Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Machine learning to spot frailty in aging mice

Mouse frailty can be measured with a frailty index by manually counting health deficits. Vivek Kumar and colleagues use machine learning to extract physical performance deficits from video data to create a ‘visual frailty index’. This automated technique may facilitate high-throughput research into new frailty interventions.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic diagram illustrating construction of a visual frailty index in aging mice.


  1. Vaupel, J. W., Manton, K. G. & Stallard, E. Demography 16, 439–454 (1979).

    CAS  Article  Google Scholar 

  2. Howlett, S. E., Rutenberg, A. D. & Rockwood, K. Nat. Aging 1, 651–665 (2021).

    Article  Google Scholar 

  3. Mitnitski, A. B., Mogilner, A. J. & Rockwood, K. ScientificWorldJournal 1, 323–336 (2001).

    CAS  Article  Google Scholar 

  4. Whitehead, J. C. et al. J. Gerontol. A Biol. Sci. Med. Sci. 69, 621–632 (2014).

    Article  Google Scholar 

  5. Kane, A. E. et al. J. Gerontol. A Biol. Sci. Med. Sci. 70, 694–695 (2015).

    Article  Google Scholar 

  6. Feridooni, H. A., Sun, M. H., Rockwood, K. & Howlett, S. E. J. Gerontol. A Biol. Sci. Med. Sci. 70, 686–693 (2015).

    Article  Google Scholar 

  7. Kane, A. E., Ayaz, O., Ghimire, A., Feridooni, H. A. & Howlett, S. E. Can. J. Physiol. Pharmacol. 95, 1149–1155 (2017).

    CAS  Article  Google Scholar 

  8. Hession, L. E., Sabnis, G. S., Churchill, G. A. & Kumar, V. Nat. Aging (2022).

  9. Mach, J. et al. Exp. Gerontol. 161, 111700 (2022).

    CAS  Article  Google Scholar 

  10. Fielder, E. et al. eLife 11, e75492 (2022).

    Article  Google Scholar 

  11. Keller, K., Kane, A., Heinze-Milne, S., Grandy, S. A. & Howlett, S. E. J. Gerontol. A Biol. Sci. Med. Sci. 74, 1149–1157 (2019).

    CAS  Article  Google Scholar 

  12. Yu, D. et al. Cell Rep. 29, 236–248.e3 (2019).

    CAS  Article  Google Scholar 

  13. Bisset, E. S., Heinze-Milne, S., Grandy, S. A. & Howlett, S. E. J. Gerontol. A Biol. Sci. Med. Sci. 77, 41–46 (2022).

    CAS  Article  Google Scholar 

  14. Seibenhener, M. L. & Wooten, M. C. JoVE 96, e52434 (2015).

    Google Scholar 

  15. Kane, A. E. & Howlett, S. E. Mech. Ageing Dev. 198, 111546 (2021).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Elise S. Bisset or Susan E. Howlett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bisset, E.S., Howlett, S.E. Machine learning to spot frailty in aging mice. Nat Aging 2, 684–685 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing