Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Suppression of intestinal dysfunction in a Drosophila model of Parkinson’s disease is neuroprotective

Abstract

The innate immune response mounts a defense against foreign invaders and declines with age. An inappropriate induction of this response can cause diseases. Previous studies showed that mitochondria can be repurposed to promote inflammatory signaling. Damaged mitochondria can also trigger inflammation and promote diseases. Mutations in pink1, a gene required for mitochondrial health, cause Parkinson’s disease, and Drosophila melanogaster pink1 mutants accumulate damaged mitochondria. Here, we show that defective mitochondria in pink1 mutants activate Relish targets and demonstrate that inflammatory signaling causes age-dependent intestinal dysfunction in pink1-mutant flies. These effects result in the death of intestinal cells, metabolic reprogramming and neurotoxicity. We found that Relish signaling is activated downstream of a pathway stimulated by cytosolic DNA. Suppression of Relish in the intestinal midgut of pink1-mutant flies restores mitochondrial function and is neuroprotective. We thus conclude that gut–brain communication modulates neurotoxicity in a fly model of Parkinson’s disease through a mechanism involving mitochondrial dysfunction.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: In silico identification of Relish as a regulator of transcriptional changes in pink1-mutant flies.
Fig. 2: Neuronal defects in pink1-mutant flies are rescued by genetic and pharmacological inhibition of the immune response.
Fig. 3: pink1-Mutant flies show intestinal dysfunction.
Fig. 4: Intestinal dysfunction in pink1-mutant flies is rescued by a Relish mutation.
Fig. 5: Mutation in a sensor of the innate immune response to DNA rescues the intestinal dysfunction of pink1-mutant flies.
Fig. 6: pink1-Mutant flies show increases in metabolic markers of starvation.
Fig. 7: Suppression of Relish in the midgut of pink1-mutant flies rescues neurodegeneration.
Fig. 8: Blockage of intestinal cell death rescues neurodegeneration in pink1-mutant flies.

Data availability

Source date files, including raw numerical data, descriptive statistics, normality tests and statistical analysis used in the manuscript, are available in our GitHub repository at github.com/M1gus/Gut-brain. Microarray data, with detailed descriptions of the experimental protocols, and raw data were deposited in ArrayExpress under accession no. E-MTAB-6210. Proteomics data was deposited at the ProteomeXchange Consortium with dataset identifier PXD030979. All other data are available upon reasonable request.

References

  1. Collins, L. V., Hajizadeh, S., Holme, E., Jonsson, I. M. & Tarkowski, A. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J. Leukoc. Biol. 75, 995–1000 (2004).

    CAS  Article  PubMed  Google Scholar 

  2. Celardo, I., Martins, L. M. & Gandhi, S. Unravelling mitochondrial pathways to Parkinson’s disease. Br. J. Pharmacol. 171, 1943–1957 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Oka, T. et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485, 251–255 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Kounatidis, I. et al. NF-kappaB Immunity in the brain determines fly lifespan in healthy aging and age-related neurodegeneration. Cell Rep. 19, 836–848 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Myllymaki, H., Valanne, S. & Ramet, M. The Drosophila Imd signaling pathway. J. Immunol. 192, 3455–3462 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Molaei, M., Vandehoef, C. & Karpac, J. NF-kappaB shapes metabolic adaptation by attenuating Foxo-mediated lipolysis in Drosophila. Dev. Cell 49, 802–810 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Chinchore, Y., Gerber, G. F. & Dolph, P. J. Alternative pathway of cell death in Drosophila mediated by NF-kappaB transcription factor Relish. Proc. Natl Acad. Sci. USA 109, E605–E612 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kuraishi, T., Hori, A. & Kurata, S. Host–microbe interactions in the gut of Drosophila melanogaster. Front. Physiol. 4, 375 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).

    CAS  Article  PubMed  Google Scholar 

  10. Valtonen, T. M., Kleino, A., Ramet, M. & Rantala, M. J. Starvation reveals maintenance cost of humoral immunity. Evol. Biol. 37, 49–57 (2010).

    Article  Google Scholar 

  11. Liu, X. et al. Drosophila EYA regulates the immune response against DNA through an evolutionarily conserved threonine phosphatase motif. PLoS ONE 7, e42725 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Tufi, R. et al. Enhancing nucleotide metabolism protects against mitochondrial dysfunction and neurodegeneration in a PINK1 model of Parkinson’s disease. Nat. Cell Biol. 16, 157–166 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Celardo, I. et al. Mitofusin-mediated ER stress triggers neurodegeneration in pink1/parkin models of Parkinson’s disease. Cell Death Dis. 7, e2271 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Lemaitre, B. & Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697–743 (2007).

    CAS  Article  PubMed  Google Scholar 

  15. Janky, R. et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput. Biol. 10, e1003731 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Julienne, H., Buhl, E., Leslie, D. S. & Hodge, J. J. L. Drosophila PINK1 and parkin loss-of-function mutants display a range of non-motor Parkinson’s disease phenotypes. Neurobiol. Dis. 104, 15–23 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Valadas, J. S. et al. ER lipid defects in neuropeptidergic neurons impair sleep patterns in Parkinson’s disease. Neuron 98, 1155–1169 (2018).

    CAS  Article  PubMed  Google Scholar 

  18. Park, J. et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161 (2006).

    CAS  Article  PubMed  Google Scholar 

  19. Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell 4, 827–837 (1999).

    CAS  Article  PubMed  Google Scholar 

  20. Doktor, B., Damulewicz, M., Krzeptowski, W., Bednarczyk, B. & Pyza, E. M. Effects of PINK1 mutation on synapses and behavior in the brain of Drosophila melanogaster. Acta Neurobiol. Exp. (Wars.) 78, 231–241 (2018).

    Google Scholar 

  21. Li, Y. X. & Dijkers, P. F. Specific calcineurin isoforms are involved in Drosophila Toll immune signaling. J. Immunol. 194, 168–176 (2015).

    CAS  Article  PubMed  Google Scholar 

  22. Tain, L. S. et al. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat. Neurosci. 12, 1129–1135 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Han, Z. S. & Ip, Y. T. Interaction and specificity of Rel-related proteins in regulating Drosophila immunity gene expression. J. Biol. Chem. 274, 21355–21361 (1999).

    CAS  Article  PubMed  Google Scholar 

  24. Franz, A., Wood, W. & Martin, P. Fat body cells are motile and actively migrate to wounds to drive repair and prevent infection. Dev. Cell 44, 460–470 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Karpac, J., Younger, A. & Jasper, H. Dynamic coordination of innate immune signaling and insulin signaling regulates systemic responses to localized DNA damage. Dev. Cell 20, 841–854 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Maitra, U., Scaglione, M. N., Chtarbanova, S. & O’Donnell, J. M. Innate immune responses to paraquat exposure in a Drosophila model of Parkinson’s disease. Sci. Rep. 9, 12714 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rera, M., Clark, R. I. & Walker, D. W. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc. Natl Acad. Sci. USA 109, 21528–21533 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Suen, D. F., Norris, K. L. & Youle, R. J. Mitochondrial dynamics and apoptosis. Genes Dev. 22, 1577–1590 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Naszai, M., Carroll, L. R. & Cordero, J. B. Intestinal stem cell proliferation and epithelial homeostasis in the adult Drosophila midgut. Insect Biochem. Mol. Biol. 67, 9–14 (2015).

    CAS  Article  PubMed  Google Scholar 

  30. Micchelli, C. A. & Perrimon, N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439, 475–479 (2006).

    CAS  Article  PubMed  Google Scholar 

  31. Harsh, S., Heryanto, C. & Eleftherianos, I. Intestinal lipid droplets as novel mediators of host–pathogen interaction in Drosophila. Biol. Open https://doi.org/10.1242/bio.039040 (2019).

  32. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shokri, L. et al. A comprehensive Drosophila melanogaster transcription factor interactome. Cell Rep. 27, 955–970 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Sarov-Blat, L., So, W. V., Liu, L. & Rosbash, M. The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior. Cell 101, 647–656 (2000).

    CAS  Article  PubMed  Google Scholar 

  35. Ahmad, M., He, L. & Perrimon, N. Regulation of insulin and adipokinetic hormone/glucagon production in flies. Wiley Interdiscip. Rev. Dev. Biol. https://doi.org/10.1002/wdev.360 (2019).

  36. Post, S. et al. Drosophila insulin-like peptides DILP2 and DILP5 differentially stimulate cell signaling and glycogen phosphorylase to regulate longevity. Front. Endocrinol. (Lausanne) 9, 245 (2018).

    Article  Google Scholar 

  37. Park, S. et al. A genetic strategy to measure circulating Drosophila insulin reveals genes regulating insulin production and secretion. PLoS Genet. 10, e1004555 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heller, S. et al. Intestinal inflammation requires FOXO3 and prostaglandin E2-dependent lipogenesis and elevated lipid droplets. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G844–G854 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim, S. et al. Transneuronal propagation of pathologic alpha-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103, 627–641 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Miguel-Aliaga, I., Jasper, H. & Lemaitre, B. Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics 210, 357–396 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Yin, S., Qin, Q. H. & Zhou, B. Functional studies of Drosophila zinc transporters reveal the mechanism for zinc excretion in Malpighian tubules. BMC Biol. 15, 12 (2017).

  42. Nehme, N. T. et al. A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog. 3, 1694–1709 (2007).

    CAS  Article  Google Scholar 

  43. Quinn, L. et al. Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J. 22, 3568–3579 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Allen, J. F. Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J. Theor. Biol. 165, 609–631 (1993).

    CAS  Article  PubMed  Google Scholar 

  45. Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Meyer, S. N. et al. An ancient defense system eliminates unfit cells from developing tissues during cell competition. Science 346, 1258236 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Liu, Y. et al. Inflammation-induced, STING-dependent autophagy restricts Zika virus infection in the Drosophila brain. Cell Host Microbe 24, 57–68 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Lee, J. J., Andreazza, S. & Whitworth, A. J. The STING pathway does not contribute to behavioural or mitochondrial phenotypes in Drosophila Pink1/parkin or mtDNA mutator models. Sci. Rep. 10, 2693 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Petersen, A. J., Katzenberger, R. J. & Wassarman, D. A. The innate immune response transcription factor relish is necessary for neurodegeneration in a Drosophila model of ataxia-telangiectasia. Genetics 194, 133–142 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Lee, H. S., Lobbestael, E., Vermeire, S., Sabino, J. & Cleynen, I. Inflammatory bowel disease and Parkinson’s disease: common pathophysiological links. Gut 70, 408–417 (2021).

    CAS  PubMed  Google Scholar 

  51. Bravo-San Pedro, J. M. & Senovilla, L. Immunostimulatory activity of lifespan-extending agents. Aging (Albany NY) 5, 793–801 (2013).

    CAS  Article  Google Scholar 

  52. Puig, O., Marr, M. T., Ruhf, M. L. & Tjian, R. Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev. 17, 2006–2020 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Rynes, J. et al. Activating transcription factor 3 regulates immune and metabolic homeostasis. Mol. Cell. Biol. 32, 3949–3962 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Song, W. et al. Activin signaling mediates muscle-to-adipose communication in a mitochondria dysfunction-associated obesity model. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1708037114 (2017).

  55. Van Den Berge, N. et al. Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats. Acta Neuropathol. 138, 535–550 (2019).

    Article  CAS  Google Scholar 

  56. Scopelliti, A. et al. A neuronal relay mediates a nutrient ersponsive gut/fat body axis regulating energy homeostasis in adult Drosophila. Cell Metab. 29, 269–284 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Melnattur, K., Zhang, B. & Shaw, P. J. Disrupting flight increases sleep and identifies a novel sleep-promoting pathway in Drosophila. Sci. Adv. 6, eaaz2166 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Williams, J. A., Sathyanarayanan, S., Hendricks, J. C. & Sehgal, A. Interaction between sleep and the immune response in Drosophila: a role for the NFkappaB relish. Sleep 30, 389–400 (2007).

    Article  PubMed  Google Scholar 

  59. Badinloo, M. et al. Overexpression of antimicrobial peptides contributes to aging through cytotoxic effects in Drosophila tissues. Arch. Insect Biochem. Physiol. 98, e21464 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Clark, R. I. et al. Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality. Cell Rep. 12, 1656–1667 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Nassel, D. R., Kubrak, O. I., Liu, Y. T., Luo, J. N. & Lushchak, O. V. Factors that regulate insulin producing cells and their output in Drosophila. Front. Physiol. 4, 252 (2013).

  62. Gatto, L. & Lilley, K. S. MSnbase—an R/bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics 28, 288–289 (2012).

    CAS  Article  PubMed  Google Scholar 

  63. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).

    Google Scholar 

  64. Donelson, N. C. et al. High-resolution positional tracking for long-term analysis of Drosophila sleep and locomotion using the “tracker” program. PLoS ONE 7, e37250 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Rera, M. et al. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab. 14, 623–634 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Martins, R. R., McCracken, A. W., Simons, M. J. P., Henriques, C. M. & Rera, M. How to catch a Smurf? – Ageing and beyond… in vivo assessment of intestinal permeability in multiple model organisms. Bio-Protoc. https://doi.org/10.21769/BioProtoc.2722 (2018).

  67. Whitworth, A. J. et al. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc. Natl Acad. Sci. USA 102, 8024–8029 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Tennessen, J. M., Barry, W. E., Cox, J. & Thummel, C. S. Methods for studying metabolism in Drosophila. Methods 68, 105–115 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Moraru, A. et al. Elevated levels of the reactive metabolite methylglyoxal recapitulate progression of type 2 diabetes. Cell Metab. 27, 926–934 (2018).

    CAS  Article  PubMed  Google Scholar 

  70. Zhao, X. & Karpac, J. Muscle directs diurnal energy homeostasis through a myokine-dependent hormone module in Drosophila. Curr. Biol. 27, 1941–1955 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Wexler, E. J. Photoshop CS3 Extended for BioMedical Research CD-ROM – February 8, 2008 (Lynda.com, Inc., 2008).

Download references

Acknowledgements

Proteomics analysis was performed at the Cambridge Centre for Proteomics by R. Feret, M. Deery and Y. Umrania. We thank the Vienna Drosophila RNAi Center, Bloomington Drosophila Stock Center, J. Cordero, A. Telemans, A. Franz and E. Rosato for provision of fly stocks; the Fly Facility, Department of Genetics, University of Cambridge, for maintaining the stocks; and T. Ashby and M. Patel for preparing the fly food. This work was funded by the UK Medical Research Council intramural project MC_UU_00025/3 (no. RG94521) to L.M.M. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

G.F., I.C., S.H.Y.L. and L.M.M. initiated the project. G.F., S.H.Y.L. and L.M.M. designed the study, coordinated the experiments and provided conceptual inputs for the paper. G.F., S.H.Y.L. and L.M.M. wrote the manuscript. G.F., I.C., N.S.L., S.L., A.C.C., S.H.Y.L. and L.M.M. performed experiments and analyzed data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to L. Miguel Martins.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Daewoo Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary table legends.

Reporting Summary

Supplementary Tables

The file contains Supplementary Tables 1–4.

Source data

Source Data Fig. 2

Unprocessed immunoblot for Fig. 2f.

Source Data Fig. 3

Unprocessed immunoblot for Fig. 3c.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fedele, G., Loh, S.H.Y., Celardo, I. et al. Suppression of intestinal dysfunction in a Drosophila model of Parkinson’s disease is neuroprotective. Nat Aging 2, 317–331 (2022). https://doi.org/10.1038/s43587-022-00194-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-022-00194-z

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing