Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A complex systems approach to aging biology

Abstract

Having made substantial progress understanding molecules, cells, genes and pathways, aging biology research is now moving toward integration of these parts, attempting to understand how their joint dynamics may contribute to aging. Such a shift of perspective requires the adoption of a formal complex systems framework, a transition being facilitated by large-scale data collection and new analytical tools. Here, we provide a theoretical framework to orient researchers around key concepts for this transition, notably emergence, interaction networks and resilience. Drawing on evolutionary theory, network theory and principles of homeostasis, we propose that organismal function is accomplished by the integration of regulatory mechanisms at multiple hierarchical scales, and that the disruption of this ensemble causes the phenotypic and functional manifestations of aging. We present key examples at scales ranging from sub-organismal biology to clinical geriatrics, outlining how this approach can potentially enrich our understanding of aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Shift to complex systems approaches in ecology and aging biology.
Fig. 2: Key examples of advances in aging biology using complex systems perspectives or methods.
Fig. 3: Multi-scale causality: the example of Alzheimer’s disease.
Fig. 4: Bowtie structure of aging pathways.

Similar content being viewed by others

References

  1. Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).

    Article  CAS  PubMed  Google Scholar 

  3. May, R. M. Qualitative stability in model ecosystems. Ecology 54, 638–641 (1973).

    Article  Google Scholar 

  4. May, R. M. Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645–647 (1974).

    Article  CAS  PubMed  Google Scholar 

  5. May, R. M. Stability in model ecosystems. Proc. Ecol. Soc. Aust. 6, 18–56 (1971).

    Google Scholar 

  6. Clark, T. J. & Hebblewhite, M. Predator control may not increase ungulate populations in the future: a formal meta‐analysis. J. Appl. Ecol. 58, 812–824 (2021).

    Article  Google Scholar 

  7. Ives, A. R. Measuring resilience in stochastic systems. Ecol. Monogr. 65, 217–233 (1995).

    Article  Google Scholar 

  8. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Filotas, E. et al. Viewing forests through the lens of complex systems science. Ecosphere 5, 1–23 (2014).

    Article  Google Scholar 

  10. Anderson, C. N. K. et al. Why fishing magnifies fluctuations in fish abundance. Nature 452, 835–839 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Medvedev, Z. A. An attempt at a rational classification of theories of ageing. Biol. Rev. Camb. Philos. Soc. 65, 375–398 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Kowald, A. & Kirkwood, T. B. L. A network theory of ageing: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process. Mutat. Res. 316, 209–236 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Lipsitz, L. A. & Goldberger, A. L. Loss of ‘complexity’ and aging: potential applications of fractals and chaos theory to senescence. JAMA 267, 1806–1809 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Williams, G. C. Pleiotropy, natural selection and the evolution of senescence. Evolution 11, 398–411 (1957).

    Article  Google Scholar 

  15. Kirkwood, T. B. L. Understanding the odd science of aging. Cell 120, 437–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. López-Otín, C. et al. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gems, D. & de Magalhães, J. P. The hoverfly and the wasp: a critique of the hallmarks of aging as a paradigm. Ageing Res. Rev. 70, 101407 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cohen, A. A. et al. Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework. Mech. Ageing Dev. 191, 111316 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lemoine, M. Defining aging. Biol. Philos. 35, 46 (2020).

    Article  Google Scholar 

  21. Lipsitz, L. A. Dynamics of stability: the physiologic basis of functional health and frailty. J. Gerontol. A Biol. Sci. Med. Sci. 57, B115–B125 (2002).

    Article  PubMed  Google Scholar 

  22. Ma, Y. et al. Lower complexity and higher variability in beat-to-beat systolic blood pressure are associated with elevated long-term risk of dementia: The Rotterdam Study. Alzheimers Dement. 17, 1134–1144 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhou, J., Habtemariam, D., Iloputaife, I., Lipsitz, L. A. & Manor, B. The complexity of standing postural sway associates with future falls in community-dwelling older adults: The MOBILIZE Boston Study. Sci. Rep. 7, 2924 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zhou, J. et al. Multiscale dynamics of spontaneous brain activity is associated with walking speed in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 75, 1566–1571 (2020).

    Article  PubMed  Google Scholar 

  25. Manor, B., Lipsitz, L. A., Wayne, P. M., Peng, C.-K. & Li, L. Complexity-based measures inform Tai Chi’s impact on standing postural control in older adults with peripheral neuropathy. BMC Complement. Altern. Med. 13, 87 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lipsitz, L. A. et al. A shoe insole delivering subsensory vibratory noise improves balance and gait in healthy elderly people. Arch. Phys. Med. Rehabil. 96, 432–439 (2015).

    Article  PubMed  Google Scholar 

  27. Barja, G. Endogenous oxidative stress: relationship to aging, longevity and caloric restriction. Ageing Res. Rev. 1, 397–411 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Van Remmen, H. et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16, 29–37 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. de Magalhaes, J. P. & Church, G. M. Cells discover fire: employing reactive oxygen species in development and consequences for aging. Exp. Gerontol. 41, 1–10 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Hekimi, S., Lapointe, J. & Wen, Y. Taking a ‘good’ look at free radicals in the aging process. Trends Cell Biol. 21, 569–576 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rattan, S. I. S. Hormesis in aging. Ageing Res. Rev. 7, 63–78 (2008).

    Article  PubMed  Google Scholar 

  32. Bar-Yam, Y. Dynamics of Complex Systems (CRC Press, 2019).

  33. May, R. M., Levin, S. A. & Sugihara, G. Complex systems: ecology for bankers. Nature 451, 893–895 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Ladyman, J., Lambert, J. & Wiesner, K. What is a complex system? Eur. J. Philos. Sci. 3, 33–67 (2013).

    Article  Google Scholar 

  35. Bitto, A., Wang, A. M., Bennett, C. F. & Kaeberlein, M. Biochemical genetic pathways that modulate aging in multiple species. Cold Spring Harb. Perspect. Med. 5, a025114 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Javorka, M. et al. Causal analysis of short-term cardiovascular variability: state-dependent contribution of feedback and feedforward mechanisms. Med Biol. Eng. Comput 55, 179–190 (2017).

    Article  PubMed  Google Scholar 

  37. Ren, J. -L., Pan, J. -S., Lu, Y. -P., Sun, P. & Han, J. Inflammatory signaling and cellular senescence. Cell Signal. 21, 378–383 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Freund, A., Orjalo, A. V., Desprez, P. Y. & Campisi, J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. West, G. B. The importance of quantitative systemic thinking in medicine. Lancet 379, 1551–1559 (2012).

    Article  PubMed  Google Scholar 

  40. Kuo, P. L. et al. A roadmap to build a phenotypic metric of ageing: insights from the Baltimore Longitudinal Study of Aging. J. Intern. Med. 287, 373–394 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fried, L. P. et al. The physical frailty syndrome as a transition from homeostatic symphony to cacophony. Nat. Aging 1, 36–46 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664–1669 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Csete, M. & Doyle, J. Bow ties, metabolism and disease. Trends Biotechnol. 22, 446–450 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Ivanov, P. C., Liu, K. K. L. & Bartsch, R. P. Focus on the emerging new fields of network physiology and network medicine. New J. Phys. 18, 100201 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dobzhansky, T. Nothing in biology makes sense except in the light of evolution. American Biology Teacher 35, 125–129 (1973).

    Article  Google Scholar 

  48. Cannon, W. B. The wisdom of the body. Am. J. Med. Sci. 184, 864 (1932).

    Article  Google Scholar 

  49. Sterling, P. in Allostasis, Homeostasis, and the Costs of Physiological Adaptation (ed. Schulkin, J.) 17–64 (Cambridge Univ. Press, 2004).

  50. Cohen, A. A., Martin, L. B., Wingfield, J. C., McWilliams, S. R. & Dunne, J. A. Physiological regulatory networks: ecological roles and evolutionary constraints. Trends Ecol. Evol. 27, 428–435 (2012).

    Article  PubMed  Google Scholar 

  51. Kitano, H. Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ukraintseva, S., Yashin, A. I. & Arbeev, K. G. Resilience versus robustness in aging. J. Gerontol. A Biol. Sci. Med. Sci. 71, 1533–1534 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Leveille, S. G. et al. The MOBILIZE Boston Study: design and methods of a prospective cohort study of novel risk factors for falls in an older population. BMC Geriatr. 8, 16 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Galatzer-Levy, R. M. Emergence. Psychoanal. Inq. 22, 708–727 (2002).

    Article  Google Scholar 

  55. Janssens, G. E. & Veenhoff, L. M. Evidence for the hallmarks of human aging in replicatively aging yeast. Microb. Cell 3, 263–274 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jin, M. et al. Divergent aging of isogenic yeast cells revealed through single-cell phenotypic dynamics. Cell Syst. 8, 242–253 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, Y. et al. Multigenerational silencing dynamics control cell aging. Proc. Natl Acad. Sci. USA 114, 11253–11258 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, Y. et al. A programmable fate decision landscape underlies single-cell aging in yeast. Science 369, 325–329 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kaeberlein, M., Kirkland, K. T., Fields, S. & Kennedy, B. K. Sir2-independent lifespan extension by calorie restriction in yeast. PLoS Biol. 2, E296 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Nijhout, H. F., Sadre-Marandi, F., Best, J. & Reed, M. C. Systems biology of phenotypic robustness and plasticity. Integr. Comp. Biol. 57, 171–184 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Kriete, A. Robustness and aging—a systems-level perspective. Biosystems 112, 37–48 (2013).

    Article  PubMed  Google Scholar 

  62. Osawa, Y., Studenski, S. A. & Ferrucci, L. Knee extension rate of velocity development affects walking performance differently in men and women. Exp. Gerontol. 112, 63–67 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Massey, A. C., Kaushik, S., Sovak, G., Kiffin, R. & Cuervo, A. M. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl Acad. Sci. USA 103, 5805–5810 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bartlett, D. & O’Toole, S. Tooth wear and aging. Aust. Dent. J. 64, S59–S62 (2019).

    Article  PubMed  Google Scholar 

  65. Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl Acad. Sci. USA 101, 17312–17315 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baylis, D. et al. Inflammation, telomere length, and grip strength: a 10-year longitudinal study. Calcif. Tissue Int. 95, 54–63 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Balan, S., Saxena, M. & Bhardwaj, N. Dendritic cell subsets and locations. Int. Rev. Cell Mol. Biol. 348, 1–68 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Lal, H. et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N. Engl. J. Med. 372, 2087–2096 (2015).

    Article  PubMed  Google Scholar 

  69. McLaughlin, J. M. et al. Effectiveness of 13-valent pneumococcal conjugate vaccine against hospitalization for community-acquired pneumonia in older US adults: a test-negative design. Clin. Infect. Dis. 67, 1498–1506 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Fulop, T. et al. Immunosenescence and altered vaccine efficiency in older subjects: a myth difficult to change. Vaccines 10, 607 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Haffner, S. M. The metabolic syndrome: inflammation, diabetes mellitus and cardiovascular sisease. Am. J. Cardiol. 97, 3–11 (2006).

    Article  CAS  Google Scholar 

  73. Cohen, A. A. et al. Detection of a novel, integrative aging process suggests complex physiological integration. PLoS ONE 10, e0116489 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Van Der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  75. Sebastiani, P. et al. Predicting aging patterns with profiles of biomarkers in Long Life Family Study participants. Gerontologist 55, 858 (2015).

    Article  Google Scholar 

  76. Howlett, S. E., Rutenberg, A. D. & Rockwood, K. The degree of frailty as a translational measure of health in aging. Nat. Aging 1, 651–665 (2021).

    Article  Google Scholar 

  77. May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

    Article  CAS  PubMed  Google Scholar 

  78. Gravel, D., Massol, F. & Leibold, M. A. Stability and complexity in model meta-ecosystems. Nat. Commun. 7, 12457 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Klein, B. et al. A computational exploration of resilience and evolvability of protein–protein interaction networks. Commun. Biol. 4, 1–11 (2021).

    Article  CAS  Google Scholar 

  80. Ukraintseva, S. et al. Decline in biological resilience as key manifestation of aging: potential mechanisms and role in health and longevity. Mech. Ageing Dev. 194, 111418 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Schosserer, M. et al. Modelling physical resilience in ageing mice. Mech. Ageing Dev. 177, 91–102 (2019).

    Article  PubMed  Google Scholar 

  82. Hadley, E. C., Kuchel, G. A. & Newman, A. B. Workshop Speakers and Participants. Report: NIA workshop on measures of physiologic resiliencies in human aging. J. Gerontol. A Biol. Sci. Med. Sci. 72, 980–990 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gijzel, S. M. W. et al. Dynamical resilience indicators in time series of self-rated health correspond to frailty levels in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 72, 991–996 (2017).

    Article  PubMed  Google Scholar 

  84. Liu, M. et al. Prediction of mortality in hemodialysis patients using moving multivariate distance. Front. Physiol. 12, 612494 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Varadhan, R., Seplaki, C. L., Xue, Q. L., Bandeen-Roche, K. & Fried, L. P. Stimulus-response paradigm for characterizing the loss of resilience in homeostatic regulation associated with frailty. Mech. Ageing Dev. 129, 666–670 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kalyani, R. R., Varadhan, R., Weiss, C. O., Fried, L. P. & Cappola, A. R. Frailty status and altered glucose-insulin dynamics. J. Gerontol. A Biol. Sci. Med. Sci. 67, 1300–1306 (2012).

    Article  PubMed  CAS  Google Scholar 

  87. Le, N. P., Varadhan, R., Fried, L. P. & Cappola, A. R. Cortisol and dehydroepiandrosterone response to adrenocorticotropic hormone and frailty in older women. J. Gerontol. A Biol. Sci. Med. Sci. 76, 901–905 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Gijzel, S. M. W. et al. Dynamical indicators of resilience in postural balance time series are related to successful aging in high-functioning older adults. J. Gerontol. A Biol. Sci. Med Sci. 74, 1119–1126 (2019).

    Article  PubMed  Google Scholar 

  89. Nakazato, Y. et al. Estimation of homeostatic dysregulation and frailty using biomarker variability: a principal component analysis of hemodialysis patients. Sci. Rep. 10, 1–12 (2020).

    Article  CAS  Google Scholar 

  90. Cohen, A. et al. Synchrony of biomarker variability indicates a critical transition: application to mortality prediction in hemodialysis. Iscience 25, 104385 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Barabási, A. -L. Network Science (Cambridge Univ. Press, 2016).

  92. Barabási, A. -L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet 5, 101–113 (2004).

    Article  PubMed  CAS  Google Scholar 

  93. Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S. & Ivanov, P. C. Network physiology reveals relations between network topology and physiological function. Nat. Commun. 3, 702 (2012).

    Article  PubMed  CAS  Google Scholar 

  94. Huttlin, E. L. et al. Architecture of the human interactome defines protein communities and disease networks. Nature 545, 505–509 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Friedlander, T., Mayo, A. E., Tlusty, T. & Alon, U. Evolution of bow-tie architectures in biology. PLoS Comput. Biol. 11, e1004055 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Tieri, P. et al. Network, degeneracy and bow tie integrating paradigms and architectures to grasp the complexity of the immune system. Theor. Biol. Med. Model. 7, 32 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Cohen, A. A., Legault, V. & Fülöp, T. What if there’s no such thing as ‘aging’? Mech. Ageing Dev. 192, 111344 (2020).

    Article  PubMed  Google Scholar 

  98. de Magalhaes, J. P., Wuttke, D., Wood, S. H., Plank, M. & Vora, C. Genome–environment interactions that modulate aging: powerful targets for drug discovery. Pharm. Rev. 64, 88–101 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Barzilai, N., Huffman, D. M., Muzumdar, R. H. & Bartke, A. The critical role of metabolic pathways in aging. Diabetes 61, 1315–1322 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Karonitsch, T. et al. mTOR senses environmental cues to shape the fibroblast-like synoviocyte response to inflammation. Cell Rep. 23, 2157–2167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Temiz-Resitoglu, M. et al. Activation of mTOR/IκB-α/NF-κB pathway contributes to LPS-induced hypotension and inflammation in rats. Eur. J. Pharm. 802, 7–19 (2017).

    Article  CAS  Google Scholar 

  102. Vachharajani, V. T. et al. Sirtuins link inflammation and metabolism. J. Immunol. Res. 2016, 8167273 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Wagner, A. Causality in complex systems. Biol. Philos. 14, 83–101 (1999).

    Article  Google Scholar 

  104. Łopatniuk, P. & Witkowski, J. M. Conventional calpains and programmed cell death. Acta Biochim. Pol. 58, 287–296 (2011).

    Article  PubMed  Google Scholar 

  105. Greer, E. L. & Brunet, A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8, 113–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Xie, K. et al. Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice. Preprint at bioRxiv https://doi.org/10.1101/2022.03.25.485824 (2022).

  107. Drummond, E. & Wisniewski, T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 133, 155–175 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Zhong, O., Wang, J., Tan, Y., Lei, X. & Tang, Z. Effects of NAD+ precursor supplementation on glucose and lipid metabolism in humans: a meta-analysis. Nutr. Metab. 19, 20 (2022).

    Article  CAS  Google Scholar 

  109. Li, J., Kim, S. G. & Blenis, J. Rapamycin: one drug, many effects. Cell Metab. 19, 373–379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Richardson, A. Rapamycin, anti-aging, and avoiding the fate of Tithonus. J. Clin. Invest. 123, 3204–3206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559–559 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Liu, Z. et al. Underlying features of epigenetic aging clocks in vivo and in vitro. Aging Cell 19, e13229 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at http://arxiv.org/abs/1802.03426 (2018).

  114. Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Alfego, D. & Kriete, A. Simulation of cellular energy restriction in quiescence (ERiQ)—a theoretical model for aging. Biology 6, 44 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  116. Vural, D. C., Morrison, G. & Mahadevan, L. Aging in complex interdependency networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89, 022811 (2014).

    Article  PubMed  CAS  Google Scholar 

  117. Farrell, S. G., Mitnitski, A. B., Rockwood, K. & Rutenberg, A. D. Network model of human aging: frailty limits and information measures. Phys. Rev. E 94, 052409 (2016).

    Article  PubMed  Google Scholar 

  118. Stroustrup, N. et al. The temporal scaling of Caenorhabditis elegans ageing. Nature 530, 103–107 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Farrell, S., Mitnitski, A., Rockwood, K. & Rutenberg, A. Generating synthetic aging trajectories with a weighted network model using cross-sectional data. Sci. Rep. 10, 19833 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Friston, K. J. et al. Dynamic causal modelling revisited. Neuroimage 199, 730–744 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Farrell, S., Mitnitski, A., Rockwood, K. & Rutenberg, A. D. Interpretable machine learning for high-dimensional trajectories of aging health. PLoS Comput Biol. 18, e1009746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Noble, D. The rise of computational biology. Nat. Rev. Mol. Cell Biol. 3, 459–463 (2002).

    Article  PubMed  CAS  Google Scholar 

  123. Kohl, P., Crampin, E. J., Quinn, T. A. & Noble, D. Systems biology: an approach. Clin. Pharmacol. Ther. 88, 25–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Barardo, D. et al. The DrugAge database of aging-related drugs. Aging Cell 16, 594–597 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tacutu, R. et al. Human Ageing Genomic Resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 41, D1027–D1033 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Cohen, A. A. Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology 17, 205–220 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. West, G. B. & Bergman, A. Toward a systems biology framework for understanding aging and healthspan. J. Gerontol. A Biol. Sci. Med. Sci. 64, 205–208 (2009).

    Article  PubMed  Google Scholar 

  128. Witten, M. A return to time, cells, systems and aging: II. Relational and reliability theoretic approaches to the study of senescence in living systems. Mech. Ageing Dev. 27, 323–340 (1984).

    Article  CAS  PubMed  Google Scholar 

  129. Fried, L. P. et al. Nonlinear multisystem physiological dysregulation associated with frailty in older women: implications for etiology and treatment. J. Gerontol. A Biol. Sci. Med. Sci. 64, 1049–1057 (2009).

    Article  PubMed  Google Scholar 

  130. Song, R., Sarnoski, E. A. & Acar, M. The systems biology of single-cell aging. iScience 7, 154–169 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Morrisette-Thomas, V. et al. Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech. Ageing Dev. 139, 49–57 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kriete, A., Bosl, W. J. & Booker, G. Rule-based cell systems model of aging using feedback loop motifs mediated by stress responses. PLoS Comput. Biol. 6, e1000820–e1000820 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Dansereau, G. et al. Conservation of physiological dysregulation signatures of aging across primates. Aging Cell 18, e12925 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Zhang, B. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153, 707–720 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Janssens, G. E. et al. Protein biogenesis machinery is a driver of replicative aging in yeast. Elife 4, e08527 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Rutenberg, A. D., Mitnitski, A. B., Farrell, S. G. & Rockwood, K. Unifying aging and frailty through complex dynamical networks. Exp. Gerontol. 107, 126–129 (2018).

    Article  PubMed  Google Scholar 

  137. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Tanaka, T., Sue, F. & Morimura, H. Feed-forward activation and feed-back inhibition of pyruvate kinase type L of rat liver. Biochem Biophys. Res. Commun. 29, 444–449 (1967).

    Article  CAS  PubMed  Google Scholar 

  139. Cohen, A. A., Leblanc, S. & Roucou, X. Robust physiological metrics from sparsely sampled networks. Front. Physiol. 12, 624097.

  140. Manu, et al. Canalization of gene expression and domain shifts in the Drosophila blastoderm by dynamical attractors. PLoS Comput. Biol. 5, e1000303 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Huang, S., Eichler, G., Bar-Yam, Y. & Ingber, D. E. Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett. 94, 128701 (2005).

    Article  PubMed  CAS  Google Scholar 

  142. Ito, Y., Hoare, M. & Narita, M. Spatial and temporal control of senescence. Trends Cell Biol. 27, 820–832 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the International Conference on Complex Systems (2020) for sponsoring a workshop that led to this publication, under the guidance of E. Naumova. We thank J. Campisi and M. Kaeberlein for comments on the manuscript, and V. Legault for help creating figures. A.A.C. is a senior research scholar supported by the Fonds de recherche du Québec–Santé. This work was supported by the National Science and Engineering Research Council Grant nos. RGPIN-2018-06096 to A.A.C. and RGPIN-2019-05888 to A.R., Canadian Institutes of Health Research Grant no. 153011 to A.A.C., National Institutes of Health R01AG056440 to N.H., R01GM111458 to N.H. and R01AG068112 to N.H. M.G.M.O.R. is supported by research grants on complexity science for this work from the Dutch Research Council NWO (grants Compl21COV.001 and 645.003.002) and the Netherlands Organisation for Health Research and Development (ZonMw grant no 09120012010063). A.K. is supported by the Cell2Society Aging Research Network—A Drexel Research Excellence Initiative.

Author information

Authors and Affiliations

Authors

Contributions

This work emerged from a workshop on complex systems and aging organized by A.A.C. and in which all authors except D.G. participated. A.A.C. drafted the initial document and coordinated efforts. All authors contributed extensively to writing, editing and approving the final version.

Corresponding author

Correspondence to Alan A. Cohen.

Ethics declarations

Competing interests

A.A.C. is CEO and founder at Oken Health.

Peer review

Peer review information

Nature Aging thanks Daniel Promislow and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, A.A., Ferrucci, L., Fülöp, T. et al. A complex systems approach to aging biology. Nat Aging 2, 580–591 (2022). https://doi.org/10.1038/s43587-022-00252-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-022-00252-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing