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Aggressive control of risk factors, improved standard of liv-
ing and progress in the quality and delivery of health care 
have all contributed to improved health and greater life 

expectancy in the world’s population1. These advances, however, are 
counterbalanced by trends toward a disproportionate expansion of 
the period of life characterized by diseases and disability in rela-
tionship to total life expectancy2,3. Disease-specific prevention and 
early diagnosis strategies, cornerstones of modern medicine, con-
tribute to longer life expectancy but only marginally extend health 
span2,3. A complementary approach to improving health in the rap-
idly aging population is to recognize that increasing age is the single 
most important risk factor for most chronic diseases and adverse 
health outcomes4,5. Indeed, there is substantial heterogeneity in the 
accumulation of health and functional problems over the lifespan, 
and such heterogeneity is due to environmental and genetic differ-
ences that modulate the rate of aging. Studies in model organisms 
demonstrate that the rate of biological aging can be tweaked not 
only by genetic manipulation but also by behavioral and phar-
macological interventions5–9. To this end, a robust measure that 
defines the rate of phenotypic aging independent of chronological 
age would be an extremely useful benchmark to identify intrinsic 
mechanisms of biological aging. In addition, such a measure could 
help to identify ‘accelerated agers’ and target them for personalized 
preventive strategies aimed at slowing down and/or modifying the 
consequences of accelerated aging.

Previous attempts to quantify phenotypic aging using the weighted 
average of laboratory values or clinical phenotypes have been successful  

in creating global scores that, independent of chronological age, 
predict health outcomes9–16. However, with few exceptions, previous 
work was (1) based on cross-sectional data, which can be biased by 
informative censoring and cannot account for variation in individual 
set-points within the normal or near-normal range (for example, veg-
etarians have low normal hemoglobin levels that are not pathologic) 
or (2) included only individuals within a narrow age range, which 
may limit generalizability to older adults12–14,16. Other composite 
scores, such as frailty measures, rely on disease burden, impairments 
and functional limitations17,18. Although these are powerful biomark-
ers of health and prognosis in older persons, such composite scores 
are much less informative in younger individuals who have no clini-
cal evidence of disease due to effective resilience mechanisms that 
mask the existence and effects of pathology4,19,20. Indeed, we have 
previously argued that substantial delay exists between damage accu-
mulation at the biological level and the emergence of phenotypic and 
functional manifestations of aging4,6,21. In the work that follows, we 
aim to demonstrate that analysis of longitudinal change in pheno-
typic traits enables the capture of subtle differences in phenotypic 
aging at the time when young, middle-aged and even older adults 
are relatively free of disease and impairment and there is still great 
potential for personalized preventive intervention.

Using data from the BLSA, a continuous enrollment cohort  
study of healthy aging across the life course, we previously  
demonstrated that age-related rates of change in phenotypi-
cal manifestations of aging within and across four phenotypic 
domains—body composition, energetics, homeostatic mechanism 

Longitudinal phenotypic aging metrics in the 
Baltimore Longitudinal Study of Aging
Pei-Lun Kuo1, Jennifer A. Schrack2, Morgan E. Levine   3, Michelle D. Shardell4, Eleanor M. Simonsick1, 
Chee W. Chia5, Ann Zenobia Moore1, Toshiko Tanaka1, Yang An6, Ajoy Karikkineth5, Majd AlGhatrif7, 
Palchamy Elango   1, Linda M. Zukley8, Josephine M. Egan5, Rafael de Cabo   1, Susan M. Resnick6 and 
Luigi Ferrucci   1 ✉

To define metrics of phenotypic aging, it is essential to identify biological and environmental factors that influence the pace 
of aging. Previous attempts to develop aging metrics were hampered by cross-sectional designs and/or focused on younger 
populations. In the Baltimore Longitudinal Study of Aging (BLSA), we collected longitudinally across the adult age range a 
comprehensive list of phenotypes within four domains (body composition, energetics, homeostatic mechanisms and neurode-
generation/neuroplasticity) and functional outcomes. We integrated individual deviations from population trajectories into a 
global longitudinal phenotypic metric of aging and demonstrate that accelerated longitudinal phenotypic aging is associated 
with faster physical and cognitive decline, faster accumulation of multimorbidity and shorter survival. These associations are 
more robust compared with the use of phenotypic and epigenetic measurements at a single time point. Estimation of these met-
rics required repeated measures of multiple phenotypes over time but may uniquely facilitate the identification of mechanisms 
driving phenotypic aging and subsequent age-related functional decline.

Nature Aging | VOL 2 | July 2022 | 635–643 | www.nature.com/nataging 635

mailto:ferruccilu@grc.nia.nih.gov
http://orcid.org/0000-0001-9890-9324
http://orcid.org/0000-0003-4850-522X
http://orcid.org/0000-0002-3354-2442
http://orcid.org/0000-0002-6273-1613
http://crossmark.crossref.org/dialog/?doi=10.1038/s43587-022-00243-7&domain=pdf
http://www.nature.com/nataging


Articles Nature Aging

and neurodegeneration/neuroplasticity—show characteristic and 
heterogeneous linear and nonlinear longitudinal trajectories over 
the adult lifespan6. Recently, we proposed a hierarchical framework 
that incorporates biological, phenotypic and functional metrics of 
aging to advance geroscience research (Fig. 1)6,21. In the proposed 
framework, the phenotypic manifestations of aging stem from 
the mechanisms of aging biology and cause deterioration in both 
health and cognitive and physical function that occur in most aging 
individuals, although with heterogeneous schedules. Based on the 
proposed framework, the project presented aimed to: (1) develop a 
global longitudinal phenotypic score and (2) evaluate its association 
with changes in health and functional outcomes.

We started the development of a longitudinal phenotypic score 
of aging by combining information on individual deviations from 
linear and nonlinear longitudinal population trajectories of different 
phenotypes (Figs. 2 and 3). Then, using data from 968 BLSA par-
ticipants ranging in age from their 20s to 90s at baseline, and with a 
total of 4,851 follow-up visits, we evaluated whether, independent of 
confounders, this global longitudinal phenotypic score was associ-
ated with longitudinal rates of change in physical and cognitive func-
tion, accumulation of multimorbidity and lifespan. Our hypothesis 
is that individuals who show decelerated rates of phenotypic change 
experience slower physical and cognitive decline over follow-up, less 
accumulation of multimorbidity and lower mortality. This approach 
is consistent with our a priori hypothesis of a hierarchical relation-
ship between phenotypic and functional aspects of aging21.

Results
Do aging rates differ across the adult age span? Of the 968 partici-
pants included in this analysis, 512 (52.9%) were women and baseline 
age ranged between 24.9 and 93.7 years, with a median follow-up of 
around 7–9 years (Fig. 2, Supplementary Table 1 and Supplementary 
Fig. 1). We characterized sex-specific, population-based, longitudi-
nal trajectories of several aging phenotypic traits grouped into four 
domains—body composition, energetics, homeostatic mechanisms 
and neurodegeneration/neuroplasticity. By fitting a family of polyno-
mial regressions, we previously demonstrated that some of these age 
trajectories are linear (interleukin-6, c-reactive protein, albumin, red 
blood cell distribution width) while others are nonlinear (waist cir-
cumference, waist/height ratio, body mass index, lean mass, appen-
dicular lean mass, fat mass, mid-thigh area, resting metabolic rate, 
peak oxygen consumption during treadmill testing, peak oxygen 
consumption during 400-m walk, cost/capacity ratio, forced expira-
tory volume in the first second (FEV1), forced vital capacity (FVC), 
FEV1/FVC, hemoglobin, absolute neutrophil count, fasting glucose, 
pulse pressure, systolic blood pressure, diastolic blood pressure, 
carotid/femoral pulse wave velocity, creatinine clearance, total cho-
lesterol, low-density lipoproteins, high-density lipoproteins, triglyc-
eride, total brain volume, white matter volume, gray matter volume, 
ventricular volume, nerve conduction velocity), and trajectories in 
men and women generally differ (Fig. 3 and Supplementary Figs. 2 
and 3). Specifically, we calculated for each phenotype the difference 
between an individual’s rate of change and the sex-specific average 
rate of change in the population at the baseline age of that participant 
(Fig. 3). Of note, because some phenotypes show nonlinear trajec-
tories over the lifespan, the population rate of change used for com-
parison may differ depending on the participant’s age.

Further, we standardized these values and averaged them within 
each domain. For each domain, higher scores indicate faster lon-
gitudinal age-phenotypic changes (that is, accelerated aging) 
while lower scores represent slower longitudinal age-phenotypic 
changes compared with the overall population at the same age of 
the participant. Longitudinal scores in four domain-specific phe-
notypes—body composition, energetics, homeostatic mechanisms 
and neuroplasticity/neurodegeneration—were symmetrically dis-
tributed across the age range (Supplementary Fig. 4). These findings  

suggest that, even in a cohort of healthy individuals, there exists 
wide heterogeneity of phenotypic changes from adulthood to late 
life. Correlations between the four domain-specific longitudinal 
phenotypic scores are modest (|correlation| ranging between 0.03 
and 0.10), suggesting that substantial intra-individual heterogeneity 
in the rate of aging exists across phenotypic domains and justify-
ing the need to combine information across domains. Finally, the 
standardized scores were averaged into a global, longitudinal phe-
notypic score that represents the rate of phenotypic aging compared 
with that of the general population.

Several lines of research indicate that health and quality of life 
in older persons are best assessed through measures of physical 
and cognitive function, in addition to disease diagnoses and clini-
cal signs or symptoms22,23. Both physical and cognitive function 
strongly predict ‘hard’ health outcomes including loss of autonomy 
and death22,24. Based on these considerations, we validated our 
global longitudinal phenotypic score by evaluating its correlations 
with rates of change in physical and cognitive functions.

Longitudinal phenotypic aging and change in physical function. In 
the BLSA, physical function was measured using usual gait speed over 
6 m, time to finish a 400-m walk (measured by time to walking 400 m 
as quickly as possible25) and the Health, Aging and Body Composition 
short physical performance battery (HABC SPPB; a continuous score 
derived from gait speed over 6 m unrestricted and over a 20-m-wide 
course of repeated chair stands, and sequential balance testing, with 
higher scores indicating better function)26. As shown in Fig. 4, lower 
global longitudinal phenotypic scores (that is, decelerated decline 
in aging phenotypes) were associated with slower physical function 
decline across all measures. Adjusting for sex, baseline age, height, 
weight, interactions between sex and time, and baseline age and time, 
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Fig. 1 | Conceptual framework underpinning the study design. Conceptual 
framework of three hierarchical and temporal metrics of aging—biological, 
phenotypic and functional. We hypothesize that biological mechanisms 
(center square) drive changes in aging phenotypes, which eventually 
lead to deterioration at functional levels (outer rim). Four phenotypic 
domains are proposed for measurement of aging phenotypes—body 
composition, energetics, homeostatic mechanisms and neuroplasticity/
neurodegeneration. Examples of aging phenotypes are listed in the colored 
boxes. RMR, resting metabolic rate; NCV, nerve conduction velocity.
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a global longitudinal phenotypic score (that is, decelerated decline 
in aging phenotypes) one point lower was associated with (1) slower 
(0.0032 m s–1) annual decline in gait speed (95% confidence interval 
(CI): 0.0004, 0.0059), (2) 2.57 s less annual increase in time to finish a 
400-m walk (95% CI: 1.51, 3.64) and (3) 0.0177 less annual decline in 
HABC SPPB score (95% CI: 0.0113, 0.0240) (Supplementary Table 2). 
In our study population, gait speed declined at an average annual rate 
of 0.014 m s–1, and 1 year older in chronological age was associated with 
faster decline in gait speed with an annual increment of 0.0008 m s–1 
(Supplementary Tables 3 and 4). The associations between one point 
‘lower’ in global longitudinal phenotypic score and physical function 
measures were equivalent to 4.09, 6.83 and 6.73 years ‘younger’ gait 
speed, time to finish a 400-m walk and HABC SPPB score, respec-
tively (Fig. 5). Interestingly, associations between domain-specific 
longitudinal phenotypic scores and physical function measures were 
all weaker than that between global longitudinal phenotypic score 
and physical function measures (Supplementary Fig. 6). This finding 
further confirms the notion that building a robust longitudinal phe-
notypic score of aging requires the combination of information across 
different domains of measurement.

Longitudinal phenotypic aging and change in cognitive function. 
Measures of cognition used for this analysis cover memory, execu-
tive function, attention, language and visuospatial ability. The digi-
tal symbol substitution test (DSST) score was kept alone because 
this test covers more than one domain and has been clinically con-
sidered sensitive to change in cognition globally. As shown in Fig. 6,  
a higher global longitudinal phenotypic score (that is, accelerated 
decline in aging phenotypes) was associated with faster cognitive 
decline. Adjusting for baseline age, sex, race, years of education 
and interactions between sex and time, and baseline age and time, 
one point higher in global longitudinal phenotypic score (that is, 
accelerated decline in aging phenotypes) was associated with 0.236 

faster annual decline in DSST score (95% CI: 0.138, 0.334) and with 
significantly faster annual decline in executive function, attention, 
memory, language and visuospatial ability (Supplementary Table 
2). In our study population, DSST declined at an average annual 
rate of 1.159, while 1 year older in chronological age was associ-
ated with faster decline in DSST, with an annual increment of 0.021 
(Supplementary Tables 3 and 4). One point ‘lower’ in global longitu-
dinal phenotypic score was equivalent to 6.75–12.95 years ‘younger’ 
chronological age in terms of rate of cognitive decline across differ-
ent measures of cognition (Fig. 5). Like the physical function analy-
ses, associations between domain-specific longitudinal phenotypic 
scores and cognitive functions were all weaker than that between 
global longitudinal phenotypic score and cognitive test perfor-
mance (Supplementary Fig. 6).

Longitudinal phenotypic aging, multimorbidity and lifespan. 
Under the assumption that the aging process is the major cause of 
chronic disease and functional impairment, the rate of accumula-
tion of chronic disease or health/functional problems can be con-
sidered a biomarker of accelerated aging. Using a multimorbidity 
index previously operationalized in the BLSA as the total number 
of 15 candidate chronic conditions27, as shown in Fig. 7a, a lower 
global longitudinal phenotypic score (that is, decelerated decline 
in aging phenotypes) was associated with slower increase in the 
multimorbidity index. Adjusting for baseline age, sex and interac-
tions between sex and time, and baseline age and time, one point 
lower in global longitudinal phenotypic score (that is, decelerated 
decline in aging phenotypes) was independently associated with 
0.025 fewer morbidities accumulated per year (95% CI: 0.004, 
0.046) (Supplementary Table 2). In our study population, the mul-
timorbidity index increased at an average annual rate of 0.199, and 
1 year older in chronological age was associated with faster increase 
in multimorbidity index, with an annual increment of 0.008 
(Supplementary Tables 3 and 4). One point ‘lower’ in the global 
longitudinal phenotypic score was independently associated with 
change in multimorbidity at the rate equivalent to being 3.27 years 
‘younger’ compared with the overall population (Fig. 5). We also 
examined the relationship between global longitudinal phenotypic 
score and mortality. Survival curves stratified by global longitudi-
nal phenotypic score are shown in Fig. 7b. Adjusting for age, sex 
and education, among those surviving to at least 60 years, one point 
‘higher’ in global longitudinal phenotypic score was associated with 
12% shorter survival time (adjusted time ratio: 0.88, 95% CI: 0.81, 
0.96) (Supplementary Fig. 7 and Supplementary Table 5).

Metrics of the rate of aging may be particularly useful in relatively 
young and healthy individuals, at the time when chronic disease is 
infrequent and traditional measures of physical function may be less 
informative because of substantial reserve capacity and strong resil-
ience. To address this issue, we analyzed relationships between the 
global longitudinal phenotypic score and measures of physical and 
cognitive function within three age strata: ≤50, 51–79 and ≥80 years 
for physical functions and 50–65, 66–79 and ≥80 years for cognitive 
functions (Supplementary Figs. 8 and 9). Findings were consistent 
across age strata although, not surprisingly, associations appear to be 
stronger at older ages. We tested whether the relationship between 
global longitudinal phenotypic score and change in physical and 
cognitive functions was stronger among older adults, and significant 
interactions were found for usual gait speed (P = 0.002), time to finish a 
400-m walk (P < 0.001), HABC SPPB (P < 0.001), memory (P < 0.001) 
and attention (P = 0.001), but not for DSST, executive function, lan-
guage or visuospatial ability (Supplementary Figs. 8 and 9).

Comparison with cross-sectional phenotypic and epigenetic 
summaries. To further understand the added value of using lon-
gitudinal data to estimate the rate of aging, we developed a global 
cross-sectional phenotypic score for the four domains using the 
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Fig. 2 | The BLSA analytic cohort. Random sample of the BLSA cohort 
used for our analyses. Participants had a wide age range at the time of 
enrollment, and follow-up duration. Scheduled follow-up intervals were 
age dependent, ranging from 4 years for those <60 years, 2 years for those 
aged 60–79 years to 1 year for those aged ≥80 years.
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same analytical approach for estimation of longitudinal score. 
Specifically, we summarized the differences between measures of 
phenotypes in individual participants and estimated average mea-
sures of the same phenotypes in the population of the same age and 
sex. The associations between global cross-sectional phenotypic 
score and changes in physical and cognitive functions were substan-
tially weaker than those between global longitudinal phenotypic 
score and changes in physical and cognitive functions, except for 
multimorbidity which was comparable (Fig. 8).

Epigenetic age acceleration metrics based on measures of DNA 
methylation are generally considered powerful biomarkers for 
tracking biological aging28. We also investigated the relationships 
between six popular epigenetic age acceleration measurements and 

changes in physical and cognitive functions in the BLSA popula-
tion. In comparison with the global longitudinal phenotypic score, 
associations of epigenetic clocks with changes in physical and cog-
nitive functions were much weaker, indicating that these epigenetic 
age clocks may provide some information on the biological age of 
an individual but are poor metrics of longitudinal rates of aging in a 
relatively healthy population (Supplementary Fig. 10).

Discussion
Over the past decade, several studies have provided evidence that 
biological aging by itself is profoundly involved in the patho-
genesis of many diseases and age-related health conditions29. On 
the background of genetic predispositions, nongenetic stressors  
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(environmental, behavioral and social) show substantial stochastic 
variability, suggesting that they are potentially modifiable by pre-
ventive interventions5,8,30. Nevertheless, chronological age remains 
the most used proxy for aging in both clinical and research set-
tings. Moreover, the adverse effect of older chronological age on 
health has not been comprehensively and exhaustively explained 
in epidemiological studies by the many measures of ‘biologi-
cal aging’ proposed in the literature31–33. A critical element in the 
quest for robust biomarkers of biological aging is the definition of 
the aging phenotype4. Many studies have relied on chronological 
age as the standard of reference to calculate score-based weighted 
linear or nonlinear combinations of different types of ‘omics’ and 
used deviation from age estimators as indicative of accelerated 
or decelerated aging14,34,35. Others have relied on either mortality 
prediction or health predictors obtained by aggregating clinical 
dimensions associated with aging and/or mortality11,13. Overall, 
these approaches do not consider aging as a dynamic process or 
appreciate that heterogeneity between individuals in their aging 
trajectories substantially expands in late life5,7. In addition, dif-
ferent phenotypes of aging follow average trajectories that are 
characteristically linear or nonlinear, and thus cross-sectional 
summarization of these phenotypes may miss important informa-
tion about the aging process and introduce substantial bias6,36,37. 

Indeed, in comparison with the global longitudinal phenotypic 
score, in our study, the global cross-sectional phenotypic score 
and epigenetic age accelerations showed weaker associations with 
changes in physical and cognitive functions.

The work presented here attempts to overcome the limitations 
of previous research by generating a global longitudinal phenotypic 
score based on summarizing the difference between individuals’ 
longitudinal trajectories and population average age- and sex-spe-
cific trajectories across 35 aging phenotypes from four predefined 
domains. We have previously defined average sex- and age-specific 
trajectories of these phenotypes across these same phenotypes 
using data from the BLSA and found some to be nonlinear and dif-
fer between men and women6. Here, we compared individual lon-
gitudinal trajectories with estimated population average age- and 
sex-specific trajectories (at the same age and sex as the individual). 
Then, for each individual, we summarized domain-specific scores 
by aggregating data within domain-specific phenotypes and, subse-
quently, creating a global longitudinal phenotypic score by averaging 
across four phenotypic domains. Using this approach, we demon-
strate that participants experienced quite heterogeneous rates of 
phenotypic aging across a wide age range, from mid-20s to 90s, and 
such variability is highly informative. We have previously postulated 
that, independent of confounders, a score based on longitudinal 
changes in phenotypes would be associated with parallel decline of 
physical and cognitive functions4,6,21. Concordant with this hypoth-
esis, we found that the domain-specific scores using longitudinal 
phenotypes were robustly and significantly associated with various 
measures of physical and cognitive function (Supplementary Fig. 
6). Furthermore, those who experienced accelerated global pheno-
typic aging had faster decline in physical and cognitive functions, 
and accumulation of multiple morbidities, and experienced shorter 
lifespan. The associations between global longitudinal phenotypic 
score and changes in physical and cognitive functions remained 
strong across different age groups (Supplementary Figs. 8 and 9). 
Because the correlations between domain-specific longitudinal 
slopes were weak, these findings strongly suggest that combin-
ing information on rate of aging across different domains is more 
powerful than relying on measures in a single domain for quanti-
fication of the overall rate of phenotypic aging. When we ranked 
the importance of domain-specific longitudinal phenotypic scores 
based on their ability to explain the variability in changes of func-
tions (Supplementary Table 6), some results were unexpected (for 
example, the body composition domain being ranked higher than 
the neuroplasticity/neurodegeneration domain for changes in atten-
tion), indicating that relationships between phenotypic and func-
tional aging constructs are not always obvious.

Altogether, our study demonstrates that the conceptual frame-
work based on four domains for phenotypic aging can capture aging 
from early adulthood to late life and that longitudinal change in phe-
notypes is associated with longitudinal change in multiple dimen-
sions of function. The conceptual design and analytical approach of 
our study are novel in many ways. First, we present a clear conceptual 
framework that defines four phenotypic domains of aging that were 
hypothesis driven and predetermined. Second, our global score of 
longitudinal phenotypes was created based on longitudinal change 
in phenotypes, which is not biased by assumptions of linearity that 
do not hold for many important aging phenotypes6,21. Third, we 
included participants across a wide age range, allowing us to observe 
phenotypic aging from early adulthood to late life. Fourth, we had 
multiple longitudinal measurements of both physical and cognitive 
function, enabling investigation of whether those with accelerated 
phenotypic aging consistently experienced faster functional decline.

Most previous work aimed at quantification of phenotypic or 
biological aging has relied on cross-sectional data. For example, 
Levine et al. and Liu et al. used data from the National Health and 
Nutrition Examination Survey10,38, a study where most phenotypes 
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Functional outcomes Age equivalence (95% CI)
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Fig. 5 | Age equivalence of a one-point difference in global longitudinal 
phenotypic score for different functional outcomes. Estimated age 
equivalence of a one-point difference in global longitudinal phenotypic 
score for different functional outcomes, including cognitive function, 
physical function and multimorbidity. Age equivalence presented here 
is a scaled regression coefficient (point estimates and 95% CIs) relating 
longitudinal phenotypic score and rate of change in functions and 
illustrates how many years older in functional age are individuals with one 
point higher in longitudinal phenotypic score. Participants: DSST, n = 921; 
memory, n = 922; executive function, n = 929; attention, n = 929; language, 
n = 929; visuospatial ability, n = 919; usual gait speed, n = 968; time to finish 
400-m walk, n = 943; HABC SPPB, n = 968; multimorbidity index, n = 828); 
also see Supplementary Table 1b for more details.
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were evaluated using blood-based measures and thus with limited 
coverage of the four phenotypic domains10,38. Other work attempt-
ing to quantify the rate of aging using longitudinal changes in 
phenotypes summarized the pace of aging using rate of change in 
several phenotypes, but the study population was derived from the 
same birth cohort with a narrow age range12,39. While these stud-
ies substantially contributed to our understanding of phenotypic 
aging, none of the proposed rate of change measures were validated 
against longitudinal change in physical and cognitive function and 
multimorbidity, which are critical outcomes in the geriatric popula-
tion and the most relevant for quality of life10,12,39.

To facilitate interpretation of our findings, we estimated the age 
equivalence of a single point change in global longitudinal phe-
notypic score in our study population. One point higher in global 
longitudinal phenotypic score (that is, accelerated decline in aging 
phenotypes) was equivalent to an additional 4–7 years in chrono-
logical age across physical function measures and to an additional 
7–13 years in chronological years across cognitive function mea-
sures. These results have three implications.

First, the global longitudinal phenotypic score captured aspects 
of phenotypic aging that are relevant to age-associated health and 
functional changes independent of age, sex and other time-invariant 
confounders. The consistent association with a wide range of mea-
sures of physical and cognitive function highlights the robustness of 
our summarized score. Second, the magnitude of age equivalents dif-
fered slightly across different cognitive and physical measurements.  

This not only reflects differential rates of change in physical and 
cognitive functional assessments but also implies that if optimiza-
tion of the phenotypic age is desired, it must be function specific 
and perhaps measurement specific. Third, when we compared the 
age equivalence of domain-specific longitudinal phenotypic scores 
with that of global longitudinal phenotypic score for physical and 
cognitive function, we found the global score showed the largest 
age-equivalent power, meaning that the combined information con-
tributed by all four domains (body composition, energetics, homeo-
static mechanism and neuroplasticity/neurodegeneration) is more 
informative than each individual domain separately.

Some aspects of our findings deserve consideration. This work 
has several important implications. First, our metric captures 
aspects of phenotypic aging apparent in early adulthood and within 
a relatively healthy population. Second, a conceptual framework 
that views phenotypic aging across multiple domains is essential 
to capturing a multifaceted picture of aging. Third, the hierarchi-
cal and temporal relationships between biological, phenotypic and 
functional aging provide a powerful framework to study the aging 
process, and application of this robust framework better facilitates 
identification of mechanistic biomarkers that underlie the aging 
process and pace of aging in specific individuals. Consistent with 
our previously stated hypothesis, in the future, it will be important 
to identify longitudinal changes in omics biomarkers associated 
with antecedent and parallel changes in phenotypic aging and, in 
turn, functional aging4,6,21.
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(e) and visuospatial ability (f) indicate faster decline of cognitive function. Memory score is constructed by the average of standardized immediate recall 
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Despite the many positive features of our study, several limita-
tions should be noted. First, the comprehensive longitudinal, state-
of-the-art measurements of phenotypes in the BLSA are costly in 
terms of both time and money, so it will be challenging to find 
another independent cohort with the same or similar set of mea-
surements to exactly replicate our results. Nevertheless, our con-
ceptual framework can be easily adapted to a smaller collection of 
phenotypes representative of the four domains provided a good 
number of longitudinal observations is available. In addition, one 
primary aim of developing a global longitudinal phenotypic score 
is to derive a ‘biological aging clock’ using a longitudinal approach. 
Once biological aging clocks are developed, they can be validated 
across multiple studies and compared with other clocks developed 
using more conventional cross-sectional measures. Second, the rel-
atively modest sample size of our study population has limited some 
aspects of our statistical analyses. For example, because of this limi-
tation, we empirically put equal weights on all four domains rather 
than optimizing the weights using computation-intensive algo-
rithms to avoid overfitting40. Our analysis showed strong associa-
tions between global longitudinal phenotypic score and changes in 
physical and cognitive function. We did not have sufficient observa-
tions to fully separate these two dimensions over time, which would 
have strengthened the assumption of causality. However, there is no 
guarantee that a fully lagged analysis would work because individu-
als on a certain trajectory may change trajectory over time as the 
rate of aging is continuously modulated by many factors. Third, 
although we attempted to collect these phenotypes as comprehen-
sively as possible, we might not have all of the relevant phenotypic 
measures (for example, more detailed brain measures40 and immune 
profiles35) for all participants. Nevertheless, despite these potential 
limitations, application of our conceptual framework produced 
robust and convincing results.

There are several strengths in this work that outweigh its limita-
tions. Indeed, the longitudinal trajectories of aging phenotypes have 
been examined one by one in detail in our previous work, which helped 
us refine and validate the conceptual framework for this study6,21. The 
longitudinal data enabled us to focus on the aging effect and control 
for the time-invariant unmeasured confounding (for example, early 
life exposures) using mixed-effect models37. In regard to the calcu-
lation of global longitudinal phenotypic score, we adopted a flexible 
strategy to include everyone with longitudinal information on at least 
one phenotype in each of four domains. This operationalization makes 

the creation of such a score feasible in other cohorts in the future. One 
important aspect of this approach is that it can discriminate between 
cohort effects that are already present from birth and aging effects 
(true differences in trajectories that occur over the lifespan). The 
framework illustrated here can be easily adopted in other cohorts if 
longitudinal data in phenotypes covering four phenotypic domains 
are collected. Linking this global longitudinal phenotypic score with 
cellular and molecular measurements will improve the potential to 
identify the underlying biological mechanisms of aging.

In conclusion, this work demonstrates the usefulness of our hier-
archical and temporal conceptual framework regarding three met-
rics of aging. Our work proposes a powerful method to summarize 
the longitudinal trajectory of aging phenotypes. These results can 
build the foundation for both research focused on understanding the 
biology of aging and the implementation of phenotypic aging mea-
surement in trials targeting the rate of aging and its consequences.

Methods
Study design and study participants. The BLSA study protocol has been 
approved by the Internal Review Board of the Intramural Research Program of the 
National Institutes of Health; participants provided written informed consent after 
receiving a comprehensive description of the study procedures, including possible 
risks. The BLSA, a study of normative human aging, was established in 1958, 
comprehensively revised in 2003 with more extensive domain-based phenotypic 
measurements and is conducted by the National Institute on Aging Intramural 
Research Program6. All participants are community-dwelling volunteers free of 
major chronic conditions upon enrollment. Detailed inclusion/exclusion criteria 
are described in our previous work6. To acknowledge the faster functional decline 
in the later part of life, enrolled participants are followed up with an age-dependent 
frequency (<60 years every 4 years, 60–79 years every 2 years, ≥80 years every 
year)6. The analytic sample for the current study mainly consists of participants 
who underwent repeated phenotypic measurements during their clinic visits 
between January 2005 and December 2019. All assessments were collected by 
trained and certified technicians following standardized protocols. Because the 
BLSA is an observational cohort study, no blinding was used.

Measurements. Measurement of aging phenotypes. Since revision in 2003, the 
phenotypes measured in the BLSA have been aimed at capturing four phenotypic 
domains that conceptually serve as bridges between geroscience—which focuses on 
the cellular and molecular mechanisms of aging—and gerontology and geriatrics, 
which concentrate on age-related diseases and functional decline21. Namely, 
these four phenotypic domains are body composition, energetics, homeostatic 
mechanisms and neuroplasticity/neurodegeneration. Based on our conceptual 
framework, the measures of these four domains are considered as the ‘phenotypic 
clusters of aging’, which are presumed to be the phenotypic manifestations of 
underlying biological aging conceptualized as the ratio between damage and 
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repair at molecular/cellular levels21. The aging phenotypes collected here have 
been examined longitudinally in our previous work6. Phenotypes representing 
body composition include body mass index, waist circumference, waist-to-height 
ratio, total lean mass, appendicular lean mass, total fat mass and mid-thigh 
area. Phenotypes covering the energetics domain include parameters of energy 
availability and energy consumption as measured by oxygen consumption, and 
cardiorespiratory fitness. Phenotypes used to present homeostatic mechanisms 
include inflammation markers, fasting glucose, lipid profile, blood pressure, 
carotid/femoral pulse wave velocity and 24-h creatinine clearance. Phenotypes 
used to represent neurodegeneration/neuroplasticity domain cover both the central 
and peripheral nervous systems. The central nervous system was assessed by brain 
volumes (total brain, white matter, gray matter and ventricular), and the peripheral 
nervous system by nerve conduction velocity.

Measurements of functional aging. Physical functions. In the BLSA, physical 
function was measured with usual gait speed over 6 m, time to finish a 400-m walk 
(measured by time required to walk 400 m as quickly as possible25) and the HABC 
SPPB25,26.

Cognitive functions. Global cognitive function was measured using DSST. 
Domain-specific cognition (memory, executive function, attention, language and 
visuospatial ability) are derived from trails-making tests A and B, digits forward 
and digits backward, the California verbal learning (CVL) test, letter and category 
and the card rotations test.

Multimorbidity index and mortality. The multimorbidity index comprised age-
related chronic conditions. Vital status was determined using telephone follow-up, 
correspondence and searches of the National Death Index.

Statistical analysis. Creation of global and domain-specific longitudinal phenotypic 
scores. Step 1: For each phenotype, quantile normalization was used to account 
for the different measurement methods41. To calculate the difference between an 
individual’s rate of change and estimated sex- and age-specific rate of change, we 
used the linear mixed model with random intercept and random slope (as below) 
for male and female separately. In this model, bi is then extracted and used as 
the difference between an individual’s rate of change and estimated sex- and age-
specific rate of change.

With ai denoting random intercept and bi denoting random slope, the main 
function we fit is in the following form:

Phenotypeij = α (covi) + ai + (β (covi) + bi) × tij + eij for subject i at time j,

where (ai, bi ) ≈ N(0,G), eij ≈ N(0, σ2 R), α(covi) is a function of covariates described 
above and β(covi) is a polynomial function of baseline_agei.

Further, the difference between an individual’s rate of change and sex- and  
age-specific population rate of change (that is, the random slope) was standardized 
(to mean = 0 and s.d. = 1) and transformed to –3, –2, –1, 0, 1, 2, 3, termed 
‘individual phenotype-specific score’ (3, 2 and 1 corresponding, respectively, 
to 2.5–5.0, 1.5–2.5 and 0.5–1.5 s.d. faster/accelerated decline in phenotypes; 
0 corresponding to within 0.5 s.d. of changes in phenotypes; –1, –2 and –3 
corresponding, respectively, to 0.5–1.5, 1.5–2.0 and 2.5–5.0 s.d. slower/decelerated 
decline in phenotypes). Figure 3 shows a conceptual illustration of accelerated and 
decelerated aging.

Step 2: For each domain, we calculated the domain-specific longitudinal 
phenotypic scores for each individual by averaging the available individual 
phenotype-specific score for phenotypes within each domain, followed by quantile 
normalization.

Step 3: The global longitudinal phenotypic score was then summarized by 
averaging the four domain-specific longitudinal phenotypic scores, for those with 
all four domain-specific scores available.

Examining the relationship between longitudinal phenotypic score(s) and functional 
outcomes/mortality. To estimate the relationship between global and domain-
specific longitudinal phenotypic score and rate of functional decline and changes 
in multimorbidity, linear mixed models with random intercept and random slope 
were used. Baseline age was defined as age at first analytic visit. For cognitive 
function, the models included sex, baseline age, years of education, race, 
longitudinal phenotypic aging score, time, baseline age × time, sex × time and 
longitudinal phenotypic aging score × time. For physical function, the models 
included sex, baseline age, baseline age squared, height, weight, longitudinal 
phenotypic aging score, time, baseline age × time, sex × time and longitudinal 
phenotypic aging score × time. For multimorbidity index, the models included 
sex, baseline age, baseline age squared, longitudinal phenotypic aging score, time, 
baseline age × time, sex × time and longitudinal phenotypic aging score × time. 
Because the scales of cognitive functions, physical functions and multimorbidities 
are different, to improve the interpretability of results, we translated the results as 
age equivalent, which can be interpreted as the equivalent effect of the number 
of years of chronological age increase on rate of changes per one point higher in 
global/domain-specific longitudinal phenotypic score(s)42. To visualize the data, we 
plotted the scatterplot between summarized global score and slopes of changes in 
cognitive functions, physical functions and multimorbidity index.

To understand the relationship between the global longitudinal phenotypic 
score and mortality, we used survival analysis with a semiparametric Cox 
model and parametric Weibull distribution to quantify the relationship between 
summarized global score and mortality risk, using age starting from 60 years as the 
timescale with adjustment for age, sex and education. Point estimates with 95% CI 
are reported.

Evaluation of the association between cross-sectional measurements and changes  
in physical and cognitive functions. To understand the potential difference  
between the cross-sectional aging summary and our global longitudinal 
phenotypic scores, we also computed the association between cross-sectional 
phenotypic score, six epigenetic age acceleration measurements and changes in 
physical and cognitive functions.

Detailed information about measurements and statistical analysis is reported 
in Supplementary Methods, including Supplementary Methods I—Measurements 
for Aging Phenotypes, Supplementary Methods II—Measurements for Functional 
Outcomes and Supplementary Methods III—Statistical Analysis.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The BLSA data are available upon request. Applications should be made through 
the website https://www.blsa.nih.gov/.

Code availability
Complementary R code is provided in the Supplementary Material.
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Fig. 8 | Age equivalence of a one-point difference in global cross-
sectional phenotypic score for different functional outcomes. Estimated 
age equivalence of a one-point difference in global cross-sectional 
phenotypic score for different functional outcomes, including cognitive 
function, physical function and multimorbidity. Age equivalence is a scaled 
regression coefficient (point estimates and 95% CIs) relating cross-
sectional phenotypic score and rate of changes in functions and illustrates 
how many years older in functional age are individuals with one point 
higher in cross-sectional phenotypic scores. Number of participants: DSST, 
n = 922; memory, n = 922; executive function, n = 929; attention, n = 929; 
language, n = 929; visuospatial ability, n = 919; usual gait speed, n = 968; 
time to finish 400-m walk, n = 943; HABC SPPB, n = 968; multimorbidity 
index, n = 828; also see Supplementary Table 1b for more details.
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