Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The energy–splicing resilience axis hypothesis of aging

Aging can be conceptualized as the stochastic accumulation of damage and loss of resilience leading to organism demise. Resilience mechanisms that repair, recycle or replace damaged molecules and organelles are energy-demanding, therefore energy availability is essential to healthy aging. We propose that changes in mitochondrial and energy status regulate RNA splicing and that splicing is a resilience strategy that preserves energetic homeostasis with aging.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Skeletal muscle proteomics.
Fig. 2: Energy–splicing resilience axis.

References

  1. Ferrucci, L. et al. Aging Cell 19, e13080 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  2. Kennedy, B. K. et al. Cell 159, 709–713 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  3. Jang, J. Y., Blum, A., Liu, J. & Finkel, T. J. Clin. Invest. 128, 3662–3670 (2018).

    Article  PubMed Central  Google Scholar 

  4. Herzig, S. & Shaw, R. J. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  5. Wahl, M. C., Will, C. L. & Lührmann, R. Cell 136, 701–718 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  6. Lee, Y. & Rio, D. C. Annu. Rev. Biochem. 84, 291–323 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  7. Wang, Z. & Burge, C. B. RNA 14, 802–813 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  8. Bhadra, M., Howell, P., Dutta, S., Heintz, C. & Mair, W. B. Hum. Genet. 139, 357–369 (2020).

    Article  PubMed Central  Google Scholar 

  9. Zeng, L. et al. Aging Cell 19, e13121 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  10. Harries, L. W. et al. Aging Cell 10, 868–878 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  11. Holly, A. C. et al. Mech. Ageing Dev. 134, 356–366 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  12. Lee, B. P. et al. Aging Cell 15, 903–913 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  13. Rodríguez, S. A. et al. Aging Cell 15, 267–278 (2016).

    Article  Google Scholar 

  14. Tollervey, J. R. et al. Genome Res. 21, 1572–1582 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  15. Mazin, P. et al. Mol. Syst. Biol. 9, 633 (2013).

    Article  PubMed Central  Google Scholar 

  16. Wang, K. et al. Sci. Rep. 8, 10929 (2018).

    Article  PubMed Central  Google Scholar 

  17. Gonzalo, S., Kreienkamp, R. & Askjaer, P. Ageing Res. Rev. 33, 18–29 (2017).

    Article  CAS  Google Scholar 

  18. Lee, B. P. et al. Biogerontology 20, 649–663 (2019).

    Article  PubMed Central  Google Scholar 

  19. Ubaida-Mohien, C. et al. eLife 8, e49874 (2019).

    Article  PubMed Central  Google Scholar 

  20. Kourtis, N. & Tavernarakis, N. EMBO J. 30, 2520–2531 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  21. Ubaida-Mohien, C. et al. Front. Physiol. 10, 312 (2019).

    Article  PubMed Central  Google Scholar 

  22. Adelnia, F. et al. Aging Cell 19, e13124 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  23. Ruetenik, A. & Barrientos, A. Biochim. Biophys. Acta 1847, 1434–1447 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  24. Rhoads, T. W. et al. Cell Metab. 27, 677–688 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  25. Lee, B. P. et al. Exp. Gerontol. 128, 110736 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  26. Heintz, C. et al. Nature 541, 102–106 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  27. Matsumoto, E. et al. Biochem. J. 477, 2237–2248 (2020).

    Article  PubMed Central  Google Scholar 

  28. Kulkarni, A. S. et al. Aging 12, 19852–19866 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  29. Salminen, A. & Kaarniranta, K. Ageing Res. Rev. 11, 230–241 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  30. Egesipe, A. L. et al. NPJ Aging Mech. Dis. 2, 16026 (2016).

    Article  PubMed Central  Google Scholar 

  31. Tumasian, R. A. III et al. Nat. Commun. 12, 2014 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  32. Maracchioni, A. et al. J. Neurochem. 100, 142–153 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  33. Heyd, F., Carmo-Fonseca, M. & Möröy, T. J. Biol. Chem. 283, 19636–19645 (2008).

    Article  CAS  Google Scholar 

  34. Liu, Y. et al. Sci. Rep. 7, 5754 (2017).

    Article  PubMed Central  Google Scholar 

  35. Christofk, H. R. et al. Nature 452, 230–233 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  36. Salminen, A., Kauppinen, A. & Kaarniranta, K. Cell. Mol. Life Sci. 72, 3897–3914 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  37. Farina, A. R. et al. J. Exp. Clin. Cancer Res. 39, 110 (2020).

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the National Institute on Aging, NIH.

Author information

Authors and Affiliations

Authors

Contributions

L.F. conceived the axis model, and all authors participated in identifying relevant literature, refining the model and writing and editing the Comment.

Corresponding author

Correspondence to Luigi Ferrucci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrucci, L., Wilson, D.M., Donegà, S. et al. The energy–splicing resilience axis hypothesis of aging. Nat Aging 2, 182–185 (2022). https://doi.org/10.1038/s43587-022-00189-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-022-00189-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing