Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Characterization of cellular senescence in aging skeletal muscle

Abstract

Senescence is a cell fate that contributes to multiple aging-related pathologies. Despite profound age-associated changes in skeletal muscle (SkM), whether its constituent cells are prone to senesce has not been methodically examined. Herein, using single-cell and bulk RNA sequencing and complementary imaging methods on SkM of young and old mice, we demonstrate that a subpopulation of old fibroadipogenic progenitors highly expresses p16Ink4a together with multiple senescence-related genes and concomitantly, exhibits DNA damage and chromatin reorganization. Through analysis of isolated myofibers, we also detail a senescence phenotype within a subset of old cells, governed instead by p21Cip1. Administration of a senotherapeutic intervention to old mice countered age-related molecular and morphological changes and improved SkM strength. Finally, we found that the senescence phenotype is conserved in SkM from older humans. Collectively, our data provide compelling evidence for cellular senescence as a hallmark and potentially tractable mediator of SkM aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hallmarks of cellular senescence in skeletal muscle.
Fig. 2: scRNA-seq of SkM reveals age-associated changes in mononuclear cell composition and p16 expression.
Fig. 3: A distinct cluster of high p16-expressing FAPs in old skeletal muscle exhibits a senescence phenotype.
Fig. 4: FAPs derived from old skeletal muscle exhibit core properties of senescence.
Fig. 5: Skeletal muscles of old mice have high p21-expressing myofibers with a senescence profile.
Fig. 6: Senolytics improve the molecular phenotype and function of SkM in female mice.
Fig. 7: Aging and cellular senescence in human SkM.

Similar content being viewed by others

Data availability

The scRNA-seq (GSE172410), myofiber RNA-seq data (GSE172254) and SkM RNA-seq data (GSE184348) generated in this study are deposited in the Gene Expression Omnibus. Human SkM RNA-seq data are publicly available at the Gene Expression Omnibus (GSE97084).

An interactive website for the SkM scRNA-seq dataset can be found at https://mayoxz.shinyapps.io/Muscle/.

Code availability

Codes and all other data are available from the corresponding author upon reasonable request.

References

  1. Fielding, R. A. et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 12, 249–256 (2011).

    Article  PubMed  Google Scholar 

  2. Campisi, J. & di Fagagna, F. D. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–U221 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khosla, S., Farr, J. N., Tchkonia, T. & Kirkland, J. L. The role of cellular senescence in ageing and endocrine disease. Nat. Rev. Endocrinol. 16, 263–275 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Welle, S. et al. Skeletal muscle gene expression profiles in 20–29-year-old and 65–71-year-old women. Exp. Gerontol. 39, 369–377 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Kayo, T., Allison, D. B., Weindruch, R. & Prolla, T. A. Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc. Natl Acad. Sci. USA 98, 5093–5098 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Edwards, M. G. et al. Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program. BMC Genomics 8, 80 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Dungan, C. M. et al. In vivo analysis of γH2AX+ cells in skeletal muscle from aged and obese humans. FASEB J. 34, 7018–7035 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Shoji, H. & Miyakawa, T. Age-related behavioral changes from young to old age in male mice of a C57BL/6J strain maintained under a genetic stability program. Neuropsychopharmacol. Rep. 39, 100–118 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3, 708 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. Giordani, L. et al. High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations. Mol. Cell 74, 609 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Groen, B. B. L. et al. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J. Appl. Physiol. 116, 998–1005 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anerillas, C., Abdelmohsen, K. & Gorospe, M. Regulation of senescence traits by MAPKs. Geroscience 42, 397–408 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tominaga, K. & Suzuki, H. I. TGF-β signaling in cellular senescence and aging-related pathology. Int. J. Mol. Sci. 20, 5002 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  20. Wiley, C. D. & Campisi, J. From ancient pathways to aging cells-connecting metabolism and cellular senescence. Cell Metab. 23, 1013–1021 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Avelar, R. A. et al. A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol. 21, 91 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tront, J. S., Hoffman, B. & Liebermann, D. A. Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res. 66, 8448–8454 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Wei, Z. et al. Pan-senescence transcriptome analysis identified RRAD as a marker and negative regulator of cellular senescence. Free Radic. Biol. Med. 130, 267–277 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Anderson, G. et al. RUNX-mediated growth arrest and senescence are attenuated by diverse mechanisms in cells expressing RUNX1 fusion oncoproteins. J. Cell. Biochem. 119, 2750–2762 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Casella, G. et al. Transcriptome signature of cellular senescence. Nucleic Acids Res. 47, 7294–7305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lemster, B. H. et al. Induction of CD56 and TCR-independent activation of T cells with aging. J. Immunol. 180, 1979–1990 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Hernandez-Segura, A. et al. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652–2660 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sasaki, M., Miyakoshi, M., Sato, Y. & Nakanuma, Y. Modulation of the microenvironment by senescent biliary epithelial cells may be involved in the pathogenesis of primary biliary cirrhosis. J. Hepatol. 53, 318–325 (2010).

    Article  PubMed  Google Scholar 

  29. Marques, J. C. M. T. et al. Identification of new genes associated to senescent and tumorigenic phenotypes in mesenchymal stem cells. Sci. Rep. 7, 17837 (2017).

    Article  CAS  Google Scholar 

  30. Lopez-Dominguez, J. A. et al. Cdkn1a transcript variant 2 is a marker of aging and cellular senescence. Aging 13, 13380–13392 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Robinson, M. M. et al. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab. 25, 581–592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heredia, J. E. et al. Type 2 Innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376–388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuswanto, W. et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44, 355–367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lukjanenko, L. et al. Aging disrupts muscle stem cell function by impairing matricellular WISP1 secretion from fibro-adipogenic progenitors. Cell Stem Cell 24, 433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Biferali, B., Proietti, D., Mozzetta, C. & Madaro, L. Fibro-adipogenic progenitors cross-talk in skeletal muscle: the social network. Front. Physiol. 10, 1074 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Saito, Y., Chikenji, T. S., Matsumura, T., Nakano, M. & Fujimiya, M. Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nat. Commun. 11, 889 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hall, B. M. et al. p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging 9, 1867–1884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fry, C. S. et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat. Med. 21, 76–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Keefe, A. C. et al. Muscle stem cells contribute to myofibres in sedentary adult mice. Nat. Commun. 6, 7087 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Englund, D. A. et al. Depletion of resident muscle stem cells negatively impacts running volume, physical function, and muscle fiber hypertrophy in response to lifelong physical activity. Am. J. Physiol. Cell Physiol. 318, C1178–C1188 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Perez, K. et al. Single nuclei profiling identifies cell specific markers of skeletal muscle aging, sarcopenia and senescence. Preprint at medRxiv https://doi.org/10.1101/2021.01.22.21250336 (2021).

  42. Takeuchi, S. et al. Intrinsic cooperation between p16INK4a and p21Waf1/Cip1 in the onset of cellular senescence and tumor suppression in vivo. Cancer Res. 70, 9381–9390 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Alcorta, D. A. et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl Acad. Sci. USA 93, 13742–13747 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sapieha, P. & Mallette, F. A. Cellular senescence in postmitotic cells: beyond growth arrest. Trends Cell Biol. 28, 595–607 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Jurk, D. et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11, 996–1004 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Anderson, R. et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 38, e100492 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, Y., Lee, Y. I. & Thompson, W. J. Changes in aging mouse neuromuscular junctions are explained by degeneration and regeneration of muscle fiber segments at the synapse. J. Neurosci. 31, 14910–14919 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schafer, M. J. et al. Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes 65, 1606–1615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. LeBrasseur, N. K. et al. Myostatin inhibition enhances the effects of exercise on performance and metabolic outcomes in aged mice. J. Gerontol. A Biol. Sci. Med. Sci. 64, 940–948 (2009).

    Article  PubMed  CAS  Google Scholar 

  54. Mayeuf-Louchart, A. et al. MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool. Skelet. Muscle 8, 25 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. da Silva, P. F. L. et al. The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell 18, e12848 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Franzen, O., Gan, L. M. & Bjorkegren, J. L. M. PanglaoDB: a web server for exploration of mouse and human single-cell RNA-sequencing data. Database 2019, baz046 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ouyang, J. F., Kamaraj, U. S., Cao, E. Y. & Rackham, O. J. L. ShinyCell: simple and sharable visualization of single-cell gene expression data. Bioinformatics 37, 3374–3376 (2021).

    Article  CAS  Google Scholar 

  60. Yu, G. C., Wang, L. G., Han, Y. Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Marinkovic, M. et al. Fibro-adipogenic progenitors of dystrophic mice are insensitive to NOTCH regulation of adipogenesis. Life Sci. Alliance 2, e201900437 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gallot, Y. S., Hindi, S. M., Mann, A. K. & Kumar, A. Isolation, culture, and staining of single myofibers. Bio Protoc. 6, e1942 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the support of the National Institutes of Health, National Institute on Aging for grants P01 AG062413, R01 AG055529 and R56 AG060907 to N.K.L. and R01 AG068048 and UG3CA 268103 to J.F.P. and T32 AG049672 to D.A.E. This work was also supported by the Glenn Foundation for Medical Research and the Pritzker Foundation (N.K.L.). X.Z. was supported by a Robert and Arlene Kogod Center on Aging Career Development Award. L.H. was supported by NIHR Newcastle Biomedical Research Centre grant awarded to the Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University. R.A.F. and D.A.R. are partially supported by the US Department of Agriculture under agreement no. 58-8050-9-004 and by and by National Institutes of Health Boston Claude D Pepper Center (OAIC; 1P30AG031679). Any opinions, findings, conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the US Department of Agriculture. We also thank members of P01 AG062413 (PI, S.K.) for helpful discussions, J.M. Cunningham and E. Wieben within the Mayo Clinic Genome Analysis Core for RNA-seq, Y. Li within the Division of Computational Biology and Department of Quantitative Health Sciences for assistance with bioinformatic analyses and staff at the Optical Microscopy Core within the Mayo Clinic Center for Cell Signaling in Gastroenterology (P30 DK084567) for guidance and use of imaging equipment.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was carried out by X.Z. and N.K.L. X.Z., L.H., K.S.N., M.J.S., J.F.P. and N.K.L. were responsible for the methodology. Investigation was conducted by X.Z., L.H., Z.A., Y.E.N., A.E.S., M.M.R., D.A.R., S.D., V.M.P., T.A.W., A.J.H., A.B.L., S.K.J., D.A.E. and M.J.S. Resources were the responsibility of M.R., S.D., I.R.L., R.A.F. and K.S.N. Writing of the original draft was conducted by X.Z., L.H., Z.A., J.F.P. and N.K.L. Reviewing and editing was carried out by X.Z., L.H., Z.A., A.E.S., M.M.R., D.A.R., S.D., V.M.P., T.A.W., Y.E.N., A.B.L., S.K.J., D.A.E., A.G., A.A.S., D.J., I.R.L., S.K., R.A.F., K.S.N., M.J.S., J.F.P. and N.K.L. A.G., A.A.S., D.J., J.F.P. and N.K.L. were responsible for supervision. J.F.P. and N.K.L. were responsible for funding acquisition.

Corresponding authors

Correspondence to João F. Passos or Nathan K. LeBrasseur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks William Keyes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The age-related loss of skeletal mass, strength, and function.

ac, Comparisons of body weight (a), lean mass (%) (b), and quadriceps (quad) muscle weight (c) between young (n = 9) and old (n = 5) mice. d, e, Representative images of quad muscle cross-sections stained for Laminin (d) and quantification of fiber size and distribution for young and old female mice (n = 4 per group) (e). fh, Comparison of grip strength normalized to body weight (f), treadmill exercise capacity (g), and Rotarod endurance (h) between young (n = 9) and old (n = 5) mice. Two-tailed unpaired t-test was used; error bars represent s.e.m. **, and *** denote p < 0.01 and 0.001, respectively.

Source data

Extended Data Fig. 2 The age-related increase of lipofuscin in skeletal muscle (SkM).

a,b, Representative images of Sudan Black B (SBB) staining (a) and quantification of the numbers of positive foci per quadriceps section (b) from young and old female mice (n = 4 per age group). Two-tailed unpaired t test was used; error bars represent s.e.m. * and ** denote p < 0.05 and 0.01, respectively.

Source data

Extended Data Fig. 3 Identification of skeletal muscle (SkM) cell populations by single cell RNA-sequencing.

a, Heat map of the genes delineating 10 distinct cell populations in young and old female mice (n = 3 per group). b,c, UMAP plot (b) and dot plot (c) showing the main markers of each cell type. d, Relative abundance of the distinct SkM cell populations in individual mice.

Extended Data Fig. 4 Gene Ontology analysis of the upregulated and downregulated genes in high p16-expressing FAP cluster 3 compared to other FAPs.

BP: biological process; MF: molecular function; CC: cellular component. Benjamini–Hochberg Procedure was used to calculate the FDR adjusted p value.

Extended Data Fig. 5 Gene Ontology analysis of the upregulated and downregulated genes in old p21high myofibers compared to old p21low myofibers.

BP: biological process; MF: molecular function; CC: cellular component. Benjamini–Hochberg Procedure was used to calculate the FDR adjusted p value.

Supplementary information

Source data

Source Data Fig. 1

Statistical Source Data for Fig. 1.

Source Data Fig. 2

Statistical Source Data for Fig. 2.

Source Data Fig. 4

Statistical Source Data for Fig. 4.

Source Data Fig. 5

Statistical Source Data for Fig. 5.

Source Data Fig. 5

Uncropped western blot gel image for Fig. 5b.

Source Data Fig. 6

Statistical Source Data for Fig. 6.

Source Data Fig. 7

Statistical Source Data for Fig. 7.

Source Data Extended Data Fig. 1

Statistical Source Data for Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Statistical Source Data for Extended Data Fig. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Habiballa, L., Aversa, Z. et al. Characterization of cellular senescence in aging skeletal muscle. Nat Aging 2, 601–615 (2022). https://doi.org/10.1038/s43587-022-00250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-022-00250-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing