

We next checked if the membership of these groups (Fig. 2) showed 
differences in their association patterns with a putatively ‘beneficial 
microbiome’, with respect to the relative proportions of ‘putatively 
beneficial’ and ‘potentially detrimental’ taxa8. Here, we operation-
ally defined a potentially detrimental taxon as being enriched in (or 
positively associated with) multiple diseases that is ‘disease associ-
ated’, whereas a putatively beneficial taxon was defined as one that is 
health associated or inversely correlated with multiple diseases (that is, 
‘health associated’). We have previously identified 36 ‘multiple-disease-
depleted’ and 23 ‘multiple-disease-enriched’ taxa that were enriched 
or depleted in multiple diseases, respectively1. Here, we considerably 
expand the study dataset with multiple cohorts and diseases (11,950 gut 
microbiomes from 22 cohorts) (Supplementary Table 10). Reinvestigat-
ing the disease associations of the above set of 59 health- and disease-
associated taxa (originally identified in1) in the newly included datasets 

of the current study (that is, not considered in Ghosh et al.1), indicated 
a high reproducibility of the disease associations of these taxa in the 
additional metagenomic and 16S data (Methods, Supplementary Note 1 
and Extended Data Fig. 6). Notably, although our previously identified 
set of health-associated taxa overlapped significantly with the Kendall 
uniqueness-negative group, the previous list of disease-associated taxa 
overlapped significantly with the Kendall uniqueness-positive group 
in the current study (Extended Data Fig. 6 and Supplementary Note 1).

The Kendall uniqueness positive group (Fig. 2) contained spe-
cies including Clostridium symbiosum, Clostridium ramosum, Rumi-
nococcus gnavus, Clostridium hathewayi, Clostridium citroniae and 
Clostridium bolteae, many of which we and others have identified 
as enriched in multiple diseases and associated with frailty in the 
ELDERMET cohort1,14,18–20. The Kendall uniqueness-negative taxa  
(Fig. 2) largely comprised species previously associated with health, 
including Faecalibacterium prausnitzii, multiple species of the Cop-
rococcus and Roseburia genera, Eubacterium rectale, Eubacterium 
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Fig. 4 | Ranked order of microbiome features that show the most consistent 
associations with multiple measures of unhealthy aging. The results are 
shown for 43 measures of unhealthy aging phenotype in five data repositories. 
Disease groups containing information from less than 20 gut microbiomes were 
not included in this analysis. Only those features that associate consistently 
with multiple measures of unhealthy phenotype individually in at least three 
of the five data repositories and at the maximum of only two association in 
the opposite direction are shown. The associations are shown for individual 
species, mean range-scaled abundances of the Kendall uniqueness-positive and 
negative groups (Fig. 2) and that of the multiple-disease-enriched and multiple-
disease-depleted taxon groups identified in Ghosh et al. 1, along with multiple 
microbiome summary statistics used here (Methods). Q-values were obtained 
using Benjamini–Hochberg correction for each data repository-unhealthy 
measure combination. Features are arranged such that those showing the 
most negative associations with unhealthy older adult-specific scenario (at 
least with Q ≤ 0.1) are at the top, with a gradual shift to putatively detrimental 

features showing the most positive associations with negative health (at least 
with Q ≤ 0.1). The two groups differentially associating with unhealthy aging 
phenotypes are demarcated with horizontal lines. For each association, we have 
also indicated the number of gut microbiomes investigated. For CMD3 and ISC, 
containing samples from multiple studies, we used the matched patient-control 
studies pertaining to each disease (number of controls in blue font and patients 
in red font). For single AG and He cohorts, we compared taxon abundances in 
patients versus controls from the same data repository (size of each disease 
group indicated in red and the number of controls in blue besides the repository 
names). For EM and NU-AGE, all microbiomes were considered (number in 
parentheses), and associations were performed along a continuous gradient 
(Methods). Abbreviations: FIM, functional independence measure; Barthel, 
Barthel score; MMSE, Mini Mental State Examination; Charls. comorb., Charlson 
comorbidity; GDS, geriatric depression scale; hand grip, hand grip strength; 
Constr. praxis, sensitivity C-reactive protein; MetS, metabolic syndrome; Rheum. 
arthr., rheumatoid arthritis (Table 1 lists additional abbreviations).
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eligens, Barnesiella intestinihominis and Odoribacter splanchnicus 
(showing significant negative associations with Kendall uniqueness), 
all of which are depleted in multiple diseases1,14,18, as well as being 
associated with healthy aging trajectories21. Other members of this 
group included Akkermansia muciniphila, which although positively 
associated with Bray–Curtis and Jaccard uniqueness, showed negative 
associations with Kendall uniqueness. Thus, increasing uniqueness and 
diversity are features of an aging–host microbiome in general (espe-
cially for the Westernized populations), but not necessarily a signature 
of a putatively beneficial microbiome. Our previously defined lists of 
disease-associated and health-associated taxa overlap significantly 
with ab initio species-level groups defined here based on association 
with Kendall uniqueness. Thus, among the summary statistics tested, 
Kendall uniqueness is an efficient microbiome-summary measure to 
define the health correlation of a given microbiome or cohort based 
on constituent taxa. We next investigated the age-related abundance 
changes in these taxa especially in the gut microbiome of older adults 
in the diverse cohorts.

Specific Kendall uniqueness-positive taxa increase with age in 
older adults
We next focused on 13 studies with at least 50 gut microbiomes 
from people older than 60 years (Methods), allowing us to assemble 
5,388 datasets from older persons. These 13 studies included 11,264 

gut microbiomes from younger individuals (age <60 years). When 
we analyzed the age-association of the 54 health-associated and 22 
disease-associated taxa identified in Fig. 2, 13 of the 22 Kendall unique-
ness-positive taxa showed an increase with age over 60 years (in at 
least two-thirds of the cohorts). For 11 of these taxa, the increase was 
significant (overall random effects model Q ≤ 0.1) (Supplementary 
Table 11 and Fig. 3a). The taxa involved included Clostridium symbio-
sum, Clostridium innocuum, Clostridium aldenense, Clostridium nex-
ile, Flavonifractor plautii, Eggerthella lenta, Clostridium hathewayi, 
Clostridium ramosum, Klebsiella pneuomoniae, Ruminococcus gnavus 
and Clostridium citroniae. As noted above, many of these taxa have been 
previously linked with frailty1,17,22. In contrast, the age relatedness of the 
health-associated species was variable and generally negative. Some of 
the major members of this group, namely, Eubacterium rectale, Dorea 
longicatena, Faecalibacterium prausnitzii and Coprococcus catus, sig-
nificant decreased with age in older individuals (all with random effects 
model Q ≤ 0.1 and consistency ≥ 66.7%) (Fig. 3a and Supplementary 
Table 11). In contrast, other members of this group like Akkermansia 
muciniphila, previously linked to healthy aging23, showed an increase 
with age in older individuals.

There was a significant overall positive association between the 
abundance of the Kendall uniqueness-positive taxon group with age 
>60 years (random effects model estimate = 0.07, P = 0.0017), with 
the positive link replicating in 12 out of the 13 individual study cohorts 

Ruminococcus_lactaris

Faecalibacterium_prausnitzii

Eubacterium_rectale

Eubacterium_ventriosum

Coprococcus_eutactus

Anaerostipes_hadrus

Alistipes_shahii
Barnesiella_intestinihominis

Eubacterium_hallii

Eubacterium_siraeum

Odoribacter_splanchnicus

Roseburia_hominis

Ruminococcus_bromii

Gemmiger_formicilis

Eubacterium_ramulus
Dorea_longicatena

Dorea_formicigenerans
Coprococcus_comes

Coprococcus_catus

Collinsella_aerofaciens

Haemophilus _parainfluenzae

Victivallis_vadensis

Catenibacterium_mitsuokai

Desulfovibrio_piger

Allisonella_histaminiformans

Prevotella_copri

Paraprevotella_clara

Phascolarctobacterium _succinatutens

Ruminococcus_callidus

Roseburia_intestinalis

Roseburia_faecis

Eubacterium_eligens

Dorea_formicigenerans

Haemophilus_parainfluenzae

Clostridium_hathewayi

Dorea_longicatena

Fusicatenibacter_saccharivorans

Clostridium_innocuum

Eubacterium_ramulus

Anaerostipes_hadrus

Gordonibacter_pamelaeae

Roseburia_hominis

Ruminococcus_bromii

Clostridium_spiroforme

Parabacteroides_merdae

Veillonella_dispar

Ruminococcus_gnavus

Odoribacter_splanchnicus
Clostridium_disporicum

Clostridium_nexile

Eubacterium_siraeum

Bacteroides_intestinalis

Clostridium_clostridioforme

Barnesiella_intestinihominis

Turicibacter_sanguinis

Clostridium_citroniae

Alistipes_shahii

Ruminococcus_torques

Clostridium_symbiosum

Bacteroides_vulgatus

Catenibacterium_mitsuokai

Bifidobacterium _bifidum

Parabacteroides_distasonis

Bacteroides_caccae

Bacteroides_thetaiotaomicron

Coprococcus_catus

Prevotella_stercorea Parabacteroides_johnsonii

Alistipes_finegoldii

Acidaminococcus_intestini

Bacteroides_fragil is

Alistipes_putredinis

Parabacteroides_goldsteinii

Bacteroides_massiliensis

Bilophila_wadsworthia

Bacteroides_nordii

Coprobacter_fastidiosusAkkermansia_muciniphila

Bacteroides_uniformis

Roseburia_inulinivorans

Coprococcus_eutactus

Eggerthella_lenta

Phascolarctobacterium_succinatutens

Eubacterium_ventriosum

Flavonifractor_plautii

Paraprevotella_clara
Faecalibacterium_prausnitzii

Slackia_isoflavoniconvertens

Prevotella_copri

Lachnospira_pectinoschiza

Bacteroides_finegoldii

Bacteroides_salyersiae

Ruminococcus_lactaris
Streptococcus_sanguinis

Desulfovibrio_piger

Eubacterium_eligens

Veillonella_parvula Phascolarctobacterium _faecium

Roseburia_faecis

Veillonella_atypica

Bacteroides_eggerthii
Roseburia_intestinalis

Rothia_mucilaginosa

Bacteroides_plebeius

Ruminococcus _callidus

Bifidobacterium_dentium

Victivallis_vadensis
Allisonella_histaminiformans

Dialister_invisus

Bacteroides_clarus

Bifidobacterium_adolescentis

Streptococcus_thermophilus
Bacteroides_coprocola

Gemmiger_formicilis

Actinomyces_odontolyticus

Collinsella_aerofaciens

Eubacterium_hallii

Streptococcus_mutans

Bacteroides_stercoris

Eubacterium_rectale

Coprobacillus_cateniformis

Butyricimonas_virosa

Adlercreutzia_equol i faciens

Clostridium_ramosum

Coprococcus_comes

Parasutterella_excrementihominis

Anaerotruncus_colihominis

Elevated in multiple scenarios of 
unhealthy aging

Depleted in multiple scenarios of
unhealthy aging 

Taxon labels

Kendall uniqueness negative

Kendall uniqueness positive

Unassigned 

X ≤ 20%

Kendall uniqueness unassociated

Node colors

20% < X ≤ 33%

33% < X ≤ 50%

X ≥ 50%

Within-group connectivity (% of other
members with which taxa is connected)

Ruminococcus_lactaris
Taxa NameFaecalibacterium_prausnitzii

Taxa Name

Eubacterium_rectale
Taxa Name

Eubacterium_ventriosum

Taxa Name

Coprococcus_eutactus

Anaerostipes_hadrus

Alistipes_shahii
Barnesiella_intestinihominis

Eubacterium_hallii

Eubacterium_siraeum

Odoribacter_splanchnicus

Roseburia_hominis

Ruminococcus_bromii

Gemmiger_formicilis

Eubacterium_ramulus
Dorea_longicatena

Dorea_formicigenerans
Coprococcus_comes

Coprococcus_catus

Collinsella_aerofaciens

Haemophilus _parainfluenzae

Victivallis_vadensis

Catenibacterium_mitsuokai

Desulfovibrio_piger

Allisonella_histaminiformans

Prevotella_copri

Paraprevotella_clara

Phascolarctobacterium _succinatutens

Ruminococcus_callidus

Roseburia_intestinalis

Roseburia_faecis

Eubacterium_eligens

Fig. 5 | Identification of a coabundant hub of putatively beneficial symbionts 
that are depleted in unhealthy aging. Coabundance network of taxa derived 
from microbiomes of adults older than 60 years, across 13 individual studies. 
We selected a set of 112 species that were identified in both 16S and Shotgun 
datasets. Associations between the centered-log-ratio transformed abundances 
of species pair were individually computed within each study using robust linear 
regression models. Results of the individual robust linear regression models were 
then collated using random effect models to compute summarized association 
statistics. For each species, the summarized association P values for every other 
were then corrected using the stringent Bonferroni approach and only those 
species pairs having a Q ≤ 0.001 and an overall summarized positive association 

estimate (>0) were determined to have coabundant relationships and connected 
by an edge. The species-level nodes belonging to the different species groups 
are filled in different colors, namely, green for the health-associated group, red 
for the disease-associated group and light blue for other species. Species-level 
taxa that are observed to be either elevated or depleted in multiple scenarios 
of unhealthy aging are shown in brown and dark blue, respectively. We also 
investigated the interactions for the taxa depleted in multiple scenarios of 
unhealthy aging (Fig. 5) individually within the 11 studies (Results). This species-
to-species coabundance subnetwork of health-associated markers is shown 
in the bottom right corner. The sizes of the labels are based on the number of 
connections each taxon has with the others in this subnetwork.
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(Methods and Fig. 3a). Although no significant pattern was observed 
with respect to the association of health-associated Kendall unique-
ness-negative taxa with age (Fig. 3b), the rate of age-related increase 
in the Kendall uniqueness-positive taxa was much stronger than that 
of the health-associated species group (Mann–Whitney test of asso-
ciation coefficients, P = 5.3 × 10−6), whose variation with age trended 
toward a decrease (Supplementary Fig. 7a). This pattern was replicated 
even when we considered only the microbiomes from the apparently 
nondiseased control participants (Mann–Whitney test of association 
coefficients P = 2.3 × 10−6). Similarly, the significant age-associated 
increase in the grouped abundance of the Kendall uniqueness-pos-
itive species was also replicated when only considering the appar-
ently nondiseased controls (random effects model estimate = 0.053;  
P = 0.004) (Supplementary Fig. 7b). Notably, the species belonging to 
the others group (showing no association with Kendall uniqueness) 
showed an association that was intermediate between that of health 
and disease-associated taxa, with no overall association with aging 
(Supplementary Fig. 7a,c).

We used random effects models to investigate the association 
of functional pathways with the abundances of health and disease-
associated species groups (Supplementary Table 12), focusing on 41 
pathways that were positively linked with the health-associated group 
and negatively linked with the disease-associated taxon group. This 
group included multiple pathways: synthesis of tryptophan and its 
precursor chorismate; biosynthesis of arginine, ornithine and other 
polyamines; and synthesis of multiple B vitamins, including folate 
(B9), pantothenate (B5) and thiamin (B1) (Supplementary Table 12). 
In addition to the positive associations of vitamins with health, multi-
ple previous studies have shown the association of tryptophan, argi-
nine and polyamine metabolism with improved cognitive function, 
improved colonic barrier function and reduced inflammation24–26. The 
41 health-linked pathways included those for oxidation of fatty acids 
and elongation of unsaturated fatty acids that are linked to higher 
cognitive function24.

Taxa are better markers of unhealthy aging than most 
summary indices
Five data repositories (CMD3, AG, ISC, specifically ELDERMET; NU-
AGE and He) provided participant metadata indicative of normal/
unhealthy aging status of the participants. Selecting adults >60 years 
of age resulted in 43 combinations of data-repository-versus-unhealthy-
phenotype metadata (Methods and Fig. 4). We selected 116 microbiome 
features (107 species-level taxa, 4 measures of uniqueness, Shannon 
diversity, group abundances of the disease-associated taxa (showing 
positive association with Kendall uniqueness), the health-associated 
taxa (showing negative Kendall association) and the group abundances 
of our previously identified ‘putatively beneficial’ and ‘potentially 
detrimental’ taxa8, and we tested their association with the unhealthy 
aging metadata in each of the 43 combinations (Fig. 4 and Methods). 
We identified a set of 55 features that positively or negatively associated 
(with Q-value of 0.10 or lower) with multiple measures of unhealthy 
aging in at least three of five data repositories (allowing a maximum 
of two associations in the opposite direction across all repositories). 
These define an operational core set of healthy aging-associated micro-
biome markers, 16 of which were consistently negatively associated 
with healthy aging and 39 showing consistent positive associations 
with healthy aging (Fig. 4).

Of the features tested, the group abundance of the Kendall 
uniqueness-positive taxa (associated with disease) showed the most 
consistent positive associations with unhealthy aging, being positively 
associated (Q ≤ 0.1) with the highest number (18 of the 43) of the tested 
microbiome-unhealthy aging pairs for which such data were available 
(Fig. 4). Thus, the disease-associated species group showed not only a 
significant increase with aging in general but also the most consistent 
association with an unhealthy aging phenotype. This was followed, 

in rank order of association strength, by the abundance of multiple 
individual species belonging to this species group, like Clostridium 
symbiosum, Ruminococcus gnavus, Flavonifractor plautii, Clostridium 
ramosum, Eggerthella lenta, Clostridium citroniae, Clostridium clostridi-
oforme, Clostridium innocuum and Clostridium hathewayi. In addition, 
the group abundance of the 36 disease-associated taxa (previously 
identified by us1) was also among the top features positively associ-
ated with the unhealthy aging (associated with 14 combinations). 
Among the microbiome summary statistics, as expected, only Kendall 
uniqueness was identified among the 16 top features associated with 
unhealthy aging (positively associated with 13 unhealthy aged phe-
notype scenarios).

Coprococcus catus and Coprococcus comes from the health-
associated Kendall uniqueness-negative taxon group, along with 
the combined abundance of this group (as a whole), Prevotella copri, 
Ruminococcus bromii and that of the 23 disease-depleted group of 
taxa (previously identified1), were the top six microbiome features 
negatively associated with at least 12 clinical health/disease states 
(and with Q ≤ 0.1) (Fig. 4). This was followed in rank order by a multiple 
taxa from the health-associated taxa. There were relatively fewer asso-
ciations between other measures of uniqueness or Shannon diversity 
and unhealthy aging with, for example, Shannon diversity negatively 
associated in 5 out of 43 scenarios with Q ≤ 0.1. Thus, except for Kendall 
uniqueness, none of the measures of microbiome uniqueness are a 
marker of healthy (or unhealthy) aging.

Younger individuals (Methods and Extended Data Fig. 7) were 
notably different in the identity and ranking of microbiome taxa associ-
ated with health loss (only 40 of 64 features overlapped), with younger-
individual microbiomes having a distinct abundance of Bacteroides, 
Parabacteroides and Alistipes taxa associated negatively with the 
unhealthy phenotype. However, as for the older adults, the strongest 
positive and negative associations were with disease-associated Kendall 
uniqueness-positive and the health-associated Kendall uniqueness-
negative taxa groups, respectively.

Healthy aging markers occupy core positions in the gut 
microbiome
Higher Kendall uniqueness is a direct reflection of a change in internal 
microbiome hierarchy, with a loss (or depletion) of numerically domi-
nant microbiome members and higher abundance of subdominant 
taxa. Distinct interactions of the health-associated (Kendall unique-
ness-negative) and disease-associated (Kendall uniqueness-positive) 
taxon groups with measures of unhealthy aging likely reflect distinct 
functional roles and positions in microbiome ecological networks. 
Older age and increased duration in residential care covary with loss 
of diversity-associated taxa and core taxonomic modules in ELDER-
MET participants4,5. In the NU-AGE study, taxa associated with healthy 
aging and whose abundance increased with MedDiet adherence were 
enriched in the microbiome core and occupied highly connected nodes 
in the microbiome network15. These observations show that the reten-
tion of the core is associated with healthy aging. Here, we validated and 
extended these concepts by coabundance network analysis across the 
12 datasets from the seven data repositories (the 13 datasets from Fig. 3, 
omitting NU-AGE, which lacked microbiomes from younger individu-
als; Methods). This constituted 4,778 microbiomes from older adults 
(age ≤60 years) and 11,264 microbiomes from younger individuals. 
Comparing the centrality measures of the taxa indicated an overall 
similarity between the coabundance networks obtained for the older 
and younger individuals (Supplementary Table 13). Only Prevotella 
copri and Dorea longicatena displayed significantly higher centrality 
in the older-individual-specific networks.

There were some largely consistent features of the centrality meas-
ures for the different Kendall uniqueness-defined taxon groups across 
the different studies (irrespective of age). The health-associated group 
of taxa occupied core positions in coabundance networks, shown by 
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significantly higher centrality measures of degree (older individuals: 
random effects model P value = 0.032, consistency: 75% of studies, 
Supplementary Fig. 8; young: random effects model P value = 0.0001, 
consistency: 92% of studies, Supplementary Fig. 9), betweenness (older 
adults: random effects model P value = 0.0013, consistency: 83% of 
studies, Supplementary Fig. 10; young: random effects model P value 
= 0.0001, consistency: 92% of studies, Supplementary Fig. 11) and hub 
score (older adults: random effects model P value = 0.027, consistency: 
67% of studies, Supplementary Fig. 12; young: random effects model 
P value = 0.0003, consistency: 83% of studies, Supplementary Fig. 13) 
of this taxon group compared with those for the disease-associated 
Kendall uniqueness-positive group (Supplementary Figs. 8–13). The 
Kendall uniqueness-negative taxon group also had significantly higher 
prevalence than the Kendall uniqueness-positive group (Supplemen-
tary Fig. 14). Higher connectivity and higher prevalence indicated that 
the health-associated taxa are part of the core microbiome. Notably, 
within this group, the more central a taxon was in the coabundance 
network, the stronger was its negative association with Kendall unique-
ness (Extended Data Fig. 8) across the coabundance networks obtained 
for both the older (random effects model estimate: −0.13, P value = 
0.003; pattern observed consistently in 11 out of 12 study cohorts) 
and younger individuals (random effects model estimate: −0.16,  
P value = 0.001; pattern observed with consistency in 10 out of 12 study 
cohorts). Thus, increasing Kendall uniqueness is directly linked with a 
loss of the core microbiome structure, which in turn is associated with 
an unhealthy phenotype in both the young and older participants and 
is also a microbiome feature of aging in general.

To investigate the relative placement of microbial markers of the 
unhealthy phenotype in the coabundance networks, we generated 
consensus coabundance networks based on the consistent abundance 
associations between species pairs observed across the 12 individual 
studies (separate networks constructed for young and older partic-
ipants) (Methods, Fig. 5 and Extended Data Fig. 9). The consensus 
networks for older and younger individuals both consisted of a large 
densely connected core hub of most of the health-associated Kendall 
uniqueness-negative taxa and two subhubs of the disease-associated 
taxa. One of these subhubs of disease-associated Kendall uniqueness-
positive taxa comprised multiple species from the Streptococcus and 
Veillonella genera and other species like Klebsiella pneumoniae and 
Actinomyces odontolyticus, whereas the other subhub contained mul-
tiple disease-associated Clostridium species, along with Ruminococcus 
gnavus, Flavonifractor plautii and Eggerthella lenta. The taxa that 
were not associated with Kendall uniqueness were located either in 
the periphery or acted as linking hubs between the health-associated 
core and the two disease-associated subhubs. The distinguishing 
feature between the two consensus coabundance networks (for the 
two age groups) was the placement (as shown in Fig. 5 and Extended 
Data Fig. 9) of the taxa that are elevated/depleted in multiple cases 
of unhealthy phenotype (in the corresponding age groups). In the 
younger-participant consensus network, the taxa depleted in mul-
tiple examples of health loss were spread across the core hub of the 
coabundance network. Similarly, those elevated in multiple scenarios 
of health loss were also distributed across the two disease-associated 
subhubs (Extended Data Fig. 9). In contrast, the positive and negative 
markers of unhealthy aging in older adults were localized to specific 
subregions in the corresponding consensus coabundance network 
for the older participants (Fig. 5). Eleven taxa whose abundance was 
elevated in multiple scenarios of aging (in Fig. 4) were present in one 
single disease-associated taxa-dominated subhub of this network  
(Fig. 5), whereas 39 taxa depleted in multiple scenarios of unhealthy 
aging (as in Fig. 4) were colocalized to a specific region of the core hub 
of this network. A total of 19 of these 39 taxa exhibited a dense network 
of coabundance relationships amongst themselves (wherein each 
member of this 19 taxa group had coabundance relationships with at 
least 50% of the other 18 members), thus forming a coabundant guild 

of 19 taxa putatively associated with healthy aging (Fig. 5 and Sup-
plementary Table 14). Notably, this 19-species older-specific health-
associated guild showed reduced abundance with age beyond 60 years 
of age across at least 75% of the studied cohorts (random effects model 
P value = 0.019 taking all microbiomes; random effects model P value 
= 0.004 only considering the apparently nondiseased controls, trend 
replicated across 75% of the study cohorts) (Extended Data Fig. 10).

Age-related health loss differs between people, despite apparently 
starting from similar health status at younger age. We therefore exam-
ined the rate of loss or gain with age of four microbiome parameters 
in the four cohorts that included either control and disease groups 
(CMD, AG and He) or healthy and unhealthy aging groups (EM) (Sup-
plementary Fig. 15). Unhealthy aging was characterized by either faster 
age-associated loss of taxa whose abundance may be the key for healthy 
aging or consistently lower levels of these taxa with respect to the con-
trols group. In the He and CMD cohorts, the nondiseased participants 
showed a higher rate of increase of uniqueness with age (consistent 
with previous observations)6, but this is not an indicator of healthy 
aging, because individuals in the disease group displayed significantly 
higher uniqueness from a much younger age.

Discussion
This study explored whether determining the gain or loss of specific 
taxa represent a more precise metric of healthy/unhealthy aging than 
summary microbiome statistics, such as diversity and uniqueness. 
We assessed the interaction between specific microbiome taxa and 
summary statistics with aging and health in a heterogeneous global 
dataset derived from 19 different nationalities spanning five different 
continental regions. The study identifies that the gut microbiome 
alterations associated with both aging in general and unhealthy aging 
are characterized by a common theme: loss of the core microbiome 
structure (specifically a coabundant species-level guild of the core 
microbiome) and concomitant increase of a specific guild of disease-
associated taxa.

To address the confounding effects between incidence of specific 
diseases and aging in general, we have investigated the above patterns 
using a two-step investigation strategy. We first investigated all gut 
microbiomes from individuals aged >60 years and then revalidated 
our findings within the gut microbiomes from the apparently nondis-
eased controls. However, it is important to note that biological aging 
in general may be accompanied by increased incidence of conditions 
like dyslipidemia, hypertension and inflammation, which might not 
have been specifically recorded in all reports but are linked with the 
microbiome composition27. Another limitation of the datasets available 
for this study was the underrepresentation of extreme older adults 
(for example, centenarians), with the majority of data being from 
individuals younger than 100 years of age. This impeded our inves-
tigating healthy versus unhealthy aging trajectories in individuals in 
the extreme age ranges. Previous studies have attempted to profile 
the gut microbiome of centenarians in general (reviewed previously7) 
and link the features of a centenarians’ gut microbiome with healthy 
aging. However, it is important to note that, increased life-span is not 
equivalent to health span. Although all centenarians clearly exemplify 
healthy aging trajectory in their past lives, their current physiological 
statuses will show individual-specific health differences that need to 
be stratified before performing microbiome-aging association studies 
for these individuals.

For future aging-microbiome studies, an alternative universal 
approach to address the above confounding effects would be to use the 
‘biological age’ or the ‘rate of aging’ rather than the chronological age 
of the individuals for these investigations. A multitude of omics-based 
aging clocks are currently available and can predict not only an overall 
biological age or ‘accelerated rate of aging’ in an individual (irrespective 
of the chronological age) but also the age-related decline with respect 
to specific attributes of health28. Despite the above limitations, the 
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identification of specific guilds of bacteria could be used for designing 
older-people-targeted microbiome-based therapeutic interventions 
and as diagnostic markers of individuals (middle-aged or at the onset 
of aging) who are at risk for an unhealthy aging trajectory.

Differences in the baseline composition of an apparently healthy 
gut microbiome within a given study population could influence the 
strength and consistency of the above alterations depending upon the 
nature of the study population. For example, the strongest effects of 
the aging-associated gut microbiome changes were detected for the 
European and North American individuals. Notably, a majority of mem-
bers of the bacterial guild associated negatively with unhealthy aging 
were reported in a previous study by our group to be more abundant in 
nonindustrialized populations, as well as in the Irish Travellers living a 
more traditional lifestyle compared to settled industrialized societies29. 
Could the specific markers of health in older people identified in the 
current study have a reduced rate of loss in these populations, result-
ing in the retention of a resilient microbiome into late aging? It would 
be desirable for future studies to include a greater representation of 
older adults from nonindustrialized countries to further examine the 
weaker diversity and uniqueness associations with age and health noted 
for those geographies in the current study.

To address the issue of baseline differences across study popula-
tions, we identified that the Kendall uniqueness measure efficiently 
captures the relative loss of the core microbiome and microbiome 
organization in an individual with respect to a given reference popu-
lation. In essence, the concept of Kendall uniqueness further reso-
nates with the previously proposed ‘Anna-Karenina principle’ of the 
microbiome that ‘All happy microbiomes look alike, each unhappy 
microbiome is unhappy in its own way’30. We have previously shown 
in the ELDERMET cohort that increased duration of illness-associated 
hospitalization is associated with a loss of the core microbiome4,5. 
Similarly, the microbiome of people with conditions like inflamma-
tory bowel diseases and colorectal cancer also display loss of specific 
core taxonomic groups (identified in the current study) and increased 
variability in the gut microbiome31–33. Additionally, higher abundance 
of particular core microbiota taxa has been shown to facilitate faster 
recovery of the microbiome following antibiotic treatment34. The 
identification of the Kendall uniqueness metric in the current study 
indicates that the retention of the microbiome core and hierarchi-
cal abundance in the microbiome could be the key driver facilitating 
microbiome resilience and homeostasis. The identification of such a 
microbiome summary index that efficiently captures the state of the 
microbiome with respect to the corresponding reference population 
will have translational value.

Equally importantly, we also identify specific groups of taxa that 
are associated (either positively or negatively) with Kendall uniqueness. 
These specific taxon guilds show consistently stronger associations 
with the unhealthy aging phenotype than the Kendall uniqueness 
measure itself. Thus, although the latter could serve as a population-
level microbiome summary statistic to capture the state of microbiome 
(decline) in an individual, the taxa defined here are expected to have 
diagnostic and therapeutic value.

There is also a need for further studies that investigate the microbi-
ome at higher resolution. Strain-level resolution offers a more crystal-
line view of microbiome-disease associations. Gene presence/absence 
analyses or a single-nucleotide polymorphism-level meta-analysis 
of gut microbiomes from multiple geographic locations will also be 
informative but will require uniformly high-quality metagenomic data 
across all cohorts/participants, plus detailed metadata.

Conclusion
The definition of a healthy microbiome is dependent on context. How-
ever, age-related changes in the microbiome are identifiable and more 
reliably linked with health and disease than in youth. Many of the health 
and disease associations of particular taxa were previously validated 

by the NU-AGE MedDiet intervention study15, which demonstrated 
healthier aging in the dietary intervention group, which tended to retain 
putatively beneficial symbionts. However single time-point measures 
of gut microbiome diversity or uniqueness will not provide actionable 
information. Rather, the proportions of disease or health-associated 
taxa are likely to be a superior therapeutic target and metric of clinical 
status and benefit.

Methods
Statement on ethical regulations
The study used meta-analysis on publicly available deanonymized data 
and did not collect data from human participants as part of this study. 
The details on protocols involving different aspects of the human study 
participants (sex, number and age of participants and statements on 
informed consent), including relevant ethical regulations, name of the 
board/committee and institution that approved the study protocol, 
are described in the original studies (which have been referred to in 
this study).

Statistics and reproducibility
Because the current study is a meta-analysis of several publicly avail-
able datasets, no statistical method was used to predetermine sample 
size in this study. We have attempted to include all data from each of 
the available datasets. Wherever applicable, we have described the 
criteria used to select the specific subsets of studies. Similarly, the 
methods pertaining to the mode of collection of data from individuals 
(for example, whether performed blind or not) can be obtained in the 
publications corresponding to the individual studies. For many parts of 
our analysis, we have relied on nonparametric tests, whereas for others 
like the meta-analysis models, the data distribution was assumed to be 
normal, but this was not formally tested.

Collation of gut microbiome data repositories
Table 1 provides the details of the seven data repositories included in 
this study. We used a total of 21,041 gut microbiome profiles (8,430 
Shotgun sequenced and 12,611 16S amplicon based). The details of these 
five repositories are provided in Supplementary Note 2 (refs. 1,10–16,35–39).

To summarize, the seven data repositories included more than 
21,000 samples, with similar representation of gut microbiomes 
profiled using both Shotgun and 16S rRNA gene amplicon-based 
approaches. Six of the data repositories contained samples from dif-
ferent nationalities across age landscape ranging from 18 to >100 
years, and one cohort (NU-AGE) was older-adult specific. The seven 
repositories encompassed gut microbiomes from individuals resid-
ing in more than 20 different nationalities from Europe, North/South 
America, Africa and Asia. Of these, more than 6,400 microbiomes were 
especially from older individuals with age older than 60 years. For the 
older subset, four of the data repositories (except for Odamaki) also 
contained information with respect to 50 different clinical measures 
of unhealthy aging.

Computation of genus-level, species-level and pathway-level 
abundances
The CMD3 and ISC data repositories were Shotgun based. For samples 
belonging to these two repositories, the species-level and genus-level 
taxonomic profiles were obtained using metaphlan2 (ref. 40). For the 
ISC datasets, the pathway-level abundances were obtained using the 
humann2 pipeline41; for CMD3, this information was already available 
in the repository and was directly used. The AG, NU-AGE, Odamaki, He 
and the LogMPie cohort datasets were 16S based. For these cohorts, for 
uniformity of taxonomic assignments across studies (or data reposito-
ries) and across taxonomic levels, we used the single SPINGO classifier 
pipeline for profiling the taxonomy at both the genus and species lev-
els42. Given the compositional nature of the taxonomic and functional 
profiles, all data were converted to both relative abundances as well as 
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transformed to the centered-log-ratio (clr) transformation for all subse-
quent steps of the investigation43 as described in Supplementary Note 3.

Many previous studies performing such across-studies meta-
analyses have focused on relative abundance data for identifying dis-
ease-specific and shared markers of multiple diseases1,18,44. However, 
as described previously, given the compositional nature of the micro-
biome datasets, clr transformation has been strongly suggested as the 
ideal normalization measure for performing such investigations45 and 
was used for a majority of species abundance associations with differ-
ent microbiome properties and age. Thus, to relate the results of the 
current study with the previously published studies (on microbiome 
markers of health and disease) while at the same time accounting for 
the compositionality of the datasets, it was important to investigate the 
effects and relationships among the different normalization measures 
utilized here in (relative abundance and clr transformation) before per-
forming this association analysis. Across the 28 studies, we observed 
a strong positive correlation between the total-sum-scaled relative 
abundances and the clr-transformed abundances of the constituent 
microbiome taxa at both the species and genus level (Supplementary 
Figs. 4 and 5). The correlations were computed using corr.test function 
of the psych R package (version 2.1.9)

Computation of microbiome summary indices
In this study, we profiled five different microbiome summary indi-
ces, namely, Shannon diversity and the four different measures of 
uniqueness. The computation of these summary indices is described 
in Supplementary Note 4 (ref. 6,46). All summary indices were computed 
separately for samples constituting each individual study.

Each of the different uniqueness measures computed using a differ-
ent distance scheme, captures different aspects of variations within gut 
microbiomes, including variations in the detection, abundance (consider-
ing relative abundances as well as compositionality of the microbiome 
data) and the overall hierarchical ordering within the gut microbiome 
(Extended Data Fig. 1 and Supplementary Note 5)47. The alpha-diversity-
corrected values of the different uniqueness measures were computed 
as the residuals of the regression models computed between the alpha 
diversity (available as the Shannon diversity) and the values of the cor-
responding uniqueness measures. For this purpose, we first utilized 
robust linear regression models (function rlm of the MASS package 
version 7.3.54) to regress (or to predict) each of the different unique-
ness measures with Shannon diversity as the predictor in individually in 
each of the study cohorts listed in Table 1. The robust linear regression 
models are alternatives to simple linear regression models but are more 
robust to outliers48. This effect is achieved by assigning weights to each 
observation, penalizing outliers. The statistical significance of the fits 
or associations were computed using the two-sided robust F-test (per-
formed using the f.robftest function of the sfsmisc package v 1.1.12 in R). 
Given a uniqueness measure and the microbiomes belonging to a study 
cohort, the alpha-diversity-corrected values for the uniqueness measure 
were then computed as the residuals from the robust linear regression 
models corresponding to that uniqueness measure in that study cohort.

Two-step meta-analytic framework to investigate associations 
between microbiome properties and between microbiome 
features and age
We adopted a universal two-step meta-analytic framework to investi-
gate the relationships within different microbiome summary indices 
and between different microbiome summary indices and age, between 
different microbiome summary indices and the microbiome features 
(at the level of species or pathways) and feature groups (species-level 
groups), among the different species-level features and between differ-
ent species-level features and age (Supplementary Fig. 1). This frame-
work is described in detail in Supplementary Note 6.

Associations of the overall beta diversity (that is, the variation in 
the overall compositions across the different microbiome) with age 

were computed individually within the study cohorts using the permu-
tational multivariate analysis of variance (PERMANOVA) approach49. 
The PERMANOVA approach is dependent upon the measure utilized for 
profiling the differences across microbiomes (and thus on the overall 
distance matrix utilized). Thus, given that we profiled the differences 
across the different microbiomes using four different distance meas-
ures, each depicting related but nonidentical aspects of gut microbi-
ome variations, we performed the PERMANOVA investigations of gut 
microbiome variation with age individually in each of the studies using 
each of the four distance measures. The adonis function of the vegan 
package version 2.5.7 was used for this purpose.

For each association investigation analyses, the sample (or micro-
biome) (or n) numbers for the individual considered studies provided 
in Table 1 and Supplementary Table 10. For random effect models, 
the ‘n’ numbers are also indicated in the corresponding forest plots 
provided in specific figures.

Identification of taxa showing consistent positive and 
negative associations with different uniqueness measures and 
Shannon diversity
We investigated this first in a repository-specific manner, using an 
approach previously described (and summarized in Supplementary 
Fig. 1; 28 studies with study population numbers provided in Table 1). 
As described in Results, we specifically identified 107 species-level taxa 
that were commonly detected in at least 5% of the samples in at least 
60% studies individually in both the Shotgun-based and 16S rRNA gene-
amplicon-based data repositories, individually. Within gut microbiome 
samples belonging to a given data repository, association estimates 
and significance were obtained using robust linear regression models 
between the clr-transformed abundances of various taxa with each 
of the uniqueness measures and diversity (using the same strategy as 
described in the previous section). Each individual study as described in 
Table 1 (with investigation type as I) was investigated separately. These 
studies included the multiple studies within CMD (each with varying 
experimental methodologies for DNA sequencing and extraction). 
Within the individual studies, the P values of associations obtained using 
robust linear regression models were corrected separately for each of 
the five microbiome summary statistics (four measures of uniqueness 
and Shannon diversity), using the Benjamini–Hochberg correction to 
obtain the false discovery rate (FDR) (or Q-value) (computed using the 
p.adjust function with ‘method’ parameter = ‘fdr’ of the base R package 
version 4.1.0). The summarized associations of the abundances of the 
different species-level taxa with the different the different summary 
statistics were then investigated using the meta-analytic random effects 
models (using the previously described strategy). For the individual 
studies, for the different taxa, the P values of associations obtained 
using the random effects models were corrected separately for each 
microbiome summary statistics using Benjamini–Hochberg correction. 
The number of taxa showing significant positive or negative correlations 
with at least one of the uniqueness measures or diversity (FDR correct-
ing for random effect Model z-test P value for each uniqueness/diversity 
measure < 0.05) and with a consistency ≥67% (proportion of individual 
cohorts where the directionality of associations obtained using robust 
linear regression models were the same as the summarized estimate 
obtained using the random effects model) were then identified. The 
total number of such associations obtained for each microbiome sum-
mary statistics were then summarized. The species-level taxa were 
then divided into three groups based on their association with Kendall 
uniqueness, namely negatively associated with Kendall uniqueness, 
positively associated with Kendall uniqueness and others.

Computation of grouped abundances of different species-
level taxa groups
The grouped abundances for each group (the three Kendall-linked 
taxonomic groups and the groups of multiple-disease-enriched and 
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multiple-disease-depleted taxa previously identified in Ghosh et al.1) 
of species-level taxa were obtained as described below. For each taxa 
belonging to a group, the clr-transformed abundances across each 
sample (or microbiome) was first range-scaled as below:

species − taxa − abundancexjrange−scaled

= [species − taxa − abundancexj

−min (species − taxa − abundancej)]

/ [max (species − taxa − abundancej)

−min (species − taxa − abundancej)]

where species-taxa-abundancexj is the abundance of species-taxa ‘j’ in 
sample ‘x’; min (species-taxa-abundancej) is the minimum abundance 
of species-taxa ‘j’ across all samples and max (species-taxa-abundancej) 
is the maximum abundance of species-taxa ‘j’ across all samples.

Subsequently, the grouped abundance of a species-level group 
was then obtained as the mean of the range-scaled abundances of all 
species-level taxa belonging to that group.

These included the three species-level groups identified based 
on their association with Kendall uniqueness (as described above), as 
well as the multiple- disease enriched and multiple disease depleted 
identified in Ghosh et al.1. The later groups were identified as below.

A previous analysis by our group on more than 2,500 gut micro-
biome samples covering five major diseases had previously identi-
fied distinct groups of species-level taxa that were observed to be 
either enriched or depleted in multiple disease. We had referred to 
this as G1-3 or taxa groups enriched across multiple diseases (we 
refer here as ‘multiple disease enriched’ or ‘disease associated’) 
and L1-3 or taxa groups depleted in multiple diseases (or ‘multiple 
disease depleted’ or ‘health associated’). For each gut microbiome 
(sample) in a given repository, the taxa belonging to either of the two 
groups were identified and their group abundances were calculated 
as described above.

Replication of the disease association pattern of the multiple-
disease-enriched and multiple-disease-depleted taxa in the 
additional cohorts considered in the current study
Our previous list of multiple-disease-enriched and multiple-disease-
depleted taxa were obtained by investigating a five different diseases 
across eight study cohorts1. The current study however was consider-
ably expanded (as summarized in Supplementary Table 10). Given 
that these cohorts were derived from different geographically placed 
populations covering additional disease scenarios, it was important to 
replicate the disease association of these multiple-disease-enriched 
and multiple-disease-depleted taxa on these cohorts. For this purpose, 
we compared the relative abundances of the different taxa constituting 
the two groups (between the diseased and control gut microbiomes) 
in these specific additional cohorts using two-sided Mann–Whitney 
tests. Before this, we showed that the both relative abundances and 
clr-transformed abundances generated nonidentical but significantly 
correlated values, indicating that in specific scenarios. For CMD3 and 
ISC data repositories, for each disease, we considered the patient 
gut microbiomes in the different study cohorts corresponding to 
that disease and compared the abundances of the species-level taxa 
belonging to the two groups with gut microbiomes from the matched 
controls belonging to the same study cohorts. For AG and He cohorts, 
the patient gut microbiomes for the different diseases and the gut 
microbiomes from the controls were sequenced as part of the same 
study. Thus, for each disease, the abundance of the different taxa in 
the gut microbiomes of the corresponding patients were compared 
with the gut microbiomes from all individuals that did not belong to 
any of the disease sub-cohorts. The direction of change as well as the 

P values obtained for each taxa were then obtained. For each com-
bination of disease and study cohort (as depicted by the rows of the 
heatmaps shown in Extended Data Fig. 6), the P values obtained for 
each of the taxa belonging to the two groups were corrected using 
the Benjamini–Hochberg approach (as described above) to obtain 
the FDRs. Taxa observed to be enriched or depleted either FDR ≤ 0.1 
were identified. A marker taxon was considered replicated if it satis-
fied either one of the following two criteria: (1) it associated with the 
expected directionality (positive for disease enriched and negative 
for disease depleted) in greater than two scenarios and in the opposite 
directionality at a maximum of two scenarios, or (2) it associated with 
expected directionality in less than or equal to two scenarios but never 
with the opposite directionality in any of the investigated scenarios.

Association of gut microbiome taxa with age
The objective here was to investigate the variations of specific gut 
microbiome members (individual taxa as well as the grouped abun-
dances of species-level taxa groups identified in Fig. 2) specifically with 
the onset and progression of aging, and not to explore the dynamics 
of these taxa in the younger or middle-aged individuals. Thus, in this 
investigation, we specifically focused on the trajectory starting from 
the onset of aging (age = 60 years). Thus, for this purpose, we subse-
quently focused on a group of 13 studies that contained at least 50 
gut microbiomes from older individuals (age ≥60 years). The studies 
considered were HMP_2019_ibdmdb, AsnicarF_2021, NielsenHB_2014, 
WirbelJ_2018, ZellerG_2014, ISC, QinJ_2012, YachidaS_2019, AG, NU-AGE, 
He, Odamaki and LogMPie. This totaled to around 5,388 gut microbi-
ome profiles from older adults (age ≥60 years), which were consid-
ered for this analysis. Subsequently, we adopted a similar approach 
as depicted in Supplementary Fig. 1, whereby we first investigated 
the associations of the of the different taxa with age ≥60 years within 
each individual study (using robust linear regression models) and 
subsequently overall using the meta-analytic random effects models. 
We performed this analysis in a two-step manner. In the first phase, 
we retained only those taxa that showed a consistent pattern of asso-
ciation (either positive or negative) with age post 60 years in at least 
two-thirds (67%) of the studies. Subsequently, only this set of filtered 
taxa showing reasonably consistent across-studies directionalities of 
association were then further investigated for statistical significance 
using the random effects model-based meta-analytic framework. The 
same strategy was used even while considering microbiomes from only 
the nondiseased controls across the studies.

Association analysis between microbiome properties and 
indices of unhealthy aging across various data repositories
Study-based stratification. We used gut microbiome profiles from five 
different data repositories for this purpose, with datasets like CMD3 fur-
ther containing profiles from multiple studies. Each study/data reposi-
tory had considerable variations with respect to not only the microbiome 
profiling methodologies but also the geography of the study popula-
tion and methods used for obtaining metagenomic sequence data. To 
address this variation and identify consistent signatures/associations, 
we repeated all our analysis individually for each measure of unhealthy 
aging within each data repository (as described below).

Feature association with the different unhealthy aging measures. 
With the exception of Odamaki and LogMPie, each of the other five 
data repositories had various clinical measures pertaining to the health 
status of the individuals (as described above). Across the five data 
repositories (CMD3, ISC or EM, AG, He and NU-AGE), there were a total 
of 43 measures of unhealthy aging, wherein each scenario contained 
information from at least 20 gut microbiomes. These various measures 
included the disease information, measures of physical frailty, inflam-
mation, and cognitive impairment and decline and are shown in Fig. 4. 
For the continuous measures, associations of the various microbiome 
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features with each of these measures was performed using robust linear 
regression models as below (as described previously):

fit = rlm (microbiome property ∼ clinical measure) .

For the categorical measures (like disease presence/absence), 
the associations were performed investigated using Mann–Whitney 
tests as described previously for replication of the disease associa-
tion pattern of the multiple-disease-positive (disease-associated) and 
multiple-disease-negative (health-associated) taxa.

The clinical measures were transformed such that each measure 
correlated positively with unhealthy aging phenotype. For example, 
disease information was transformed such that disease occurrence 
was assigned the value 1 and control status a value of 0. Indices 
that are expected to correlate positively with unhealthy aging like 
Fried score (positive index of frailty, higher values indicate more 
frailty), inflammatory marker levels (higher values indicate higher 
inflammation), geriatric depression scales (higher values indicate 
impaired cognitive/mental status) and Charlson comorbidity scores 
(higher values indicate greater comorbidity) were not transformed. 
However, indices that negatively associate with the unhealthy aging 
phenotype like FIM, Barthel score, hand grip strength, gait speed 
(higher values indicate lower frailty), MMSE, constructional praxis, 
verbal fluency score and Babcock memory (higher values indicate 
reduced cognitive impairment) were converted to their inverses 
(or negatives) by multiplying by −1 (refer to Supplementary Note 
2 for abbreviations).

Identification of a ranked ordered of microbiome features. For this 
purpose, we combined the values pertaining to all the 116 investigated 
microbiome features (Shannon diversity, four measures of uniqueness, 
combined grouped abundances of the Kendall uniqueness-positive 
and Kendall uniqueness-negative species-level-taxa groups, combined 
grouped abundances of the multiple-disease-enriched (or disease asso-
ciated) and multiple-disease-depleted (or disease-depleted) taxa1, the 
clr-transformed abundances of the 107 species-level taxa identified as 
described previously in Fig. 2). These measures are listed in the columns 
of the heatmap depicted in Fig. 4. We subsequently investigated the 
association of the 116 features with each of the 43 measures (or sce-
narios of unhealthy aging) as described below. Specific microbiome 
features showing multiple associations with the same directionality 
(to ensure reasonable reproducibility of associations across cohorts) 
either positive or negative but with same directionality and at least 
Q ≤ 0.10) with multiple measures of unhealthy aging in three out the 
five repositories (to ensure repand at the maximum of two associations 
(total out of the 43 scenarios) with the opposite directionality were first 
identified. These consisted of 16 features showing consistent positive 
associations with multiple measures of unhealthy aging and 39 features 
showing consistent negative associations with multiple measures of 
unhealthy aging.

Association analysis between microbiome properties and 
indices of unhealthy young across various data repositories
Similar to that described above, there were 30 scenarios of unhealthy 
phenotype in the young across the five data repositories. Association 
of the 116 microbiome features were performed using a similar manner 
as above. For the young, 64 features showing multiple associations 
with the same directionality (either positive or negative but with same 
directionality and at least P ≤ 0.05) with multiple measures of unhealthy 
aging in three out the five repositories and at the maximum of two 
associations (out of the 36 scenarios) with the opposite directionality 
were first identified. These consisted of 26 features showing consistent 
positive associations with multiple measures of unhealthy aging and 
38 features showing consistent negative associations with multiple 
measures of unhealthy aging.

Computation of coabundance networks, prevalence, network 
centrality properties of various species-level taxa
For this investigation, we considered 12 studies consisting of the same 
13 study cohorts (‘n’ numbers of the individual studies provided in 
Table 1) considered previously for the age-specific associations of 
the species-level features with the exception of NU-AGE as it did not 
contain microbiomes from younger individuals. For each cohort, first 
the gut microbiome profiles obtained from all older individuals (≥60 
years of age) were obtained. We specifically investigated the commonly 
detected 107 species-level taxa that were identified as described in the 
previous sections (Fig. 2). Further methodological details of network 
analysis are provided in Supplementary Note 7.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The study is a meta-analysis of seven major data resources; the sequence 
data for four of the data resources (with the exception of NU-AGE) are 
publicly available. For curatedMetagenomicData3 repository, the taxo-
nomic and pathway profiles were already available and hence were down-
loaded and directly used for the current study. The sequence data for each 
of the individual study collated as part of the curatedMetagenomicData3 
(CMD3) are publicly available, and the corresponding accession numbers 
can be obtained by downloading the repository at https://waldronlab.
io/curatedMetagenomicData/. For the American Gut (AG) project, the 
filtered, bloom removed OTU biom files and the corresponding meta-
data were already available at figshare with reference IDs 6137192 and 
6137315, respectively11,36,37. These profiles were used for the steps of this 
analyses. For He et al. and LogMPie cohort, the sequence data were avail-
able at the European Nucleotide Archive (ENA) (https://www.ebi.ac.uk/
ena/) via accession numbers PRJEB18535 and PRJEB25642, respectively, 
and the metadata available as part of the original publications38,39. For  
Odamaki et al., the sequence data were available at the DDBJ under acces-
sion number DRA004160, and the metadata were obtained from the corre-
sponding publication16. For the four studies comprising the Irish Shotgun 
cohorts, the sequence data were already publicly available at the ENA 
under the accession numbers PRJEB20054 (ref. 12), PRJEB15388 (ref. 13),  
PRJEB42304 (ref. 14) and PRJEB37017 (ref. 1). The starting data and the 
processed profiles for the NU-AGE data resource, as well as the minimum 
starting data for each repository that are necessary to interpret, verify 
and extend the research in the article, are available at https://github.
com/tsg-microbiome/AgeMetaAnalysis. All the data corresponding 
to the NU-AGE dataset used in the current study are uploaded to this 
GitHub repository. The explanations for the different data resources are 
provided in the README.md file of this GitHub repository.

Code availability
All relevant codes (or scripts) used for this analysis are available at 
https://github.com/tsg-microbiome/AgeMetaAnalysis.
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Extended Data Fig. 1 | Different uniqueness measures and their implications. 
A. Summary description of the inter-microbiome distance calculation using 
the four different distance metrics and the aspects of gut microbiome variation 
captured by the different distance matrices. B. Pictorial illustration of the 
meaning of high or low Kendall similarity measures using three different 
hypothetical microbiomes (M1, M2 and M3). While Microbiomes M1 and M2 
have a high Kendall Similarity, M1 and M3 do not. The two sub-plots pictorially 
elaborate this. Each point in the two sub-plots represents a feature which may 
be either the abundance of a species or genus or pathway. In the left sub-plot, 
the y-value of each represents the abundance of the corresponding features 

in M2 and the x-value represents the abundance of the same feature in M1. In 
the right sub-plot, the y-value of each point represents the abundance of the 
corresponding features in M3 and the x-value represents the abundance of the 
same feature in M1. As observed, in the left sub-plot of higher Kendall similarity 
(and low Kendall distance), highly abundant features in M1 (for example the 
feature F1 highlighted in red) are also highly abundant in M2. Thus, the ranking 
of the features in terms of their abundance in M1 and M2 are similar. This is not 
observed between M1 and M3 which have lower Kendall similarity and higher 
Kendall distance.
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Extended Data Fig. 2 | Links between diversity and uniqueness. Heatmaps 
showing the association patterns between Shannon Diversity and the four 
measures of uniqueness at the level of: A. Species and Genus and B. Pathways. 
Each cell indicates the directionality and the strength between diversity and 
specific measure of uniqueness (given by the row) in a specific study (given by the 
column). The strengths are indicated in the legend key on the left. The number 

of gut microbiomes investigated in each study cohort is shown in parentheses 
for the corresponding studies for the top heatmap. The statistical significance 
of the associations were computed using two-sided robust F-tests. The p-values 
obtained for the association of the different microbiome summary indices were 
corrected on a per-study cohort basis using Benjamini–Hochberg correction to 
compute the Q-values.
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Extended Data Fig. 3 | Association of different measures of Uniqueness, 
Shannon diversity and beta diversity with age in different study cohorts 
at the functional pathway-level using the MetaCyc scheme. The names of 
the study cohorts (with the number of investigated gut microbiomes indicated 
in parentheses) are indicated. The top three rows indicate the maximum 
participant age, the minimum participant age and the geographical region of 
the study cohorts (indicated in different colors as provided in the legends). The 
heatmap immediately below these panels shows the results of PERMANOVA 
for associating overall pathway-level beta-diversity with age computed using 
the four different microbiome distance matrices (utilized in the current study). 
The bottom heatmap shows the results of the robust linear regression models 
for associating various pathway-level microbiome summary statistics with 

age across the different individual studies. The statistical significance of the 
associations were computed using two-sided robust F-tests, corrected on a per-
study cohort basis using Benjamini–Hochberg corrections to obtain Q-values. 
Also indicated on the right of this heatmap are the results of the association 
meta-analyses of these microbiome summary statistics with age for studies 
grouped based on their geographical regions. For a given geographical region, 
the summarized associations are computed using Random Effect Models on the 
specific individual study-specific effect sizes (computed based on robust linear 
regression models (See Methods). Here, the p-values were computed using two-
sided permutation tests corrected per-geography-specific-cohort groups using 
Benjamini–Hochberg corrections to obtain Q-values.
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Extended Data Fig. 4 | Association between Shannon-adjusted uniqueness 
with age. Heatmaps showing the association between Shannon-adjusted 
measures of uniqueness and age across A) the 28 studies (with taxonomic 
profile) and B) the 23 studies with pathway profiles, obtained using Study-
Specific Robust Linear Regression models. The geographic origin of each study 

is also indicated. Also indicated are the results of the summarized associations 
obtained by performing Random Effect Models analysis of these individual study 
associations by grouping cohorts into different geographical bins. The number 
of gut microbiomes investigated in each study cohort is shown in parentheses for 
the corresponding studies for the top heatmap.
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Extended Data Fig. 5 | Overall directionalities of association between 
different summary indices and microbiome taxa. Stacked bar plots showing 
the number of species-level taxa that show either significantly positive or 
significantly negative associations with each microbiome summary statistics 

in the Random Effect Models based meta-analysis across all the 28 studies. 107 
species-level taxa that we detected in at least 5% of the microbiomes, in at least 
60% of the studies in both Shotgun and 16S groups of datasets.

http://www.nature.com/nataging
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Extended Data Fig. 6 | Identification of taxa enriched or depleted in 
multiple diseases in 12,000 gut microbiomes. Disease associations (where 
disease metadata were available) were tested based upon whether or not 
these taxa replicated the multiple-disease-enriched and the multiple-disease-
depleted taxa previously identified in Ghosh et al.1 which was based on 2,500 
microbiome profiles that were not included in the current analysis. The results 
of the association analysis are shown in a single heatmap for both Shotgun 
(CMD3 and ISC) 16S-based (AG and He) datasets. For AG and He (where control 
and patient gut microbiomes were sequenced as part of a single study), we 
compared taxon abundances in patients (numbers of metagenomes in red; 
right panel) versus controls (numbers in blue besides repository names) from 
the same data repository using two-sided Mann–Whitney tests. For CMD3 and 
ISC, we used matched patient-control studies pertaining to each disease. The 
number of patient and control gut microbiomes being compared are indicated 

in the right panel in parenthesis corresponding to each disease (in red and blue 
font, respectively). All comparisons were done using Mann–Whitney tests, 
with P-values of taxa associations corrected for each dataset-disease-scenario 
using Benjamini–Hochberg correction to obtain Q-values. We first determined 
proportions of each species group that were validated in these additional gut 
microbiome profiles across both Shotgun and 16S datasets and then investigated 
the group-wise affiliations of species that associated negatively (green) and 
positively (red) with Kendall Uniqueness (Fig. 2). The associations of ~ 70% of 
the multiple disease-enriched and disease-depleted (as identified in Ghosh et 
al1. were reproduced with the expected directionalities, with the former group 
overlapping significantly with the Kendall Uniq. +ve group and the latter with the 
Kendall Uniq. -ve (Supplementary Text S1). Please Table 1 Foot Note for disease 
abbreviations.
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Extended Data Fig. 7 | Identification of a ranked order of microbiome 
features that show the most consistent associations with multiple measures 
of unhealthy phenotype in younger people (age < 60 years). The results are 
shown for 30 measures of unhealthy phenotype in the younger participants 
(age < 60 y) from four data repositories. Disease groups containing information 
from less than 20 gut microbiomes were not included in this analysis. Only 
those features that associate consistently with multiple measures of unhealthy 
phenotype individually in at least two of the four data repositories and at the 
total maximum of only two association in the opposite direction are shown. The 
associations are shown for individual species, mean range-scaled abundances 
of the disease-associated and the health-associated groups identified in 
this study, the combined abundances of the multiple-disease-enriched and 
multiple-disease-depleted taxa groups previously identified in Ghosh et al.1, 
along with the different multiple microbiome summary statistics. P-values were 

FDR-corrected for each data repository-unhealthy measure combination to 
obtain the Q-values. Features are arranged such that those that show the most 
positive associations with negative health (at least with a Q < = 0.10) are shown 
at the top with a gradual shift to putatively beneficial features showing the 
most negative associations with negative health (at least with a Q < = 0.1). The 
number of gut microbiomes being compared for the association investigation 
in each scenario are indicated. The convention adopted is as described in the 
legend of Fig. 5. Abbreviations for clinical measures/disease phenotypes: CRC: 
Colorectal Cancer, IBD: Inflammatory Bowel Disease, IGT: Impaired Glucose 
Tolerance, T2D: Type II Diabetes, ACVD: Atherosclerotic Cardiovascular Disease, 
CDI: Clostridioides difficile infection, STH: Soil Transmitted Helminths, ASD: 
Autism Spectrum Disorder, CVD: Cardiovascular Disease, SIBO: Small Intestional 
Bacterial Overgrowth; Metabo. Syndro.: Metabolic Syndrome, Rheuma. Arthritis: 
Rheumatoid Arthritis.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Relationship between degree centrality and the 
strength of the association with Kendall Uniqueness for the different 
species-level taxon groups. Least-square regression lines linking degree 
centrality measures of the different taxa and their extent of association 
(association coefficient) with Kendall Uniqueness. Regression-lines are shown 
separately for taxa belonging to each of the three different species-level-
groups. For each species-group, distinct regression lines are shown separately 
for the co-occurrence networks obtained for each study. Panel A shows these 

relationships only in the study-specific co-occurrence networks derived for the 
gut microbiomes from older participants (participant age > = 60 years); Panel B 
shows the same for networks derived for younger gut microbiomes (participant 
age < 60 years). For both the plots, bold lines indicate the mean regression line for 
each of the associations, the shaded regions (in gray) corresponding to each line 
indicate their confidence intervals (+/- standard errors). The p-values indicated 
above each plot are obtained using Random Effect Models (utilizing two-sided 
permutation tests).
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Extended Data Fig. 9 | Single consensus coabundance network of taxa 
combining all the microbiomes from younger participants with age < 60 
years from the 12 individual studies. We selected a set of 112 species that are 
commonly identified in both 16S and Shotgun datasets. Associations between 
the centered-log-ratio transformed abundances of species pair were individually 
computed within each study using robust linear regression models. Results of 
the individual robust linear regression models were then collated using Random 
Effect models to compute summarized association statistics. For each species, 

the summarized association p-values for every other were then FDR-corrected 
and those species having a stringent threshold of Q < = 0.001 and an overall 
summarized association estimate of greater than 0 were determined to have co-
abundant relationship with it. The species-level nodes belonging to the different 
species groups are filled in different colors, namely green for Kendall Uniqueness 
negative, red for Kendall Uniqueness positive and light blue for other species. 
Species-level taxa that were either elevated or depleted in multiple scenarios of 
unhealthy young are shown in deep pink and dark blue, respectively.
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Extended Data Fig. 10 | Variation of the healthy aging associated taxonomic 
guild with age in older people (age > = 60 years). Forest plots showing the 
results of the Random Effects Models investigating the variation of the mean 
ranked abundance of health-associated taxonomic guild of 12 species (in older 
persons) across age in the cohorts considering: A) All the microbiomes B) Only 
the microbiomes from apparently healthy nondiseased controls. For each forest 
plot, the effect size of the associations of different taxon groups with age is 
depicted as a line with the mean effect size shown as black squares (the size of the 
squares proportional to the weight or power for each study) and the length and 

the end-points of the line indicate the confidence intervals of this estimate. The 
summarized effect size is indicated at the bottom in the shape of a rhomboid, the 
outer edges of which indicates its confidence interval. The number of samples 
(or gut microbiome) (n) corresponding to the different studies are: AG:1023, 
AsnicarF_2021:127, HE:2434, HMP_2019_ibdmdb:117, ISC:202, LogMPie:51, 
NielsenHB_2014:68, NU-AGE:610, Odamaki:116, QinJ_2012:71, WirbelJ_2018:67, 
YachidaS_2019:393, ZellerG_2014:109. Two-sided P-values for the Random Effect 
Model were computed using permutation tests of association for the summary 
effect sizes.
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