Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Healthy aging and muscle function are positively associated with NAD+ abundance in humans

Abstract

Skeletal muscle is greatly affected by aging, resulting in a loss of metabolic and physical function. However, the underlying molecular processes and how (lack of) physical activity is involved in age-related metabolic decline in muscle function in humans is largely unknown. Here, we compared, in a cross-sectional study, the muscle metabolome from young to older adults, whereby the older adults were exercise trained, had normal physical activity levels or were physically impaired. Nicotinamide adenine dinucleotide (NAD+) was one of the most prominent metabolites that was lower in older adults, in line with preclinical models. This lower level was even more pronounced in impaired older individuals, and conversely, exercise-trained older individuals had NAD+ levels that were more similar to those found in younger individuals. NAD+ abundance positively correlated with average number of steps per day and mitochondrial and muscle functioning. Our work suggests that a clear association exists between NAD+ and health status in human aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The metabolome of human muscle aging.
Fig. 2: Muscle NAD+ levels are related to muscle health during aging.
Fig. 3: Major NAD+ metabolites and changes in healthy muscle aging.
Fig. 4: Molecular–physiological and NAD+-related healthy aging network.

Similar content being viewed by others

Data availability

Metabolomics data are available as supplementary materials accompanying this article as both summary statistics and processed abundance values per individual (statistical Source Data). Physiological data from this cohort have been reported in our previous study as part of a different analysis25. All other data supporting the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Code supporting the findings of this study are available from the corresponding author upon reasonable request

References

  1. Salomon, J. A. et al. Healthy life expectancy for 187 countries, 1990–2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet 380, 2144–2162 (2012).

    Article  PubMed  Google Scholar 

  2. Ferrucci, L. et al. Epidemiology of aging. Radiol. Clin. North Am. 46, 643–652 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  3. Butler, R. N. et al. New model of health promotion and disease prevention for the 21st century. BMJ. 337, a399 (2008).

    Article  PubMed  Google Scholar 

  4. Niccoli, T. & Partridge, L. Ageing as a risk factor for disease. Curr. Biol. 22, R741–R752 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  6. Houtkooper, R. H. et al. The metabolic footprint of aging in mice. Sci. Rep. 1, 134 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  7. Uchitomi, R. et al. Metabolomic analysis of skeletal muscle in aged mice. Sci. Rep. 9, 10425 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  8. Gao, A. W. et al. A sensitive mass spectrometry platform identifies metabolic changes of life history traits in C. elegans. Sci. Rep. 7, 2408 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  9. Roubenoff, R. Sarcopenia and its implications for the elderly. Eur. J. Clin. Nutr. 54, S40–S47 (2000).

    Article  PubMed  Google Scholar 

  10. Janssen, I. et al. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 50, 889–896 (2002).

    Article  PubMed  Google Scholar 

  11. Distefano, G. et al. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. J. Cachexia. Sarcopenia Muscle 9, 279–294 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  12. Talbot, L. A. et al. Falls in young, middle-aged and older community dwelling adults: perceived cause, environmental factors and injury. BMC Public Health 5, 86 (2005).

    Article  PubMed Central  PubMed  Google Scholar 

  13. Gadelha, A. B. et al. The relationship between muscle quality and incidence of falls in older community-dwelling women: an 18-month follow-up study. Exp. Gerontol. 110, 241–246 (2018).

    Article  PubMed  Google Scholar 

  14. Fried, L. P. et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 56, M146–M156 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Amati, F. et al. Physical inactivity and obesity underlie the insulin resistance of aging. Diabetes Care 32, 1547–1549 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  16. Riera, C. E. & Dillin, A. Tipping the metabolic scales towards increased longevity in mammals. Nat. Cell Biol. 17, 196–203 (2015).

    Article  PubMed  Google Scholar 

  17. Romani, M. et al. NAD+ boosting reduces age-associated amyloidosis and restores mitochondrial homeostasis in muscle. Cell Rep. 34, 108660 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Cartee, G. D., Hepple, R. T., Bamman, M. M. & Zierath, J. R. Exercise promotes healthy aging of skeletal muscle. Cell Metab. 23, 1034–1047 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Greggio, C. et al. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab. 25, 301–311 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Soga, T. et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J. Biol. Chem. 281, 16768–16776 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Dello, S. A. W. D. et al. Systematic review of ophthalmate as a novel biomarker of hepatic glutathione depletion. Clin. Nutr. 32, 325–330 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Smith, K. R. et al. Dihydroxyacetone exposure alters NAD(P)H and induces mitochondrial stress and autophagy in HEK293T cells. Chem. Res. Toxicol. 32, 1722–1731 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gluck, M. R. & Zeevalk, G. D. Inhibition of brain mitochondrial respiration by dopamine and its metabolites: implications for Parkinson’s disease and catecholamine-associated diseases. J. Neurochem. 91, 788–795 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Wirthgen, E. et al. The Janus-faced role of an immunomodulatory tryptophan metabolite and its link to pathological conditions. Front. Immunol. 8, 1957 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  25. Grevendonk, L. et al. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nat. Commun. 12, 1–17 (2021).

    Article  Google Scholar 

  26. Rajman, L. et al. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 27, 529–547 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Remie, C. M. E. et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am. J. Clin. Nutr. 112, 413–426 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  28. Pirinen, E. et al. Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 31, 1078–1090 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Elhassan, Y. S. et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 28, 1717–1728 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Cantó, C. et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15, 838–847 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  31. Sorrentino, V. et al. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 552, 187–193 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Zhang, H. et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Gomes, A. P. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mills, K. F. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 24, 795–806 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Yoshino, J. et al. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 431–441 (2013).

    Article  Google Scholar 

  37. Connell, N. J. et al. NAD+ metabolism as a target for metabolic health: have we found the silver bullet? Diabetologia 62, 888–899 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Tudor-Locke, C. et al. How many steps/day are enough? For adults. Int. J. Behav. Nutr. Phys. Act. 8, 79 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  39. Tudor-Locke, C. et al. Revisiting ‘how many steps are enough?’ Med. Sci. Sports Exerc. 40, S537–S543 (2008).

    Article  PubMed  Google Scholar 

  40. Zhu, X. H. et al. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences.Proc. Natl. Acad. Sci. USA 112, 2876–2881 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Cuenoud, B. et al. Brain NAD is associated with ATP energy production and membrane phospholipid turnover in humans.Front. Aging Neurosci. 12, 609517 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  42. Massudi, H. et al. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One 7, e42357.

  43. de Guia, R. M. et al. Aerobic and resistance exercise training reverses age-dependent decline in NAD+ salvage capacity in human skeletal muscle.Physiol. Rep. 7, e14139 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  44. Drummond, M. J. et al. Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis.Physiol. Genomics 43, 595–603 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Fazelzadeh, P. et al. The muscle metabolome differs between healthy and frail older adults.J. Proteome Res. 15, 499–509 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Rivas, D. A. et al. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J. 28, 4133–4147 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Migliavacca, E. et al. Mitochondrial oxidative capacity and NAD+ biosynthesis are reduced in human sarcopenia across ethnicities.Nat. Commun. 10, 5808 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Costford, S. R. et al. Skeletal muscle NAMPT is induced by exercise in humans.Am. J. Physiol. Endocrinol. Metab. 298, E117–E126 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Zha, M. et al. Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies.J. Mol. Biol. 379, 568–578 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Perraud, A. L. et al. NUDT9, a member of the Nudix hydrolase family, is an evolutionarily conserved mitochondrial ADP-ribose pyrophosphatase.J. Biol. Chem. 278, 1794–1801 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Hove-Jensen, B. et al. Phosphoribosyl diphosphate (PRPP): biosynthesis, enzymology, utilization, and metabolic significance.Microbiol. Mol. Biol. Rev. 81, e00040-16 (2017).

    Article  PubMed  Google Scholar 

  52. Kepplinger, B. et al. Age-related increase of kynurenic acid in human cerebrospinal fluid: IgG and β2-microglobulin changes.Neurosignals 14, 126–135 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Vohra, M. et al. Kynurenic acid accumulation underlies learning and memory impairment associated with aging.Genes Dev. 32, 14–19 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Calder, P. et al. Health relevance of the modification of low-grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res. Rev. 40, 95–119 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Lim, A. et al. Does exercise influence kynurenine/tryptophan metabolism and psychological outcomes in persons with age-related diseases? A systematic review. Int. J. Tryptophan Res. 14, 1178646921991119 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  56. Sorgdrager, F. J. H. et al. Tryptophan metabolism in inflammaging: from biomarker to therapeutic target. Front. Immunol. 10, 2565 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Agudelo, L. Z. et al. Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance.Nat. Commun. 10, 2767 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  58. Yoshino, M. et al. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women.Science 372, 1224–1229 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Moore, P. & Mucinski, J. M. Impact of nicotinamide riboside supplementation on skeletal muscle mitochondria and whole-body glucose homeostasis: challenging the current hypothesis.J. Physiol. 598, 3327–3328 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Aagaard, P. et al. Mechanical muscle function, morphology, and fiber type in lifelong trained elderly.Med. Sci. Sports Exerc. 39, 1989–1996 (2007).

    Article  PubMed  Google Scholar 

  61. Mackey, A. L. et al. Differential satellite cell density of type I and II fibres with lifelong endurance running in old men.Acta Physiol. 210, 612–627 (2014).

    Article  CAS  Google Scholar 

  62. Mosole, S. et al. Long-term high-level exercise promotes muscle reinnervation with age.J. Neuropathol. Exp. Neurol. 73, 284–294 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Di Lisa, F. & Ziegler, M. Pathophysiological relevance of mitochondria in NAD+ metabolism. FEBS Lett. 492, 4–8 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Guralnik, J. M. et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission.J. Gerontol. 49, M85–M94 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Bergström, J. et al. Diet, muscle glycogen and physical performance.Acta Physiol. Scand. 71, 140–150 (1967).

    Article  PubMed  Google Scholar 

  66. Phielix, E. et al. Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 57, 2943–2949 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Boushel, R. et al. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle.Diabetologia 50, 790–796 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Hoeks, J. et al. Prolonged fasting identifies skeletal muscle mitochondrial dysfunction as consequence rather than cause of human insulin resistance.Diabetes 59, 117–125 (2010).

    Article  Google Scholar 

  69. van Moorsel, D. et al. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity.Mol. Metab. 5, 635–645 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Schrauwen-Hinderling, V. B. et al. Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia 50, 113–120 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Kemp, G. J. & Radda, G. K. Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review.Magn. Reson. W. 10, 43–63 (1994).

    CAS  Google Scholar 

  72. Weir, J. B. d. V. et al. New methods for calculating metabolic rate with special reference to protein metabolism.J. Physiol. 109, 1–9 (1949).

    Article  PubMed Central  PubMed  Google Scholar 

  73. Matomäki, P. A comparison of methodological approaches to measuring cycling mechanical efficiency.Sports Med. Open 5, 23 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  74. van der Berg, J. D. et al. Identifying waking time in 24-h accelerometry data in adults using an automated algorithm.J. Sports Sci. 34, 1867–1873 (2016).

    Article  PubMed  Google Scholar 

  75. Molenaars, M. et al. A conserved mito-cytosolic translational balance links two longevity pathways.Cell Metab. 31, 549–563 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Zapata-Pérez, R. et al. Reduced nicotinamide mononucleotide is a new and potent NAD+ precursor in mammalian cells and mice.FASEB J. 35, e21456 (2021).

    Article  PubMed  Google Scholar 

  77. The R Development Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2010).

  78. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics.Genome Biol. 5, R80 (2004).

    Article  PubMed Central  PubMed  Google Scholar 

  79. Wickham, H., François, R., Henry, L. & Müller, K. dplyr: a grammar of data manipulation. R package version (Media, 2019).

  80. Rohart, F., Gautier, B., Singh, A. & Lê Cao, K. A. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  81. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  82. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  83. Csardi, G. & Nepusz, T. The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006).

    Google Scholar 

  84. Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).

    Article  Google Scholar 

  85. Kassambara, A. Package ‘ggpubr’: ‘ggplot2’ based publication ready plots. R package v.0.4.0 (2020).

  86. Slowikowski, K. ggrepel: automatically position non-overlapping text labels with ‘ggplot2’. R package v.0.8.2 (2020).

  87. Neuwirth, E. RColorBrewer: ColorBrewer palettes. R package v.1.1-2 (2014).

Download references

Acknowledgements

L.G., J.H. and P.S. are financially supported by the TI Food and Nutrition (TIFN) research program Mitochondrial Health (ALWTF.2015.5) and the Netherlands Organization for Scientific Research. Work in the Houtkooper group is financially supported by the European Research Council (starting grant 638290), ZonMw (Vidi grant 91715305) and Velux Stiftung (grant 1063). G.E.J. is supported by a Veni grant from ZonMw and an Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Talent grant. R.Z.P. is supported by a postdoctoral grant from the European Union’s Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement 840110. The funders had no role in data collection and analysis or decision to publish.

Author information

Authors and Affiliations

Authors

Contributions

G.E.J., L.G., P.S., J.H. and R.H.H. conceived the study. L.G. designed and performed the human cohort characterization and experiments. G.E.J. designed and performed the bioinformatics analyses. R.Z.P., B.V.S., and M.v.W. performed the metabolomics analyses. J.M.W.G. and J.d.V.-v.d.B. reviewed the manuscript. G.E.J., L.G., R.Z.P., B.V.S., P.S., R.H.H. and J.H. interpreted the results and wrote the manuscript with contributions from all other authors.

Corresponding authors

Correspondence to Riekelt H. Houtkooper or Joris Hoeks.

Ethics declarations

Competing interests

J.M.W.G. and J.d.V.-v.d.B. are affiliated with FrieslandCampina and Danone Nutricia Research, respectively, which sponsored the TI Food and Nutrition (TIFN) program and partly financed the project that led to human sample collection. They had no role in data collection, analysis, or decision to publish. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Nicholas Rattray, Paul Coen, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Global metabolomics changes of human muscle aging.

(a) Principal Component Analysis (PCA) of metabolomes of young and older individuals possessing equal physical activity levels (‘young’ vs ‘normal older adults’). (b) Volcano plot of fold change (x axis, log2 scale) versus p value (y axis, -log10 scale) for older adults (n = 17) compared to young individuals (n = 12) with equal physical activity levels, illustrating significantly lower (blue) or higher (red) metabolites with age. The horizontal line indicates significance (p < 0.05). Significance was determined using an empirical Bayes moderated t test (two-sided, p values adjusted for multiple comparisons between groups). Source data: Statistical_Source_Data.csv, all exact p values for comparison between groups are listed therein.

Source data

Extended Data Fig. 2 Comparison of age-related changes in each age group.

(a) Volcano plots of fold change (x axis, log2 scale) versus p value (y axis, -log10 scale) for trained older adults (top; n = 17), and physically impaired older adults (bottom; n = 6) compared to young individuals (n = 12), illustrating significantly depleted (blue) or accumulated (red) metabolites with age. Line indicates significance (p < 0.05). Significance was determined using an empirical Bayes moderated t test (two-sided, p values adjusted for multiple comparisons between groups). (b) Venn diagram of the overlap of significantly higher or lower abundances of metabolites in each aged group (trained older adults, older adults with normal physical activity levels, physically impaired older adults) compared to young individuals (p < 0.05). Source data: Statistical_Source_Data.csv, all exact p values for comparison between groups are listed therein.

Source data

Extended Data Fig. 3 NAD+-related metabolites of healthy aging groups.

(a-l) Abundance levels of NAD + -related metabolites in the four muscle health groups, for (A) ADP-ribose, (B) Kynurenic acid, (C) Kynurenine, (D) Methyl-NAM, (E) NAD + , (F) NADH, (G) NADP + , (H) NADPH, (I) Nicotinamide mononucleotide (NMN), (J) Dihydronicotinamide riboside (NRH), (K) Ribose-5P, and (L) Tryptophan. Sample sizes are: young n = 12, older adults; trained n = 17, Normal=17, impaired=6. Significance was determined using an empirical Bayes moderated t test (two-sided, p values adjusted for multiple comparisons between groups, * p < 0.05, ** p < 0.01, *** p < 0.001, n.s. = not significant). Boxplots: Inner line within the box is the median of the data, the box extends to the upper and lower quartile of the dataset (25% of the data above and below the median), whiskers (dashed lines) represent up to 1.5 times the upper or lower quartiles, circles beyond the whisker represent individual data points outside this range. Source data: Statistical_Source_Data.csv, all exact p values for comparison between groups are listed therein.

Source data

Extended Data Fig. 4 NAD+/ NADH ratio, and the glutathione/oxiglutathion oxidative stress pathway.

(a) NAD + to NADH ratio (log2 scale) in young and older adults belonging to trained, normal, and impaired aging groups. (b) The glutathione – oxliglutathione oxidative stress pathway for metabolites measured in this study. Glutamate and glycine feed into glutathione production. Conversion of glutathione to oxiglutathione results in quenching of free radicals, whereby the ratio of glutathione to oxiglutathione is indicative of this process. A byproduct of this pathway is ophthalmic acid (data presented in Fig. 2c). Data suggests an increase of the oxidative milieu in the aged groups relative to young. Sample sizes are: young n = 12, older adults; trained n = 17, Normal=17, impaired=6. Significance was determined using an empirical Bayes moderated t test (two-sided, p values adjusted for multiple comparisons between groups, * p < 0.05, ** p < 0.01, n.s. = not significant). Boxplots: Inner line within the box is the median of the data, the box extends to the upper and lower quartile of the dataset (25% of the data above and below the median), whiskers (dashed lines) represent up to 1.5 times the upper or lower quartiles, circles beyond the whisker represent individual data points outside this range. Source data: Statistical_Source_Data.csv, all exact p values for comparison between groups are listed therein.

Source data

Extended Data Fig. 5 Correlation of molecular–physiological phenotypes with metabolites involved in NAD+ synthesis.

(a) Correlation matrix comparing the paired metabolome (dark blue) and muscle health parameters (light blue) in the older adults (Pearson’s product-moment correlation coefficient, sample size is all older adults, n = 40). The scale ranges from blue (negative correlation), to yellow (no correlation), to red (positive correlation). Inset and cartoon: correlation between metabolites and muscle health parameters are used to reconstruct the network. (b) Abbreviations and measurements of the molecular-physiological phenotypes assessed in this analysis. Note: MOGS3, state 3 respiration upon malate + octanoyl-carnitine + glutamate + succinate, MGS3, state 3 respiration upon malate + glutamate + succinate. Source data: Statistical_Source_Data.csv and physiological data is available in our previous study25.

Source data

Supplementary information

Source data

Source Data Fig. 1

CSV file of raw metabolomics data and group statistics underlying the figure.

Source Data Fig. 2

CSV file of raw metabolomics data and group statistics underlying the figure.

Source Data Fig. 3

CSV file of raw metabolomics data and group statistics underlying the figure.

Source Data Fig. 4

CSV file of raw metabolomics data and group statistics underlying the figure (the original population characteristics publication is available at 10.1038/s41467-021-24956-2).

Source Data Extended Data Fig. 1

CSV file of raw metabolomics data and group statistics underlying the figure.

Source Data Extended Data Fig. 2

CSV file of raw metabolomics data and group statistics underlying the figure.

Source Data Extended Data Fig. 3

CSV file of raw metabolomics data and group statistics underlying the figure.

Source Data Extended Data Fig. 4

CSV file of raw metabolomics data and group statistics underlying the figure.

Source Data Extended Data Fig. 5

CSV file of raw metabolomics data and group statistics underlying the figure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janssens, G.E., Grevendonk, L., Perez, R.Z. et al. Healthy aging and muscle function are positively associated with NAD+ abundance in humans. Nat Aging 2, 254–263 (2022). https://doi.org/10.1038/s43587-022-00174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-022-00174-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research