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The gut microbiome is a modifier of disease risk because it interacts with
nutrition, metabolism, immunity and infection. Aging-related health
loss has been correlated with transition to different microbiome states.

Microbiome summary indices including alpha diversity are apparently
useful to describe these states but belie taxonomic differences that
determine biological importance. We analyzed 21,000 fecal microbiomes
from seven datarepositories, across five continents spanning participant
ages 18-107 years, revealing that microbiome diversity and uniqueness
correlate with aging, but not healthy aging. Among summary statistics
tested, only Kendall uniqueness accurately reflects loss of the core
microbiome and the abundance and ranking of disease-associated and
health-associated taxa. Increased abundance of these disease-associated
taxa and depletion of a coabundant subset of health-associated taxa are
ageneric feature of aging. These alterations are stronger correlates of
unhealthy aging than most microbiome summary statistics and thus help
identify better targets for therapeutic modulation of the microbiome.

Physical and cognitive decline with age is not experienced uniformly;
delayed age-related decline (healthy aging) is evidentin many people.
One of the determinants of age-related decline is the microbiome.
The microbiome transduces environmental signals that shape host
immune, metabolic and neurologic function, and it modifies the risk
of disease, including age-related diseases. However, the microbiome
is, itself, modified by age-related impairment and age-related disease’*.
Several studies have found alterationsin the compositionand function
of the microbiome as the host ages'* (reviewed also in Ghosh et al.”).
We have also shown that age-related microbiome alterations are both
distinct from and overlapping with those in age-related diseases'.

Thereisbroad consensus how the microbiome changes with age,
but specific intervention targets are less clear. Moreover, terms like
diversity, assumed by many to be desirable’, and ‘uniqueness’, which
hasbeen cast asamarker of healthy aging®, need greater precision and
should notbe used agnostic of theloss or gain of specific taxain aging.
Other summary statistics include different measures of uniqueness
that capture specific aspects of gut microbiome variability and are
calculated using different distance measures.

Here, we analyzed microbiome diversity and four measures of
microbiome uniqueness in 21,000 gut microbiomes for their relation-
ship with aging and health. We show that diversity and uniqueness
measures are not synonymous; uniqueness is not a uniformly desir-
able feature of the aging microbiome, nor is it an accurate biomarker
of healthy aging. Different measures of uniqueness show different
associations with diversity and with markers of healthand disease. The
Kendalluniqueness measure is negatively associated with microbiome
diversity and health-associated taxaand positively associated with mul-
tiple disease-associated taxa. These health- and disease-associated taxa
show the strongest association with the unhealthy aging phenotype
andrepresent actionable targets for the design of microbiome-based
therapeutics for older people.

Results

Uniqueness indices show different interactions with diversity
We analyzed 21,041 fecal microbiome datasets (or profiles) fromseven
data repositories (Methods and Table 1)*'°, Six of these data reposi-
tories covered participants from Europe, North/South America, Asia
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Fig.1| Association of measures of microbiome uniqueness, Shannon diversity
and betadiversity with age in different study cohorts shows region-specific
variabilities. The names of the study cohorts appear aslisted in Table 1, and the
number of investigated gut microbiomes are indicated in parentheses. The top
four rows indicate the data type (Shotgun or 16S; as per legend), maximum and
minimum participant age and the geographical region. The heatmap immediately
below these panels shows the results of PERMANOVA for associating overall
betadiversity with age computed using the four microbiome distance matrices
analyzed at the levels of genus and species. The bottom heatmap shows the
results of the robust linear regression models for associating species and genus-
level microbiome summary statistics with age across the different individual
studies. The statistical significance of the associations were computed using
two-sided robust F-tests. The Pvalues obtained for the association of the different
microbiome summary indices were corrected on a per-study cohort basis using

Benjamini-Hochberg correction to compute the Q-values. Also indicated on

the right of this heatmap are the results of the association meta-analyses of

these microbiome summary statistics with age for studies grouped based on
their geographical regions. For agiven geographical region, the summarized
associations are computed using random effect models on the specific individual
study-specific effect sizes (computed based on robust linear regression models
(Methods)). As for the previous heatmap, the Pvalues obtained for the association
of each summary index were corrected on for each geography-specific study
groups using Benjamini-Hochberg corrections. The results show that age-wise
association of the gut microbiome with age (association of individual summary
statistics as well as overall diversity) shows region-specific signatures, with the
strongest effects being observed for the European and North American cohorts.
Various measures of uniqueness and diversity strongly associate with age, but
only for the Europeanand North American cohorts.

and Africa and ranging from 18 to 100 years old. One repository (NU-
AGE) was specific to older individuals®. The combined study popula-
tionderives from19 nationalities across Europe, North America, South
America, Asia, Pacificlslands and Africa. Taxonomic profiles at the genus
and species level and MetaCyc-based functional profiles were also avail-
able for all the 8,430 Shotgun datasets included in this study (Table 1).

We first calculated five microbiome summary statistics, Shan-
non index (or diversity) and four different measures of uniqueness,
namely, Bray—Curtis (as used by Wilmanski et al.®), Jaccard, Aitchison
and Kendall (Methods) at the levels of genus, species and functional
pathways (MetaCyc). Higher values of Bray-Curtis, Jaccard or Aitchison
uniquenessindicate greater variationinthe presence or abundance of
taxa (or pathways). In contrast, higher Kendall uniqueness indicates
higher variation of overall microbiome structure and reorganization
(Extended DataFig.1). We theninvestigated the associations between
these properties within each individual study cohort and across all
studies (Supplementary Fig.1).

Different measures of uniqueness were mutually positively
correlated to varying extents across studies but showed different
relationships with microbiome diversity (Shannon index) (Supple-
mentary Tables 1 and 2, Extended Data Fig. 2 and Supplementary

Fig.2). Although Bray-Curtis,Jaccard and Aitchison uniqueness values
(all associated with increased abundance and detection of rarer taxa)
positively associated with diversity, the Kendall uniqueness meas-
ure (which reflects differences in overall microbiome hierarchy and
relative rank abundance of individual microbiome members) showed
significantly negative correlation with Shannon diversity across most
datasets (Extended Data Fig. 2 and Supplementary Fig. 2). This differ-
ential association of the uniqueness measures with Shannon diversity
was consistent at both species and genus levels. Kendall uniqueness
and diversity were also negatively associated at the level of functional
pathways (Extended Data Fig. 2, Supplementary Fig.2b and Supplemen-
tary Table 1b). Thus, higher values of Kendall uniqueness, associated
with loss of gut microbiome organization, occur when thereis aloss of
structure and diversity of the overall gut microbiome.

Uniqueness and diversity show a geography-specificincrease
with age

Because the microbiome is affected by age and geography, we inves-
tigated the separate and combined interaction of these variables with
age (Fig. 1, Extended Data Fig. 3 and Supplementary Table 3). Overall, in
210f 28 datasets (-75%) subjected to diversity or uniqueness analysis at
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Fig.2|Identification of species-level groups based on their pattern of
association with different microbiome summary statistics. Species fall into
three groups based on their association pattern with Kendall uniqueness. Each
edge indicates an association with Q < 0.05, with colors blue and red indicating
significant negative and positive associations, respectively. Based on their
pattern of association, the microbiome taxa can be resolved into three partitions
based on their association with Kendall uniqueness. A set of 54 species-level

Positive association (Q < 0.05)

taxa containing many of the putatively beneficial symbionts show significantly
negative association with Kendall uniqueness. A group of 22 species-level taxa
containing many taxa previously shown to be associated positively with multiple
diseases/unhealthy measures, like frailty', associate positively with Kendall
uniqueness. The disease/unhealthy aging links of the above two groups are
further validated in Figs. 3 and 5. A third group of 36 taxa (highlighted as 'Others’)
show no association with Kendall uniqueness.

thetaxonomiclevel (Fig.1),and in15 of 23 datasets (-65%) examined at
the pathway level (Extended DataFig. 3), we detected significant asso-
ciation (P< 0.05) between age and overall microbiome (beta) diversity
for at least one of the distance measures. This finding indicated that
for a majority of studies, the gut microbiome composition changed
with age. The individual distance measures did not show any consist-
ent differencesin the number of their associations. Notably however,
the association of overall gut microbiome composition with age was
strongest in European and North American individuals (consistently
significant associations with multiple beta-diversity measurements)
(Fig.1). This pattern was even stronger for pathway beta-diversity analy-
sis (Extended Data Fig. 3), where microbiome function significantly
associated with age in 10 of 11 European/North American cohorts. In
contrast, we observed significant association between pathway data
and age in only 4 out of the 13 cohorts from other geographies.
Multiple measures of uniqueness and diversity also positively
correlated with age, but like beta diversity, primarily for European and
North Americanindividuals (Fig. 1; Supplementary Table 4 individual
studies; Supplementary Table 3 Random Effects Model for cohort
geographies). This was similar to the positive association between
Bray-Curtis uniqueness and age in a predominantly North American
study populationreported by Wilmanski et al.®. However, across data-
sets fromother geographies, neither uniqueness nor diversity associ-
ated with age (Fig.1and Supplementary Table 4). Using random effect
models against geography-specific study groups, the positive associa-
tion of multiple measures of uniqueness and diversity with age shifted
frombeing strongly or significantly positive for Europeans and North
Americansto being nonsignificant for other geographies (Supplemen-
tary Table 5). This pattern was especially pronounced at the taxonomy
level. Overall, these strong differences in the age-associated alterations

in the gut microbiome were not associated with either study sample
size, or the cohort size of older adults, or age-range (Supplementary
Fig.3). However, for African cohorts, microbiomes from older adults
were underrepresented (numbers ranging from 2 to 26). Given the
strong association between diversity and uniqueness measures, we
recomputed the associations between aging and uniqueness measures
after adjusting for the Shannon diversity across all studies (for both
taxonomy and function). The patterns remained largely unchanged
(Supplementary Tables 6 and 7 and Extended Data Fig. 4).

Thus, the extent and type of age-specific microbiome associations
(including summary indices) differ with geography. Most of the excep-
tions in Europe to these data interactions were in the NU-AGE cohort,
perhaps because of the narrow age range of this targeted-recruitment
cohort (Fig.1).

Summary indices show different links with disease-/health-
linked taxa

We next tested if microbiome summary statistics reflected the abun-
dances of taxa consistently reported as showing differential associa-
tions with health. We focused on 107 species-level taxa present in at
least 5% of the microbiomes, in at least 60% of studies, in both Shotgun-
derived and 16S-datasets. We primarily investigated composition-
ality-tuned clr-transformed taxonomic abundances, although pilot
evaluation of different normalization strategies identified very similar
taxon abundances (Methods and Supplementary Figs. 4 and 5).

We detected 288 significant associations between these 107 spe-
cies and the five microbiome summary statistics (Methods, Supple-
mentary Tables 8 for cohort-specific associations, Supplementary
Table 9 and Extended DataFig. 5 for across cohort meta-analysis using
random effect models). The maximum number of associations were

Nature Aging | Volume 2 | November 2022 | 1054-1069

1058


http://www.nature.com/nataging

Analysis

https://doi.org/10.1038/s43587-022-00306-9

a Decreasing with age (for age 260 years) Increasing with age (for age 260 years)
200 | Clostr|d|L'm'1_aldenenseFJ! ‘ Anaer, rur\(?us_collhomlnls
Clostridium_leptum Intestinimonas_butyriciproducens
Clostridium_symbiosum
Parabacteroides_merdae
175 -
Clostridium_nexile, Clostridium_innocuum
. Akkermansia_muciniphila Flavonifractor_plautii
2 150
8 bacterium_rectale Dorea_longicatena Clostridium_hathewayi
g Anaerostipes_hadrus Eggerthella_lenta
2
[

1.25 - . . . .
5 Faecalibacterium_prausnitzii Bactermdes_salyersnai Klebsiella_pneumoniae
Coprococcus_catus Clostridium_citroniae Ruminococcus_gnavus
Streptococcus_sanguinis Bacteroides_fragilis
1.00 -
0.75 -

Clostridium_ramosum

T
-0.10

Kendall uniqueness positive

T
-0.05 0

Kendall uniqueness negative

0.05 0.10

Beta

[ others

b Kendall uniqueness-positive group Kendall uniqueness-negative group
versus age (age >60 years) versus age (age >60 years) Study
Random effects model Random effects model cohort
Estimate: 0.07, P < 0.0017 Estimate: -0.03, P <0.27 size (N)
Study HMP_2019_ibdmdb Study HMP_2019_ibdmdb —ei— -0.25 (-0.23, 0.14) 17
Study AsnicarF_2021 [E - — Study AsnicarF_2021 —— 0.02 (-0.15, 0.20) 127
Study NielsenHB 2014 +———s—i— -0.15 (-0.39, 0.10) Study NielsenHB_2014 e a— 0.04(-0.20, 0.28) 68
Study Wirbel)_2018 — 0.04 (-0.20, 0.29) Study WirbelJ 2018 ——— 0.10 (-0.15, 0.34) 67
Study ZellerG_2014 —— 0.11(-0.08, 0.30) Study ZellerG_2014 ——— -0.07 (-0.26, 0.12) 109
Study ISC —— 0.15 (.01, 0.29) Study ISC [ -0.16 (-0.30, -0.02) 202
Study QinJ_2012 — 0.03 (-0.21, 0.26) Study QinJ_2012 —— -0.08 (-0.31, 0.16) 7
Study YachidaS_2019 S 0.05 (-0.05, 0.15) Study YachidaS_2019 —— 0.03 (-0.07, 0.13) 393
Study AG HIH 0.06 (-0.01, 0.12) Study AG - ~0.01(-0.07, 0.05) 1,024
Study NU-AGE il 0.04 (-0.04, 0.12) Study NU-AGE F-a 0.03 (-0.05, 0.11) 610
Study HE m 0.02 (-0.02, 0.06) Study HE = -0.04 (-0.08, 0.00) 2,434
Study Odamaki —— 0.31(-0.13, 0.50) Study Odamaki —— -0.36 (-0.54, -0.17) 16
Study LogMPie e 0.07 (-0.21, 0.35) Study LogMPie i S 0.19 (-0.09, 0.48) 51
RE model > 0.07(0.03,0.11)  RE model - -0.03(-0.08,0.02) 5,388
-0.4 0 0.20.40.6 -06 -02 02 0.6

Fisher’s Z-transformed correlation coefficient
Consistency: 12/13 studies

Fig. 3 |Increase with age in older adults of the disease-associated species
that correlate positively with Kendall uniqueness. a, Volcano plot showing
the association of the clr-transformed abundances of species in the two major
species groups (identified in Fig. 2) with increasing age in the microbiomes

of older adults (age >60 years). The x axis shows the summarized estimate of
the random effects model-based association meta-analysis for each species
determined across the 13 selected studies (Results), along with the study cohort
size (the number of independent samples/gut metagenomes from each study).
The y axis shows the —10g(Q) 510, Where the Q-value is obtained by correcting
the overall Pvalues obtained for the same meta-analyses across all species using
the Benjamini-Hochberg correction. Taxa belonging to the three taxon groups
identified in Fig. 2 are shown in different colors (pink, Kendall uniqueness
positive; yellow, Kendall uniqueness negative; blue, others). Only taxa showing
associations with Q < 0.1are indicated. Taxa showing significant (Q < 0.1)
positive associations with age tend to be dominated by those belonging to the

Fisher’s Z-transformed correlation coefficient
Consistency: 6/13 studies

Kendall uniqueness-positive group. b,c, Overall increase of disease-associated
group of taxa with increasing age >60 years; forest plots show the results of
separate random effects (RE) model-based meta-analyses performed the
group abundances of the Kendall uniqueness-positive and Kendall uniqueness-
negative groups with age (>60 years) (Methods). The highlighted study cohorts
(highlighted in green for health-associated Kendall uniqueness-negative

group and inred for disease-associated Kendall uniqueness-positive group)

are those where the association pattern was similar to the overall pattern. For
each plot, the effect size of the associations with age is depicted as aline, with
the mean effect size shown as black squares (the size proportional to the weight
or power for each study), and the lines indicate the confidence interval of this
estimate. The summarized effect size is indicated at the bottom in the shape
of arhomboid, with the outer edges indicating its confidence interval. The
two-sided Pvalues of the permutation tests of each random effects model is also
indicated above each plot.

with the Shannonindex (99 associations) and Kendall uniqueness (76
associations) (Extended DataFig. 5). However, the pattern of these asso-
ciations was different. Although almost all associations obtained with
the Shannon diversity index were positive (98 of 99), the associations
with Kendall uniqueness included both negative (54 associations) and

positive associations”. The individual species-level taxa (see heatmap
inSupplementaryFig. 6) clusteredinto three groups (Fig.2) comprising
54 species-level taxa negatively associated with Kendall uniqueness, 22
species-level taxa positively associated with Kendall uniqueness and 37
species-level taxa showing no associations with Kendall uniqueness.
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Fig. 4 |Ranked order of microbiome features that show the most consistent
associations with multiple measures of unhealthy aging. The results are
shown for 43 measures of unhealthy aging phenotype in five data repositories.
Disease groups containing information from less than 20 gut microbiomes were
notincluded in this analysis. Only those features that associate consistently
with multiple measures of unhealthy phenotype individually in at least three

of the five data repositories and at the maximum of only two association in

the opposite direction are shown. The associations are shown for individual
species, mean range-scaled abundances of the Kendall uniqueness-positive and
negative groups (Fig. 2) and that of the multiple-disease-enriched and multiple-
disease-depleted taxon groupsidentified in Ghosh et al.!, along with multiple
microbiome summary statistics used here (Methods). Q-values were obtained
using Benjamini-Hochberg correction for each data repository-unhealthy
measure combination. Features are arranged such that those showing the

most negative associations with unhealthy older adult-specific scenario (at
least with Q < 0.1) are at the top, with a gradual shift to putatively detrimental
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features showing the most positive associations with negative health (at least
with Q<0.1). The two groups differentially associating with unhealthy aging
phenotypes are demarcated with horizontal lines. For each association, we have
also indicated the number of gut microbiomes investigated. For CMD3 and ISC,
containing samples from multiple studies, we used the matched patient-control
studies pertaining to each disease (number of controls in blue font and patients
inred font). For single AG and He cohorts, we compared taxon abundances in
patients versus controls from the same data repository (size of each disease
groupindicated inred and the number of controls in blue besides the repository
names). For EM and NU-AGE, all microbiomes were considered (number in
parentheses), and associations were performed along a continuous gradient
(Methods). Abbreviations: FIM, functional independence measure; Barthel,
Barthel score; MMSE, Mini Mental State Examination; Charls. comorb., Charlson
comorbidity; GDS, geriatric depression scale; hand grip, hand grip strength;
Constr. praxis, sensitivity C-reactive protein; MetS, metabolic syndrome; Rheum.
arthr., rheumatoid arthritis (Table 1 lists additional abbreviations).

We referred to these groups of taxa as Kendall uniqueness negative,
Kendall uniqueness positive and others, respectively.

We next checked ifthe membership of these groups (Fig. 2) showed
differences in their association patterns with a putatively ‘beneficial
microbiome’, with respect to the relative proportions of ‘putatively
beneficial’ and ‘potentially detrimental’ taxa®. Here, we operation-
ally defined a potentially detrimental taxon as being enriched in (or
positively associated with) multiple diseases that is ‘disease associ-
ated’, whereas a putatively beneficial taxon was defined as one that is
health associated or inversely correlated with multiple diseases (that s,
‘healthassociated’). We have previously identified 36 ‘multiple-disease-
depleted’ and 23 ‘multiple-disease-enriched’ taxa that were enriched
ordepleted in multiple diseases, respectively'. Here, we considerably
expand the study dataset with multiple cohorts and diseases (11,950 gut
microbiomes from 22 cohorts) (Supplementary Table 10). Reinvestigat-
ing the disease associations of the above set of 59 health- and disease-
associated taxa (originally identified in') in the newly included datasets

of the currentstudy (that s, not considered in Ghoshetal.'), indicated
a high reproducibility of the disease associations of these taxa in the
additional metagenomic and 16S data (Methods, Supplementary Note 1
and Extended DataFig. 6). Notably, although our previously identified
set of health-associated taxa overlapped significantly with the Kendall
uniqueness-negative group, the previous list of disease-associated taxa
overlapped significantly with the Kendall uniqueness-positive group
inthe current study (Extended DataFig. 6 and Supplementary Note1).

The Kendall uniqueness positive group (Fig. 2) contained spe-
cies including Clostridium symbiosum, Clostridium ramosum, Rumi-
nococcus gnavus, Clostridium hathewayi, Clostridium citroniae and
Clostridium bolteae, many of which we and others have identified
as enriched in multiple diseases and associated with frailty in the
ELDERMET cohort"'*'#2°, The Kendall uniqueness-negative taxa
(Fig. 2) largely comprised species previously associated with health,
including Faecalibacterium prausnitzii, multiple species of the Cop-
rococcus and Roseburia genera, Eubacterium rectale, Eubacterium
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Fig. 5| Identification of acoabundant hub of putatively beneficial symbionts
that are depleted inunhealthy aging. Coabundance network of taxa derived
from microbiomes of adults older than 60 years, across 13 individual studies.

We sselected a set of 112 species that were identified in both 16S and Shotgun
datasets. Associations between the centered-log-ratio transformed abundances
of species pair were individually computed within each study using robust linear
regression models. Results of the individual robust linear regression models were
then collated using random effect models to compute summarized association
statistics. For each species, the summarized association Pvalues for every other
were then corrected using the stringent Bonferroni approach and only those
species pairs having aQ < 0.001and an overall summarized positive association

estimate (>0) were determined to have coabundant relationships and connected
by an edge. The species-level nodes belonging to the different species groups
arefilled in different colors, namely, green for the health-associated group, red
for the disease-associated group and light blue for other species. Species-level
taxathat are observed to be either elevated or depleted in multiple scenarios

of unhealthy aging are shown in brown and dark blue, respectively. We also
investigated the interactions for the taxa depleted in multiple scenarios of
unhealthy aging (Fig. 5) individually within the 11 studies (Results). This species-
to-species coabundance subnetwork of health-associated markers is shown
inthe bottom right corner. The sizes of the labels are based on the number of
connections each taxon has with the othersin this subnetwork.

eligens, Barnesiella intestinihominis and Odoribacter splanchnicus
(showing significant negative associations with Kendall uniqueness),
all of which are depleted in multiple diseases"'*'®, as well as being
associated with healthy aging trajectories”. Other members of this
group included Akkermansia muciniphila, which although positively
associated with Bray-Curtis and Jaccard uniqueness, showed negative
associations with Kendall uniqueness. Thus, increasing uniqueness and
diversity are features of an aging—host microbiome in general (espe-
cially for the Westernized populations), but not necessarily asignature
of a putatively beneficial microbiome. Our previously defined lists of
disease-associated and health-associated taxa overlap significantly
with ab initio species-level groups defined here based on association
with Kendall uniqueness. Thus, among the summary statistics tested,
Kendall uniqueness is an efficient microbiome-summary measure to
define the health correlation of a given microbiome or cohort based
on constituent taxa. We next investigated the age-related abundance
changesin these taxaespecially in the gut microbiome of older adults
inthe diverse cohorts.

Specific Kendall uniqueness-positive taxa increase with age in
older adults

We next focused on 13 studies with at least 50 gut microbiomes
from people older than 60 years (Methods), allowing us to assemble
5,388 datasets from older persons. These 13 studies included 11,264

gut microbiomes from younger individuals (age <60 years). When
we analyzed the age-association of the 54 health-associated and 22
disease-associated taxaidentified in Fig.2,13 of the 22 Kendall unique-
ness-positive taxa showed an increase with age over 60 years (in at
least two-thirds of the cohorts). For 11 of these taxa, the increase was
significant (overall random effects model Q < 0.1) (Supplementary
Table 11 and Fig. 3a). The taxa involved included Clostridium symbio-
sum, Clostridium innocuum, Clostridium aldenense, Clostridium nex-
ile, Flavonifractor plautii, Eggerthella lenta, Clostridium hathewayi,
Clostridium ramosum, Klebsiella pneuomoniae, Ruminococcus gnavus
and Clostridium citroniae. Asnoted above, many of these taxa have been
previously linked with frailty"”?. In contrast, the age relatedness of the
health-associated species was variable and generally negative. Some of
the major members of this group, namely, Eubacteriumrectale, Dorea
longicatena, Faecalibacterium prausnitzii and Coprococcus catus, sig-
nificant decreased with agein older individuals (all with random effects
model Q < 0.1and consistency > 66.7%) (Fig. 3a and Supplementary
Table 11). In contrast, other members of this group like Akkermansia
muciniphila, previously linked to healthy aging®’, showed anincrease
with age in older individuals.

There was a significant overall positive association between the
abundance of the Kendall uniqueness-positive taxon group with age
>60 years (random effects model estimate = 0.07, P = 0.0017), with
the positive link replicatingin12 out of the 13 individual study cohorts
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(Methods and Fig. 3a). Although no significant pattern was observed
with respect to the association of health-associated Kendall unique-
ness-negative taxa with age (Fig. 3b), the rate of age-related increase
in the Kendall uniqueness-positive taxa was much stronger than that
of the health-associated species group (Mann-Whitney test of asso-
ciation coefficients, P=5.3 x 107°), whose variation with age trended
toward a decrease (Supplementary Fig. 7a). This pattern was replicated
even when we considered only the microbiomes from the apparently
nondiseased control participants (Mann-Whitney test of association
coefficients P=2.3 x 107°). Similarly, the significant age-associated
increase in the grouped abundance of the Kendall uniqueness-pos-
itive species was also replicated when only considering the appar-
ently nondiseased controls (random effects model estimate = 0.053;
P=0.004) (Supplementary Fig. 7b). Notably, the species belonging to
the others group (showing no association with Kendall uniqueness)
showed an association that was intermediate between that of health
and disease-associated taxa, with no overall association with aging
(Supplementary Fig. 7a,c).

We used random effects models to investigate the association
of functional pathways with the abundances of health and disease-
associated species groups (Supplementary Table 12), focusing on 41
pathwaysthat were positively linked with the health-associated group
and negatively linked with the disease-associated taxon group. This
group included multiple pathways: synthesis of tryptophan and its
precursor chorismate; biosynthesis of arginine, ornithine and other
polyamines; and synthesis of multiple B vitamins, including folate
(B9), pantothenate (B5) and thiamin (B1) (Supplementary Table 12).
Inaddition to the positive associations of vitamins with health, multi-
ple previous studies have shown the association of tryptophan, argi-
nine and polyamine metabolism with improved cognitive function,
improved colonicbarrier function and reduced inflammation® 2. The
41 health-linked pathways included those for oxidation of fatty acids
and elongation of unsaturated fatty acids that are linked to higher
cognitive function®.

Taxa are better markers of unhealthy aging than most
summary indices

Five data repositories (CMD3, AG, ISC, specifically ELDERMET; NU-
AGE and He) provided participant metadata indicative of normal/
unhealthy aging status of the participants. Selecting adults >60 years
ofageresultedin43 combinations of data-repository-versus-unhealthy-
phenotype metadata (Methods and Fig. 4). We selected 116 microbiome
features (107 species-level taxa, 4 measures of uniqueness, Shannon
diversity, group abundances of the disease-associated taxa (showing
positive association with Kendall uniqueness), the health-associated
taxa (showing negative Kendall association) and the group abundances
of our previously identified ‘putatively beneficial’ and ‘potentially
detrimental’ taxa® and we tested their association with the unhealthy
aging metadata in each of the 43 combinations (Fig. 4 and Methods).
Weidentified aset of 55 features that positively or negatively associated
(with Q-value of 0.10 or lower) with multiple measures of unhealthy
aging in at least three of five data repositories (allowing a maximum
of two associations in the opposite direction across all repositories).
These define an operational core set of healthy aging-associated micro-
biome markers, 16 of which were consistently negatively associated
with healthy aging and 39 showing consistent positive associations
with healthy aging (Fig. 4).

Of the features tested, the group abundance of the Kendall
uniqueness-positive taxa (associated with disease) showed the most
consistent positive associations with unhealthy aging, being positively
associated (Q < 0.1) with the highest number (18 of the 43) of the tested
microbiome-unhealthy aging pairs for which such datawere available
(Fig.4). Thus, the disease-associated species group showed notonlya
significantincrease with agingin general but also the most consistent
association with an unhealthy aging phenotype. This was followed,

in rank order of association strength, by the abundance of multiple
individual species belonging to this species group, like Clostridium
symbiosum, Ruminococcusgnavus, Flavonifractor plautii, Clostridium
ramosum, Eggerthellalenta, Clostridium citroniae, Clostridium clostridi-
oforme, Clostridium innocuum and Clostridium hathewayi.In addition,
the group abundance of the 36 disease-associated taxa (previously
identified by us') was also among the top features positively associ-
ated with the unhealthy aging (associated with 14 combinations).
Among the microbiome summary statistics, as expected, only Kendall
uniqueness was identified among the 16 top features associated with
unhealthy aging (positively associated with 13 unhealthy aged phe-
notype scenarios).

Coprococcus catus and Coprococcus comes from the health-
associated Kendall uniqueness-negative taxon group, along with
the combined abundance of this group (as a whole), Prevotella copri,
Ruminococcus bromii and that of the 23 disease-depleted group of
taxa (previously identified’), were the top six microbiome features
negatively associated with at least 12 clinical health/disease states
(andwith Q< 0.1) (Fig.4). This was followed in rank order by amultiple
taxafromthe health-associated taxa. There were relatively fewer asso-
ciations between other measures of uniqueness or Shannon diversity
and unhealthy aging with, for example, Shannon diversity negatively
associatedin5out of 43 scenarios with Q < 0.1. Thus, except for Kendall
uniqueness, none of the measures of microbiome uniqueness are a
marker of healthy (or unhealthy) aging.

Younger individuals (Methods and Extended Data Fig. 7) were
notably differentin the identity and ranking of microbiome taxa associ-
ated with healthloss (only 40 of 64 features overlapped), with younger-
individual microbiomes having a distinct abundance of Bacteroides,
Parabacteroides and Alistipes taxa associated negatively with the
unhealthy phenotype. However, as for the older adults, the strongest
positive and negative associations were with disease-associated Kendall
uniqueness-positive and the health-associated Kendall uniqueness-
negative taxa groups, respectively.

Healthy aging markers occupy core positionsin the gut
microbiome

Higher Kendall uniquenessisadirect reflection of achangeininternal
microbiome hierarchy, withaloss (or depletion) of numerically domi-
nant microbiome members and higher abundance of subdominant
taxa. Distinct interactions of the health-associated (Kendall unique-
ness-negative) and disease-associated (Kendall uniqueness-positive)
taxon groups with measures of unhealthy aging likely reflect distinct
functional roles and positions in microbiome ecological networks.
Older age and increased duration in residential care covary with loss
of diversity-associated taxa and core taxonomic modules in ELDER-
MET participants*. In the NU-AGE study, taxa associated with healthy
aging and whose abundance increased with MedDiet adherence were
enrichedinthe microbiome core and occupied highly connected nodes
in the microbiome network”. These observations show that the reten-
tionof the coreis associated with healthy aging. Here, we validated and
extended these concepts by coabundance network analysis across the
12 datasets from the seven datarepositories (the 13 datasets from Fig. 3,
omitting NU-AGE, which lacked microbiomes from younger individu-
als; Methods). This constituted 4,778 microbiomes from older adults
(age <60 years) and 11,264 microbiomes from younger individuals.
Comparing the centrality measures of the taxa indicated an overall
similarity between the coabundance networks obtained for the older
and younger individuals (Supplementary Table 13). Only Prevotella
copri and Dorea longicatena displayed significantly higher centrality
inthe older-individual-specific networks.

There were somelargely consistent features of the centrality meas-
ures for the different Kendall uniqueness-defined taxon groups across
the different studies (irrespective of age). The health-associated group
of taxa occupied core positions in coabundance networks, shown by
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significantly higher centrality measures of degree (older individuals:
random effects model P value = 0.032, consistency: 75% of studies,
Supplementary Fig. 8; young: random effects model Pvalue=0.0001,
consistency: 92% of studies, Supplementary Fig. 9), betweenness (older
adults: random effects model P value = 0.0013, consistency: 83% of
studies, Supplementary Fig. 10; young: random effects model Pvalue
=0.0001, consistency: 92% of studies, Supplementary Fig.11) and hub
score (older adults: random effects model Pvalue =0.027, consistency:
67% of studies, Supplementary Fig. 12; young: random effects model
Pvalue=0.0003, consistency: 83% of studies, Supplementary Fig.13)
of this taxon group compared with those for the disease-associated
Kendall uniqueness-positive group (Supplementary Figs. 8-13). The
Kendall uniqueness-negative taxon group also had significantly higher
prevalence than the Kendall uniqueness-positive group (Supplemen-
taryFig.14). Higher connectivity and higher prevalence indicated that
the health-associated taxa are part of the core microbiome. Notably,
within this group, the more central a taxon was in the coabundance
network, the stronger was its negative association with Kendall unique-
ness (Extended DataFig. 8) across the coabundance networks obtained
for both the older (random effects model estimate: —0.13, P value =
0.003; pattern observed consistently in 11 out of 12 study cohorts)
and younger individuals (random effects model estimate: -0.16,
Pvalue=0.001; pattern observed with consistency in10 out of 12 study
cohorts). Thus, increasing Kendall uniquenessis directly linked with a
loss of the core microbiome structure, whichin turnis associated with
anunhealthy phenotypeinboth the youngand older participants and
isalso amicrobiome feature of aging in general.

Toinvestigate the relative placement of microbial markers of the
unhealthy phenotype in the coabundance networks, we generated
consensus coabundance networks based on the consistent abundance
associations between species pairs observed across the 12 individual
studies (separate networks constructed for young and older partic-
ipants) (Methods, Fig. 5 and Extended Data Fig. 9). The consensus
networks for older and younger individuals both consisted of a large
densely connected core hub of most of the health-associated Kendall
uniqueness-negative taxa and two subhubs of the disease-associated
taxa. One of these subhubs of disease-associated Kendall uniqueness-
positive taxa comprised multiple species from the Streptococcus and
Veillonella genera and other species like Klebsiella pneumoniae and
Actinomyces odontolyticus, whereas the other subhub contained mul-
tiple disease-associated Clostridium species, along with Ruminococcus
gnavus, Flavonifractor plautii and Eggerthella lenta. The taxa that
were not associated with Kendall uniqueness were located either in
the periphery or acted as linking hubs between the health-associated
core and the two disease-associated subhubs. The distinguishing
feature between the two consensus coabundance networks (for the
two age groups) was the placement (as shown in Fig. 5 and Extended
Data Fig. 9) of the taxa that are elevated/depleted in multiple cases
of unhealthy phenotype (in the corresponding age groups). In the
younger-participant consensus network, the taxa depleted in mul-
tiple examples of health loss were spread across the core hub of the
coabundance network. Similarly, those elevated in multiple scenarios
of healthloss were also distributed across the two disease-associated
subhubs (Extended Data Fig. 9). In contrast, the positive and negative
markers of unhealthy aging in older adults were localized to specific
subregions in the corresponding consensus coabundance network
for the older participants (Fig. 5). Eleven taxa whose abundance was
elevated in multiple scenarios of aging (in Fig. 4) were present in one
single disease-associated taxa-dominated subhub of this network
(Fig. 5), whereas 39 taxa depleted in multiple scenarios of unhealthy
aging (asinFig.4) were colocalized to aspecificregion of the core hub
of this network. A total of 19 of these 39 taxa exhibited adense network
of coabundance relationships amongst themselves (wherein each
member of this 19 taxa group had coabundance relationships with at
least 50% of the other 18 members), thus forming a coabundant guild

of 19 taxa putatively associated with healthy aging (Fig. 5 and Sup-
plementary Table 14). Notably, this 19-species older-specific health-
associated guild showed reduced abundance with age beyond 60 years
ofageacross atleast 75% of the studied cohorts (random effects model
Pvalue =0.019 taking all microbiomes; random effects model Pvalue
=0.004 only considering the apparently nondiseased controls, trend
replicated across 75% of the study cohorts) (Extended Data Fig. 10).

Age-related healthloss differs between people, despite apparently
starting from similar health status at younger age. We therefore exam-
ined the rate of loss or gain with age of four microbiome parameters
in the four cohorts that included either control and disease groups
(CMD, AG and He) or healthy and unhealthy aging groups (EM) (Sup-
plementaryFig.15). Unhealthy aging was characterized by either faster
age-associated loss of taxa whose abundance may be the key for healthy
aging or consistently lower levels of these taxa with respect to the con-
trols group. Inthe He and CMD cohorts, the nondiseased participants
showed a higher rate of increase of uniqueness with age (consistent
with previous observations)®, but this is not an indicator of healthy
aging, becauseindividuals in the disease group displayed significantly
higher uniqueness from amuch younger age.

Discussion

This study explored whether determining the gain or loss of specific
taxarepresentamore precise metric of healthy/unhealthy aging than
summary microbiome statistics, such as diversity and uniqueness.
We assessed the interaction between specific microbiome taxa and
summary statistics with aging and health in a heterogeneous global
dataset derived from 19 different nationalities spanning five different
continental regions. The study identifies that the gut microbiome
alterations associated with both aging in general and unhealthy aging
are characterized by acommon theme: loss of the core microbiome
structure (specifically a coabundant species-level guild of the core
microbiome) and concomitant increase of a specific guild of disease-
associated taxa.

Toaddress the confounding effects betweenincidence of specific
diseases and aging ingeneral, we have investigated the above patterns
using a two-step investigation strategy. We first investigated all gut
microbiomes from individuals aged >60 years and then revalidated
our findings within the gut microbiomes from the apparently nondis-
eased controls. However, it isimportant to note that biological aging
ingeneral may be accompanied by increased incidence of conditions
like dyslipidemia, hypertension and inflammation, which might not
have been specifically recorded in all reports but are linked with the
microbiome composition”. Another limitation of the datasets available
for this study was the underrepresentation of extreme older adults
(for example, centenarians), with the majority of data being from
individuals younger than 100 years of age. This impeded our inves-
tigating healthy versus unhealthy aging trajectories in individuals in
the extreme age ranges. Previous studies have attempted to profile
the gut microbiome of centenarians in general (reviewed previously”)
and link the features of a centenarians’ gut microbiome with healthy
aging. However, itisimportant to note that, increased life-spanis not
equivalentto health span. Although all centenarians clearly exemplify
healthy aging trajectory in their past lives, their current physiological
statuses will show individual-specific health differences that need to
besstratified before performing microbiome-aging association studies
for these individuals.

For future aging-microbiome studies, an alternative universal
approachtoaddress the above confounding effects would be to use the
‘biological age’ or the ‘rate of aging’ rather thanthe chronological age
oftheindividuals for these investigations. Amultitude of omics-based
aging clocks are currently available and can predict not only an overall
biological age or ‘accelerated rate of aging’inanindividual (irrespective
ofthe chronological age) but also the age-related decline with respect
to specific attributes of health. Despite the above limitations, the
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identification of specific guilds of bacteria could be used for designing
older-people-targeted microbiome-based therapeutic interventions
and as diagnostic markers of individuals (middle-aged or at the onset
of aging) who are at risk for an unhealthy aging trajectory.

Differencesinthe baseline composition of an apparently healthy
gut microbiome within a given study population could influence the
strength and consistency of the above alterations depending upon the
nature of the study population. For example, the strongest effects of
the aging-associated gut microbiome changes were detected for the
European and North Americanindividuals. Notably, amajority of mem-
bers of the bacterial guild associated negatively with unhealthy aging
were reportedina previous study by our group to be more abundantin
nonindustrialized populations, aswell asintheIrish Travellersliving a
moretraditionallifestyle compared to settled industrialized societies®.
Could the specific markers of health in older people identified in the
current study have areduced rate of loss in these populations, result-
ingintheretention of aresilient microbiome into late aging? It would
be desirable for future studies to include a greater representation of
older adults from nonindustrialized countries to further examine the
weaker diversity and uniqueness associations with age and health noted
for those geographiesin the current study.

To address the issue of baseline differences across study popula-
tions, we identified that the Kendall uniqueness measure efficiently
captures the relative loss of the core microbiome and microbiome
organization in an individual with respect to a given reference popu-
lation. In essence, the concept of Kendall uniqueness further reso-
nates with the previously proposed ‘Anna-Karenina principle’ of the
microbiome that ‘All happy microbiomes look alike, each unhappy
microbiome is unhappy in its own way’*°. We have previously shown
inthe ELDERMET cohort thatincreased duration of illness-associated
hospitalization is associated with a loss of the core microbiome*”.
Similarly, the microbiome of people with conditions like inflamma-
tory bowel diseases and colorectal cancer also display loss of specific
coretaxonomicgroups (identified in the current study) and increased
variability in the gut microbiome® *, Additionally, higher abundance
of particular core microbiota taxa has been shown to facilitate faster
recovery of the microbiome following antibiotic treatment®*. The
identification of the Kendall uniqueness metric in the current study
indicates that the retention of the microbiome core and hierarchi-
cal abundance in the microbiome could be the key driver facilitating
microbiome resilience and homeostasis. The identification of such a
microbiome summary index that efficiently captures the state of the
microbiome with respect to the corresponding reference population
will have translational value.

Equally importantly, we also identify specific groups of taxa that
areassociated (either positively or negatively) with Kendall uniqueness.
These specific taxon guilds show consistently stronger associations
with the unhealthy aging phenotype than the Kendall uniqueness
measure itself. Thus, although the latter could serve as a population-
level microbiome summary statistic to capture the state of microbiome
(decline) in an individual, the taxa defined here are expected to have
diagnostic and therapeutic value.

Thereisalsoaneed for further studies thatinvestigate the microbi-
ome at higher resolution. Strain-level resolution offers amore crystal-
line view of microbiome-disease associations. Gene presence/absence
analyses or a single-nucleotide polymorphism-level meta-analysis
of gut microbiomes from multiple geographic locations will also be
informative but will require uniformly high-quality metagenomic data
across all cohorts/participants, plus detailed metadata.

Conclusion

The definition of a healthy microbiomeis dependent on context. How-
ever, age-related changesin the microbiome areidentifiable and more
reliably linked with health and disease thanin youth. Many of the health
and disease associations of particular taxa were previously validated

by the NU-AGE MedDiet intervention study®, which demonstrated
healthier aginginthe dietary intervention group, which tended toretain
putatively beneficial symbionts. However single time-point measures
of gut microbiome diversity or uniqueness will not provide actionable
information. Rather, the proportions of disease or health-associated
taxa arelikely to be asuperior therapeutic target and metric of clinical
status and benefit.

Methods

Statement on ethical regulations

The study used meta-analysis on publicly available deanonymized data
and did not collect datafrom human participants as part of this study.
The details on protocolsinvolving different aspects of the human study
participants (sex, number and age of participants and statements on
informed consent), including relevant ethical regulations, name of the
board/committee and institution that approved the study protocol,
are described in the original studies (which have been referred to in
this study).

Statistics and reproducibility

Because the current study is a meta-analysis of several publicly avail-
able datasets, no statistical method was used to predetermine sample
size in this study. We have attempted to include all data from each of
the available datasets. Wherever applicable, we have described the
criteria used to select the specific subsets of studies. Similarly, the
methods pertaining to the mode of collection of data from individuals
(forexample, whether performed blind or not) can be obtained inthe
publications corresponding to the individual studies. For many parts of
our analysis, we have relied on nonparametric tests, whereas for others
like the meta-analysis models, the data distribution was assumed to be
normal, but this was not formally tested.

Collation of gut microbiome data repositories
Table 1 provides the details of the seven data repositories included in
this study. We used a total of 21,041 gut microbiome profiles (8,430
Shotgunsequenced and12,61116S ampliconbased). The details of these
fiverepositories are provided in Supplementary Note 2 (refs, 1071635739,
To summarize, the seven data repositories included more than
21,000 samples, with similar representation of gut microbiomes
profiled using both Shotgun and 16S rRNA gene amplicon-based
approaches. Six of the data repositories contained samples from dif-
ferent nationalities across age landscape ranging from 18 to >100
years, and one cohort (NU-AGE) was older-adult specific. The seven
repositories encompassed gut microbiomes from individuals resid-
ing in more than 20 different nationalities from Europe, North/South
America, Africaand Asia. Of these, more than 6,400 microbiomes were
especially fromolderindividuals with age older than 60 years. For the
older subset, four of the data repositories (except for Odamaki) also
contained information with respect to 50 different clinical measures
of unhealthy aging.

Computation of genus-level, species-level and pathway-level
abundances

The CMD3 and ISC datarepositories were Shotgun based. For samples
belonging to these two repositories, the species-level and genus-level
taxonomic profiles were obtained using metaphlan2 (ref. *°). For the
ISC datasets, the pathway-level abundances were obtained using the
humann2 pipeline*’; for CMD3, this information was already available
intherepository and was directly used. The AG, NU-AGE, Odamaki, He
and the LogMPie cohort datasets were 16S based. For these cohorts, for
uniformity of taxonomic assignments across studies (or datareposito-
ries) and across taxonomic levels, we used the single SPINGO classifier
pipeline for profiling the taxonomy at both the genus and species lev-
els*2. Given the compositional nature of the taxonomic and functional
profiles, all data were converted to both relative abundances as well as
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transformed to the centered-log-ratio (clr) transformation for all subse-
quentsteps of the investigation** as described in Supplementary Note 3.

Many previous studies performing such across-studies meta-
analyses have focused onrelative abundance data for identifying dis-
ease-specific and shared markers of multiple diseases"'®**. However,
asdescribed previously, given the compositional nature of the micro-
biome datasets, clr transformation has been strongly suggested as the
ideal normalization measure for performing suchinvestigations* and
was used for amajority of species abundance associations with differ-
ent microbiome properties and age. Thus, to relate the results of the
current study with the previously published studies (on microbiome
markers of health and disease) while at the same time accounting for
the compositionality of the datasets, it wasimportant toinvestigate the
effectsand relationships among the different normalization measures
utilized herein (relative abundance and clr transformation) before per-
forming this association analysis. Across the 28 studies, we observed
a strong positive correlation between the total-sum-scaled relative
abundances and the clr-transformed abundances of the constituent
microbiome taxa atboth the species and genus level (Supplementary
Figs.4and5). The correlations were computed using corr.test function
ofthe psych R package (version 2.1.9)

Computation of microbiome summary indices

In this study, we profiled five different microbiome summary indi-
ces, namely, Shannon diversity and the four different measures of
uniqueness. The computation of these summary indices is described
inSupplementary Note 4 (ref. ®*¢). Allsummary indices were computed
separately for samples constituting each individual study.

Eachofthe different uniqueness measures computed using adiffer-
entdistance scheme, captures different aspects of variations within gut
microbiomes, including variationsinthe detection, abundance (consider-
ing relative abundances as well as compositionality of the microbiome
data) and the overall hierarchical ordering within the gut microbiome
(Extended DataFig.1and Supplementary Note 5)*. The alpha-diversity-
corrected values of the different uniqueness measures were computed
as the residuals of the regression models computed between the alpha
diversity (available as the Shannon diversity) and the values of the cor-
responding uniqueness measures. For this purpose, we first utilized
robust linear regression models (function rlm of the MASS package
version 7.3.54) to regress (or to predict) each of the different unique-
ness measures with Shannon diversity as the predictor inindividually in
each of the study cohorts listed in Table 1. The robust linear regression
models are alternatives to simple linear regression models but are more
robust to outliers*, This effect is achieved by assigning weights to each
observation, penalizing outliers. The statistical significance of the fits
or associations were computed using the two-sided robust F-test (per-
formed using the f.robftest function of the sfsmisc package v1.1.12inR).
Givenauniqueness measure and the microbiomes belonging to a study
cohort, the alpha-diversity-corrected values for the uniqueness measure
were then computed as the residuals from the robust linear regression
models correspondingto that uniqueness measure in that study cohort.

Two-step meta-analytic framework to investigate associations
between microbiome properties and between microbiome
features and age
We adopted a universal two-step meta-analytic framework to investi-
gate the relationships within different microbiome summary indices
and between different microbiome summary indices and age, between
different microbiome summary indices and the microbiome features
(atthe level of species or pathways) and feature groups (species-level
groups), among the different species-level features and between differ-
entspecies-level features and age (Supplementary Fig.1). This frame-
work s described in detail in Supplementary Note 6.

Associations of the overall beta diversity (that is, the variation in
the overall compositions across the different microbiome) with age

were computed individually within the study cohorts using the permu-
tational multivariate analysis of variance (PERMANOVA) approach®.
The PERMANOVA approachis dependent uponthe measure utilized for
profiling the differences across microbiomes (and thus on the overall
distance matrix utilized). Thus, given that we profiled the differences
across the different microbiomes using four different distance meas-
ures, each depicting related but nonidentical aspects of gut microbi-
ome variations, we performed the PERMANOVA investigations of gut
microbiome variation withage individually ineach of the studies using
each of the four distance measures. The adonis function of the vegan
package version 2.5.7 was used for this purpose.

For each associationinvestigation analyses, the sample (or micro-
biome) (or n) numbers for theindividual considered studies provided
in Table 1 and Supplementary Table 10. For random effect models,
the ‘n’ numbers are also indicated in the corresponding forest plots
provided in specific figures.

Identification of taxa showing consistent positive and
negative associations with different uniqueness measures and
Shannon diversity

We investigated this first in a repository-specific manner, using an
approach previously described (and summarized in Supplementary
Fig. 1; 28 studies with study population numbers provided in Table 1).
Asdescribedin Results, we specifically identified 107 species-level taxa
that were commonly detected in at least 5% of the samples in at least
60% studiesindividuallyinboth the Shotgun-based and 16S rRNA gene-
amplicon-based datarepositories, individually. Withingut microbiome
samples belonging to a given data repository, association estimates
and significance were obtained using robust linear regression models
between the clr-transformed abundances of various taxa with each
of the uniqueness measures and diversity (using the same strategy as
describedinthe previous section). Eachindividual study as describedin
Tablel(withinvestigationtypeasl) wasinvestigated separately. These
studies included the multiple studies within CMD (each with varying
experimental methodologies for DNA sequencing and extraction).
Withintheindividual studies, the Pvalues of associations obtained using
robust linear regression models were corrected separately for each of
the five microbiome summary statistics (four measures of uniqueness
and Shannon diversity), using the Benjamini-Hochberg correction to
obtainthe false discoveryrate (FDR) (or Q-value) (computed using the
p.adjust function with ‘method’ parameter = ‘fdr’ of the base R package
version 4.1.0). The summarized associations of the abundances of the
different species-level taxa with the different the different summary
statistics were theninvestigated using the meta-analytic random effects
models (using the previously described strategy). For the individual
studies, for the different taxa, the P values of associations obtained
using the random effects models were corrected separately for each
microbiome summary statistics using Benjamini-Hochberg correction.
The number of taxa showing significant positive or negative correlations
with atleast one of the uniqueness measures or diversity (FDR correct-
ing forrandom effect Model z-test Pvalue for each uniqueness/diversity
measure <0.05) and witha consistency >67% (proportion of individual
cohorts where the directionality of associations obtained using robust
linear regression models were the same as the summarized estimate
obtained using the random effects model) were then identified. The
total number of such associations obtained for each microbiome sum-
mary statistics were then summarized. The species-level taxa were
thendividedinto three groupsbased on their association with Kendall
uniqueness, namely negatively associated with Kendall uniqueness,
positively associated with Kendall uniqueness and others.

Computation of grouped abundances of different species-
level taxa groups

The grouped abundances for each group (the three Kendall-linked
taxonomic groups and the groups of multiple-disease-enriched and
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multiple-disease-depleted taxa previously identified in Ghosh et al.")
of species-level taxa were obtained as described below. For each taxa
belonging to a group, the clr-transformed abundances across each
sample (or microbiome) was first range-scaled as below:

species — taxa — abundanceﬁnge_sca,ed

= [species — taxa — abundance”
—min (species —taxa— abundancej)]
/ [max (species —taxa — abundancej)

—min (species —taxa — abundance’)]

where species-taxa-abundance¥is the abundance of species-taxa ' in
sample ‘x’; min (species-taxa-abundance’) is the minimum abundance
of species-taxa‘j’ across all samples and max (species-taxa-abundance’)
isthe maximum abundance of species-taxa’j’ across all samples.

Subsequently, the grouped abundance of a species-level group
was then obtained as the mean of the range-scaled abundances of all
species-level taxa belonging to that group.

These included the three species-level groups identified based
ontheir association with Kendall uniqueness (as described above), as
well as the multiple- disease enriched and multiple disease depleted
identified in Ghosh et al.". The later groups were identified as below.

A previous analysis by our group on more than 2,500 gut micro-
biome samples covering five major diseases had previously identi-
fied distinct groups of species-level taxa that were observed to be
eitherenriched or depleted in multiple disease. We had referred to
this as G1-3 or taxa groups enriched across multiple diseases (we
refer here as ‘multiple disease enriched’ or ‘disease associated’)
and L1-3 or taxa groups depleted in multiple diseases (or ‘multiple
disease depleted’ or ‘health associated’). For each gut microbiome
(sample)inagivenrepository, the taxabelonging to either of the two
groups were identified and their group abundances were calculated
as described above.

Replication of the disease association pattern of the multiple-
disease-enriched and multiple-disease-depleted taxainthe
additional cohorts considered in the current study

Our previous list of multiple-disease-enriched and multiple-disease-
depleted taxa were obtained by investigating a five different diseases
across eight study cohorts'. The current study however was consider-
ably expanded (as summarized in Supplementary Table 10). Given
that these cohorts were derived from different geographically placed
populations covering additional disease scenarios, it wasimportant to
replicate the disease association of these multiple-disease-enriched
and multiple-disease-depleted taxaon these cohorts. For this purpose,
we compared therelative abundances of the different taxa constituting
the two groups (between the diseased and control gut microbiomes)
in these specific additional cohorts using two-sided Mann-Whitney
tests. Before this, we showed that the both relative abundances and
clr-transformed abundances generated nonidentical but significantly
correlated values, indicating that in specific scenarios. For CMD3 and
ISC data repositories, for each disease, we considered the patient
gut microbiomes in the different study cohorts corresponding to
that disease and compared the abundances of the species-level taxa
belongingto the two groups with gut microbiomes from the matched
controls belonging to the same study cohorts. For AGand He cohorts,
the patient gut microbiomes for the different diseases and the gut
microbiomes from the controls were sequenced as part of the same
study. Thus, for each disease, the abundance of the different taxa in
the gut microbiomes of the corresponding patients were compared
with the gut microbiomes from all individuals that did not belong to
any of the disease sub-cohorts. The direction of change as well as the

Pvalues obtained for each taxa were then obtained. For each com-
bination of disease and study cohort (as depicted by the rows of the
heatmaps shown in Extended Data Fig. 6), the P values obtained for
each of the taxa belonging to the two groups were corrected using
the Benjamini-Hochberg approach (as described above) to obtain
the FDRs. Taxa observed to be enriched or depleted either FDR < 0.1
were identified. A marker taxon was considered replicated if it satis-
fied either one of the following two criteria: (1) it associated with the
expected directionality (positive for disease enriched and negative
for disease depleted) in greater than two scenarios and in the opposite
directionality at amaximum of two scenarios, or (2) it associated with
expected directionality inless than or equal to two scenarios but never
with the opposite directionality in any of the investigated scenarios.

Association of gut microbiome taxa with age

The objective here was to investigate the variations of specific gut
microbiome members (individual taxa as well as the grouped abun-
dances of species-level taxagroupsidentified in Fig. 2) specifically with
the onset and progression of aging, and not to explore the dynamics
of these taxa in the younger or middle-aged individuals. Thus, in this
investigation, we specifically focused on the trajectory starting from
the onset of aging (age = 60 years). Thus, for this purpose, we subse-
quently focused on a group of 13 studies that contained at least 50
gut microbiomes from older individuals (age >60 years). The studies
considered were HMP_2019_ibdmdb, AsnicarF_2021, NielsenHB_2014,
Wirbelj 2018, ZellerG_2014, ISC, QinJ_2012, YachidaS_2019, AG, NU-AGE,
He, Odamaki and LogMPie. This totaled to around 5,388 gut microbi-
ome profiles from older adults (age =60 years), which were consid-
ered for this analysis. Subsequently, we adopted a similar approach
as depicted in Supplementary Fig. 1, whereby we first investigated
the associations of the of the different taxa with age >60 years within
each individual study (using robust linear regression models) and
subsequently overall using the meta-analytic random effects models.
We performed this analysis in a two-step manner. In the first phase,
we retained only those taxa that showed a consistent pattern of asso-
ciation (either positive or negative) with age post 60 years in at least
two-thirds (67%) of the studies. Subsequently, only this set of filtered
taxashowing reasonably consistent across-studies directionalities of
association were then further investigated for statistical significance
using the random effects model-based meta-analytic framework. The
same strategy was used even while considering microbiomes fromonly
the nondiseased controls across the studies.

Association analysis between microbiome properties and
indices of unhealthy aging across various data repositories
Study-based stratification. We used gut microbiome profiles from five
different data repositories for this purpose, with datasets like CMD3 fur-
ther containing profiles from multiple studies. Each study/data reposi-
tory had considerable variations with respect to not only the microbiome
profiling methodologies but also the geography of the study popula-
tion and methods used for obtaining metagenomic sequence data. To
address this variation and identify consistent signatures/associations,
werepeated all our analysis individually for each measure of unhealthy
aging within each datarepository (as described below).

Feature association with the different unhealthy aging measures.
With the exception of Odamaki and LogMPie, each of the other five
datarepositories had various clinical measures pertaining to the health
status of the individuals (as described above). Across the five data
repositories (CMD3, ISC or EM, AG, He and NU-AGE), there were atotal
of 43 measures of unhealthy aging, wherein each scenario contained
information from atleast 20 gut microbiomes. These various measures
included the disease information, measures of physical frailty, inflam-
mation, and cognitive impairment and decline and are shownin Fig. 4.
For the continuous measures, associations of the various microbiome
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features with each of these measures was performed using robust linear
regression models as below (as described previously):

fit = rim (microbiome property ~ clinical measure).

For the categorical measures (like disease presence/absence),
the associations were performed investigated using Mann-Whitney
tests as described previously for replication of the disease associa-
tion pattern of the multiple-disease-positive (disease-associated) and
multiple-disease-negative (health-associated) taxa.

The clinical measures were transformed such that each measure
correlated positively with unhealthy aging phenotype. For example,
disease information was transformed such that disease occurrence
was assigned the value 1 and control status a value of 0. Indices
that are expected to correlate positively with unhealthy aging like
Fried score (positive index of frailty, higher values indicate more
frailty), inflammatory marker levels (higher values indicate higher
inflammation), geriatric depression scales (higher values indicate
impaired cognitive/mental status) and Charlson comorbidity scores
(higher valuesindicate greater comorbidity) were not transformed.
However, indices that negatively associate with the unhealthy aging
phenotype like FIM, Barthel score, hand grip strength, gait speed
(higher valuesindicate lower frailty), MMSE, constructional praxis,
verbal fluency score and Babcock memory (higher values indicate
reduced cognitive impairment) were converted to their inverses
(or negatives) by multiplying by -1 (refer to Supplementary Note
2 for abbreviations).

Identification of a ranked ordered of microbiome features. For this
purpose, we combined the values pertaining to all the 116 investigated
microbiome features (Shannondiversity, four measures of uniqueness,
combined grouped abundances of the Kendall uniqueness-positive
and Kendall uniqueness-negative species-level-taxa groups, combined
grouped abundances of the multiple-disease-enriched (or disease asso-
ciated) and multiple-disease-depleted (or disease-depleted) taxa', the
clr-transformed abundances of the 107 species-level taxa identified as
described previously inFig.2). These measures are listed in the columns
of the heatmap depicted in Fig. 4. We subsequently investigated the
association of the 116 features with each of the 43 measures (or sce-
narios of unhealthy aging) as described below. Specific microbiome
features showing multiple associations with the same directionality
(toensurereasonable reproducibility of associations across cohorts)
either positive or negative but with same directionality and at least
Q <0.10) with multiple measures of unhealthy aging in three out the
fiverepositories (to ensure repand at the maximum of two associations
(total out of the 43 scenarios) with the opposite directionality were first
identified. These consisted of 16 features showing consistent positive
associations withmultiple measures of unhealthy aging and 39 features
showing consistent negative associations with multiple measures of
unhealthy aging.

Association analysis between microbiome properties and
indices of unhealthy young across various data repositories
Similar to that described above, there were 30 scenarios of unhealthy
phenotypein the youngacross the five data repositories. Association
ofthe 116 microbiome features were performed using asimilar manner
as above. For the young, 64 features showing multiple associations
with the same directionality (either positive or negative but with same
directionality and atleast P < 0.05) with multiple measures of unhealthy
aging in three out the five repositories and at the maximum of two
associations (out of the 36 scenarios) with the opposite directionality
were firstidentified. These consisted of 26 features showing consistent
positive associations with multiple measures of unhealthy aging and
38 features showing consistent negative associations with multiple
measures of unhealthy aging.

Computation of coabundance networks, prevalence, network
centrality properties of various species-level taxa

For thisinvestigation, we considered 12 studies consisting of the same
13 study cohorts (‘n’ numbers of the individual studies provided in
Table 1) considered previously for the age-specific associations of
the species-level features with the exception of NU-AGE as it did not
containmicrobiomes from younger individuals. For each cohort, first
the gut microbiome profiles obtained from all older individuals (=60
years of age) were obtained. We specifically investigated the commonly
detected 107 species-level taxa that were identified as described in the
previous sections (Fig. 2). Further methodological details of network
analysis are provided in Supplementary Note 7.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The study isameta-analysis of seven major dataresources; the sequence
data for four of the data resources (with the exception of NU-AGE) are
publicly available. For curatedMetagenomicData3 repository, the taxo-
nomicand pathway profiles were already available and hence were down-
loaded anddirectly used forthe current study. The sequence dataforeach
oftheindividual study collated as part of the curatedMetagenomicData3
(CMD3) are publicly available, and the corresponding accession numbers
can be obtained by downloading the repository at https://waldronlab.
io/curatedMetagenomicData/. For the American Gut (AG) project, the
filtered, bloom removed OTU biom files and the corresponding meta-
data were already available at figshare with reference IDs 6137192 and
6137315, respectively**¥, These profiles were used for the steps of this
analyses.For He et al. and LogMPie cohort, the sequence data were avail-
ableatthe European Nucleotide Archive (ENA) (https://www.ebi.ac.uk/
ena/) viaaccessionnumbers PRJEB18535 and PRJEB25642, respectively,
and the metadata available as part of the original publications®**’. For
Odamakietal., the sequence datawere available at the DDBJ under acces-
sionnumber DRA004160,andthe metadatawere obtained fromthecorre-
sponding publication'®. For the four studies comprising the Irish Shotgun
cohorts, the sequence data were already publicly available at the ENA
under the accession numbers PRJEB20054 (ref.'%), PRJEB15388 (ref. ),
PRJEB42304 (ref.') and PRJEB37017 (ref."). The starting data and the
processed profiles for the NU-AGE data resource, as well as the minimum
starting data for each repository that are necessary to interpret, verify
and extend the research in the article, are available at https://github.
com/tsg-microbiome/AgeMetaAnalysis. All the data corresponding
to the NU-AGE dataset used in the current study are uploaded to this
GitHub repository. The explanations for the different dataresources are
provided in the README.md file of this GitHub repository.

Code availability
All relevant codes (or scripts) used for this analysis are available at
https://github.com/tsg-microbiome/AgeMetaAnalysis.
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Extended DataFig. 3| Association of different measures of Uniqueness,
Shannon diversity and beta diversity with age in different study cohorts

at the functional pathway-level using the MetaCyc scheme. The names of
the study cohorts (with the number of investigated gut microbiomes indicated
in parentheses) areindicated. The top three rows indicate the maximum
participant age, the minimum participant age and the geographical region of
the study cohorts (indicated in different colors as provided in the legends). The
heatmap immediately below these panels shows the results of PERMANOVA
for associating overall pathway-level beta-diversity with age computed using
the four different microbiome distance matrices (utilized in the current study).
The bottom heatmap shows the results of the robust linear regression models
for associating various pathway-level microbiome summary statistics with

age across the different individual studies. The statistical significance of the
associations were computed using two-sided robust F-tests, corrected on a per-
study cohort basis using Benjamini-Hochberg corrections to obtain Q-values.
Alsoindicated on the right of this heatmap are the results of the association
meta-analyses of these microbiome summary statistics with age for studies
grouped based on their geographical regions. For agiven geographical region,
the summarized associations are computed using Random Effect Models on the
specificindividual study-specific effect sizes (computed based on robust linear
regression models (See Methods). Here, the p-values were computed using two-
sided permutation tests corrected per-geography-specific-cohort groups using
Benjamini-Hochberg corrections to obtain Q-values.
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Extended Data Fig. 4 | Association between Shannon-adjusted uniqueness isalsoindicated. Also indicated are the results of the summarized associations
with age. Heatmaps showing the association between Shannon-adjusted obtained by performing Random Effect Models analysis of these individual study
measures of uniqueness and age across A) the 28 studies (with taxonomic associations by grouping cohorts into different geographical bins. The number
profile) and B) the 23 studies with pathway profiles, obtained using Study- of gut microbiomes investigated in each study cohort is shown in parentheses for
Specific Robust Linear Regression models. The geographic origin of each study the corresponding studies for the top heatmap.
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Extended Data Fig. 5| Overall directionalities of association between
different summary indices and microbiome taxa. Stacked bar plots showing
the number of species-level taxa that show either significantly positive or
significantly negative associations with each microbiome summary statistics
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inthe Random Effect Models based meta-analysis across all the 28 studies. 107
species-level taxa that we detected in at least 5% of the microbiomes, in at least
60% of the studies in both Shotgun and 16S groups of datasets.
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Extended DataFig. 6 | Identification of taxa enriched or depleted in
multiple diseasesin12,000 gut microbiomes. Disease associations (where
disease metadata were available) were tested based upon whether or not
these taxareplicated the multiple-disease-enriched and the multiple-disease-
depleted taxa previously identified in Ghosh et al.' which was based on 2,500
microbiome profiles that were not included in the current analysis. The results
of the association analysis are shown in a single heatmap for both Shotgun
(CMD3 and ISC) 16S-based (AG and He) datasets. For AG and He (where control
and patient gut microbiomes were sequenced as part of a single study), we
compared taxon abundances in patients (numbers of metagenomesin red;
right panel) versus controls (numbers in blue besides repository names) from
the same data repository using two-sided Mann-Whitney tests. For CMD3 and
ISC, we used matched patient-control studies pertaining to each disease. The
number of patient and control gut microbiomes being compared are indicated
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inthe right panelin parenthesis corresponding to each disease (in red and blue
font, respectively). All comparisons were done using Mann-Whitney tests,
with P-values of taxa associations corrected for each dataset-disease-scenario
using Benjamini-Hochberg correction to obtain Q-values. We first determined
proportions of each species group that were validated in these additional gut
microbiome profiles across both Shotgun and 16S datasets and then investigated
the group-wise affiliations of species that associated negatively (green) and
positively (red) with Kendall Uniqueness (Fig. 2). The associations of ~ 70% of
the multiple disease-enriched and disease-depleted (as identified in Ghosh et
al'. were reproduced with the expected directionalities, with the former group
overlapping significantly with the Kendall Uniq. +ve group and the latter with the

Kendall Uniq. -ve (Supplementary Text S1). Please Table 1 Foot Note for disease
abbreviations.
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Extended Data Fig. 7 | Identification of aranked order of microbiome
features that show the most consistent associations with multiple measures
of unhealthy phenotype in younger people (age < 60 years). The results are
shown for 30 measures of unhealthy phenotype in the younger participants
(age<60Yy) from four datarepositories. Disease groups containing information
from less than 20 gut microbiomes were not included in this analysis. Only
those features that associate consistently with multiple measures of unhealthy
phenotypeindividually in at least two of the four data repositories and at the
total maximum of only two association in the opposite direction are shown. The
associations are shown for individual species, mean range-scaled abundances
of the disease-associated and the health-associated groups identified in

this study, the combined abundances of the multiple-disease-enriched and
multiple-disease-depleted taxa groups previously identified in Ghosh et al.’,
along with the different multiple microbiome summary statistics. P-values were
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FDR-corrected for each data repository-unhealthy measure combination to
obtain the Q-values. Features are arranged such that those that show the most
positive associations with negative health (at least with a Q <= 0.10) are shown
atthe top with a gradual shift to putatively beneficial features showing the

most negative associations with negative health (at least witha Q <=0.1). The
number of gut microbiomes being compared for the association investigation
ineach scenario are indicated. The convention adopted is as described in the
legend of Fig. 5. Abbreviations for clinical measures/disease phenotypes: CRC:
Colorectal Cancer, IBD: Inflammatory Bowel Disease, IGT: Impaired Glucose
Tolerance, T2D: Type Il Diabetes, ACVD: Atherosclerotic Cardiovascular Disease,
CDI: Clostridioides difficile infection, STH: Soil Transmitted Helminths, ASD:
Autism Spectrum Disorder, CVD: Cardiovascular Disease, SIBO: Small Intestional
Bacterial Overgrowth; Metabo. Syndro.: Metabolic Syndrome, Rheuma. Arthritis:
Rheumatoid Arthritis.
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Extended Data Fig. 8 | Relationship between degree centrality and the
strength of the association with Kendall Uniqueness for the different
species-level taxon groups. Least-square regression lines linking degree
centrality measures of the different taxa and their extent of association
(association coefficient) with Kendall Uniqueness. Regression-lines are shown
separately for taxa belonging to each of the three different species-level-
groups. For each species-group, distinct regression lines are shown separately
for the co-occurrence networks obtained for each study. Panel A shows these

relationships only in the study-specific co-occurrence networks derived for the
gut microbiomes from older participants (participant age > = 60 years); Panel B
shows the same for networks derived for younger gut microbiomes (participant
age <60 years). For both the plots, bold lines indicate the mean regression line for
each of the associations, the shaded regions (in gray) corresponding to each line
indicate their confidence intervals (+/- standard errors). The p-values indicated
above each plot are obtained using Random Effect Models (utilizing two-sided
permutation tests).
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Extended Data Fig. 9 | Single consensus coabundance network of taxa
combining all the microbiomes from younger participants with age < 60
years from the 12 individual studies. We selected a set of 112 species that are
commonly identified in both 16S and Shotgun datasets. Associations between
the centered-log-ratio transformed abundances of species pair were individually
computed within each study using robust linear regression models. Results of
theindividual robust linear regression models were then collated using Random
Effect models to compute summarized association statistics. For each species,
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the summarized association p-values for every other were then FDR-corrected
and those species having a stringent threshold of Q <=0.001and an overall
summarized association estimate of greater than O were determined to have co-
abundant relationship with it. The species-level nodes belonging to the different
species groups are filled in different colors, namely green for Kendall Uniqueness
negative, red for Kendall Uniqueness positive and light blue for other species.
Species-level taxa that were either elevated or depleted in multiple scenarios of
unhealthy young are shown in deep pink and dark blue, respectively.
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Extended Data Fig. 10 | Variation of the healthy aging associated taxonomic
guild with agein older people (age > =60 years). Forest plots showing the
results of the Random Effects Models investigating the variation of the mean
ranked abundance of health-associated taxonomic guild of 12 species (in older
persons) across age in the cohorts considering: A) All the microbiomes B) Only
the microbiomes from apparently healthy nondiseased controls. For each forest
plot, the effect size of the associations of different taxon groups with age is
depicted as aline with the mean effect size shown as black squares (the size of the
squares proportional to the weight or power for each study) and the length and

K\ebsiell@neumoniae

the end-points of the line indicate the confidence intervals of this estimate. The
summarized effect size isindicated at the bottom in the shape of arhomboid, the
outer edges of which indicates its confidence interval. The number of samples
(or gut microbiome) (n) corresponding to the different studies are: AG:1023,
AsnicarF_2021:127, HE:2434, HMP_2019_ibdmdb:117,1SC:202, LogMPie:51,
NielsenHB_2014:68, NU-AGE:610, Odamaki:116, Qin)_2012:71, Wirbel)_2018:67,
YachidaS_2019:393, ZellerG_2014:109. Two-sided P-values for the Random Effect
Model were computed using permutation tests of association for the summary
effect sizes.
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Data exclusions  Data wherever excluded have been indicated in the Methods and Results section. We have described the criteria used to select the specific
subsets of studies. We have also explained the same in the section 'Statistics and Reproducibility' in the Methods.
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