Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

Bifidobacterium adolescentis regulates catalase activity and host metabolism and improves healthspan and lifespan in multiple species

Abstract

To identify candidate bacteria associated with aging, we performed fecal microbiota sequencing in young, middle-aged and older adults, and found lower Bifidobacterium adolescentis abundance in older individuals aged ≥60 years. Dietary supplementation of B. adolescentis improved osteoporosis and neurodegeneration in a mouse model of premature aging (Terc−/−) and increased healthspan and lifespan in Drosophila melanogaster and Caenorhabditis elegans. B. adolescentis supplementation increased the activity of the catalase (CAT) enzyme in skeletal muscle and brain tissue from Terc−/− mice, and suppressed cellular senescence in mouse embryonic fibroblasts. Transgenic deletion of catalase (ctl-2) in C. elegans abolished the effects of B. adolescentis on the lifespan and healthspan. B. adolescentis feeding also led to changes in oxidative stress-associated metabolites in Terc−/− mouse feces. These results suggest a role for B. adolescentis in improving the healthspan and lifespan through the regulation of CAT activity and host metabolism.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Alteration of gut microbiota diversity and B. adolescentis abundance with human aging.
Fig. 2: B. adolescentis feeding suppresses premature aging in Terc−/− mice.
Fig. 3: B. adolescentis supplementation induces lifespan extension and healthspan improvement in D. melanogaster and C. elegans.
Fig. 4: CAT is essential for lifespan and healthspan regulation by B. adolescentis in C. elegans and Terc−/− mice.

Data availability

All data supporting the findings of the present study are available within this article and the Supplementary Information files. Source data are provided with this paper. Raw 16S rRNA-sequencing data files are available in the Sequence Read Archive database under accession no. PRJNA625181 (http://www.ncbi.nlm.nih.gov/bioproject/625181).

References

  1. Bana, B. & Cabreiro, F. The microbiome and aging. Annu. Rev. Genet. 53, 239–261 (2019).

    CAS  PubMed  Google Scholar 

  2. Obata, F., Fons, C. O. & Gould, A. P. Early-life exposure to low-dose oxidants can increase longevity via microbiome remodelling in Drosophila. Nat. Commun. 9, 975 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. Biagi, E. et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5, e10667 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. Barcena, C. et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat. Med. 25, 1234–1242 (2019).

    CAS  PubMed  Google Scholar 

  5. Wang, F. et al. Gut microbiota community and its assembly associated with age and diet in Chinese centenarians. J. Microbiol. Biotechnol. 25, 1195–1204 (2015).

    CAS  PubMed  Google Scholar 

  6. Kim, B. S. et al. Comparison of the gut microbiota of centenarians in longevity villages of South Korea with those of other age groups. J. Microbiol. Biotechnol. 29, 429–440 (2019).

    PubMed  Google Scholar 

  7. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Backhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    CAS  PubMed  Google Scholar 

  8. Ruiz-Ruiz, S. et al. Functional microbiome deficits associated with ageing: chronological age threshold. Aging Cell 19, e13063 (2020).

    CAS  PubMed  Google Scholar 

  9. Duranti, S. et al. Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA. Sci. Rep. 10, 14112 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fan, L. et al. B. adolescentis ameliorates chronic colitis by regulating Treg/Th2 response and gut microbiota remodeling. Gut Microbes 13, 1826746 (2021).

    PubMed Central  Google Scholar 

  11. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    CAS  PubMed  Google Scholar 

  12. Roberts, A. R. et al. Non-telomeric epigenetic and genetic changes are associated with the inheritance of shorter telomeres in mice. Chromosoma 122, 541–554 (2013).

    PubMed  Google Scholar 

  13. Perez-Rivero, G. et al. Mice deficient in telomerase activity develop hypertension because of an excess of endothelin production. Circulation 114, 309–317 (2006).

    CAS  PubMed  Google Scholar 

  14. Bernardes de Jesus, B. et al. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell 10, 604–621 (2011).

    CAS  PubMed  Google Scholar 

  15. Whitehead, J. C. et al. A clinical frailty index in aging mice: comparisons with frailty index data in humans. J. Gerontol. A Biol. Sci. Med. Sci. 69, 621–632 (2014).

    PubMed  Google Scholar 

  16. McHugh, D. & Gil, J. Senescence and aging: causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65–77 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kritsilis, M. et al. Ageing, Cellular senescence and neurodegenerative disease. Int. J. Mol. Sci. 19, 2937 (2018).

    PubMed Central  Google Scholar 

  18. Kundu, P., Blacher, E., Elinav, E. & Pettersson, S. Our gut microbiome: the evolving inner self. Cell 171, 1481–1493 (2017).

    CAS  PubMed  Google Scholar 

  19. Zhang, R. & Hou, A. Host–microbe interactions in Caenorhabditis elegans. ISRN Microbiol. 2013, 356451 (2013).

    PubMed  PubMed Central  Google Scholar 

  20. Kumar, A. et al. Caenorhabditis elegans: a model to understand host-microbe interactions. Cell Mol. Life Sci. 77, 1229–1249 (2020).

    CAS  PubMed  Google Scholar 

  21. Ren, C., Webster, P., Finkel, S. E. & Tower, J. Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab. 6, 144–152 (2007).

    CAS  PubMed  Google Scholar 

  22. MacNeil, L. T., Watson, E., Arda, H. E., Zhu, L. J. & Walhout, A. J. Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153, 240–252 (2013).

    CAS  PubMed  Google Scholar 

  23. Garsin, D. A. et al. Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300, 1921 (2003).

    CAS  PubMed  Google Scholar 

  24. Nakagawa, H. et al. Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans. Aging Cell 15, 227–236 (2016).

    CAS  PubMed  Google Scholar 

  25. Xiao, C. & Robertson, R. M. Locomotion induced by spatial restriction in adult Drosophila. PLoS ONE 10, e0135825 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Pomatto, L. C. D., Wong, S., Tower, J. & Davies, K. J. A. Sexual dimorphism in oxidant-induced adaptive homeostasis in multiple wild-type D. melanogaster strains. Arch. Biochem. Biophys. 636, 57–70 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Duneau, D. F. et al. The Toll pathway underlies host sexual dimorphism in resistance to both Gram-negative and Gram-positive bacteria in mated Drosophila. BMC Biol. 15, 124 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Davalli, P., Mitic, T., Caporali, A., Lauriola, A. & D’Arca, D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid. Med. Cell Longev. 2016, 3565127 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Li, P. et al. In vitro and in vivo antioxidant activities of a flavonoid isolated from celery (Apium graveolens L. var. dulce). Food Funct. 5, 50–56 (2014).

    CAS  PubMed  Google Scholar 

  30. Altinoz, M. A. & Ozpinar, A. PPAR-delta and erucic acid in multiple sclerosis and Alzheimer’s disease. Likely benefits in terms of immunity and metabolism. Int. Immunopharmacol. 69, 245–256 (2019).

    CAS  PubMed  Google Scholar 

  31. Kim, E. et al. The memory-enhancing effect of erucic acid on scopolamine-induced cognitive impairment in mice. Pharmacol. Biochem. Behav. 142, 85–90 (2016).

    CAS  PubMed  Google Scholar 

  32. Li, J. et al. Effective-component compatibility of Bufei Yishen formula II inhibits mucus hypersecretion of chronic obstructive pulmonary disease rats by regulating EGFR/PI3K/mTOR signaling. J. Ethnopharmacol. 257, 112796 (2020).

    CAS  PubMed  Google Scholar 

  33. Hao, S. et al. Hydroxycinnamic acid from corncob and its structural analogues inhibit Abeta40 fibrillation and attenuate Abeta40-induced cytotoxicity. J. Agric. Food Chem. 68, 8788–8796 (2020).

    CAS  PubMed  Google Scholar 

  34. Wu, K. C., Chiang, B. J., Tsai, W. H., Chung, S. D. & Chien, C. T. I-Tiao-Gung extract through its active component daidzin improves cyclophosphamide-induced bladder dysfunction in rat model. Neurourol. Urodyn. 37, 2560–2570 (2018).

    CAS  PubMed  Google Scholar 

  35. Stoyanova, S., Geuns, J., Hideg, E., & Van den Ende, W. The food additives inulin and stevioside counteract oxidative stress. Int. J. Food Sci. Nutr. 62, 207–214 (2020).

    Google Scholar 

  36. Quinlan, G. J., Lamb, N. J., Tilley, R., Evans, T. W. & Gutteridge, J. M. Plasma hypoxanthine levels in ARDS: implications for oxidative stress, morbidity, and mortality. Am. J. Respir. Crit. Care Med. 155, 479–484 (1997).

    CAS  PubMed  Google Scholar 

  37. Yamada, S. et al. Cholic acid enhances visceral adiposity, atherosclerosis and nonalcoholic fatty liver disease in microminipigs. J. Atheroscler. Thromb. 24, 1150–1166 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Apaya, M. K. et al. Simvastatin and a plant galactolipid protect animals from septic shock by regulating oxylipin mediator dynamics through the MAPK-cPLA2 signaling pathway. Mol. Med. 21, 988–1001 (2015).

    CAS  Google Scholar 

  39. Rombouts, C. et al. Untargeted metabolomics of colonic digests reveals kynurenine pathway metabolites, dityrosine and 3-dehydroxycarnitine as red versus white meat discriminating metabolites. Sci. Rep. 7, 42514 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Drouin, N. et al. Electromembrane extraction of highly polar compounds: analysis of cardiovascular biomarkers in plasma. Metabolites 10, 4 (2020).

    CAS  Google Scholar 

  41. Min, Z. et al. Cosmosiin increases ADAM10 expression via mechanisms Involving 5'UTR and PI3K signaling. Front. Mol. Neurosci. 11, 198 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Shin, M. K., Jeon, Y. D. & Jin, J. S. Apoptotic effect of enterodiol, the final metabolite of edible lignans, in colorectal cancer cells. J. Sci. Food Agric. 99, 2411–2419 (2019).

    CAS  PubMed  Google Scholar 

  43. Biragyn, A. & Ferrucci, L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol. 19, e295–e304 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Moya, A. & Ferrer, M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 24, 402–413 (2016).

    CAS  PubMed  Google Scholar 

  45. Kundu, P. et al. Neurogenesis and prolongevity signaling in young germ-free mice transplanted with the gut microbiota of old mice. Sci. Transl. Med. 11, eaau4760 (2019).

    CAS  PubMed  Google Scholar 

  46. Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).

    CAS  PubMed  Google Scholar 

  47. Li, L. et al. Microbial osteoporosis: the interplay between the gut microbiota and bones via host metabolism and immunity. Microbiologyopen 8, e00810 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Biver, E. et al. Gut microbiota and osteoarthritis management: an expert consensus of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Ageing Res. Rev. 55, 100946 (2019).

    CAS  PubMed  Google Scholar 

  49. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Caussy, C. & Loomba, R. Gut microbiome, microbial metabolites and the development of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 15, 719–720 (2018).

    PubMed  Google Scholar 

  51. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tang, W. H. W., Backhed, F., Landmesser, U. & Hazen, S. L. Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73, 2089–2105 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Wang, S. et al. Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: from C. elegans to mice. Geroscience 42, 333–352 (2020).

    CAS  PubMed  Google Scholar 

  54. Han, B. et al. Microbial genetic composition tunes host longevity. Cell 169, 1249–1262,e1213 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Petriv, O. I. & Rachubinski, R. A. Lack of peroxisomal catalase causes a progeric phenotype in Caenorhabditis elegans. J. Biol. Chem. 279, 19996–20001 (2004).

    CAS  PubMed  Google Scholar 

  56. Lee, K. A. et al. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153, 797–811 (2013).

    CAS  PubMed  Google Scholar 

  57. Vaccaro, A. et al. Sleep loss can cause death through accumulation of reactive oxygen species in the gut. Cell 181, 1307–1328.e1315 (2020).

    CAS  PubMed  Google Scholar 

  58. Ackman, R. G., Eaton, C. A. & Dyerberg, J. Marine docosenoic acid isomer distribution in the plasma of Greenland Eskimos. Am. J. Clin. Nutr. 33, l814–l817 (1980).

    CAS  PubMed  Google Scholar 

  59. Sinclair, H. Erucic acid and the Spanish oil epidemic. Lancet 2, 1293 (1981).

    CAS  PubMed  Google Scholar 

  60. Altinoz, M. A., Ozpinar, A., Ozpinar, A. & Hacker, E. Erucic acid, a nutritional PPARdelta-ligand may influence Huntington’s disease pathogenesis. Metab. Brain Dis. 35, 1–9 (2020).

    CAS  PubMed  Google Scholar 

  61. Wei, G. et al. Daidzin inhibits RANKL-induced osteoclastogenesis in vitro and prevents LPS-induced bone loss in vivo. J. Cell Biochem. 120, 5304–5314 (2019).

    CAS  PubMed  Google Scholar 

  62. Chen, L. et al. The impact of Helicobacter pylori infection, eradication therapy and probiotic supplementation on gut microenvironment homeostasis: an open-label, randomized clinical trial. EBioMedicine 35, 87–96 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Wu, S. et al. GMrepo: a database of curated and consistently annotated human gut metagenomes. Nucleic Acids Res. 48, D545–D553 (2020).

    CAS  PubMed  Google Scholar 

  64. Iatsenko, I., Boquete, J. P. & Lemaitre, B. Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase Nox and shortens Drosophila lifespan. Immunity 49, 929–942,e925 (2018).

    CAS  PubMed  Google Scholar 

  65. Fast, D., Duggal, A. & Foley, E. Monoassociation with Lactobacillus plantarum disrupts intestinal homeostasis in adult Drosophila melanogaster. mBio 9, e01114–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Komura, T., Ikeda, T., Yasui, C., Saeki, S. & Nishikawa, Y. Mechanism underlying prolongevity induced by bifidobacteria in Caenorhabditis elegans. Biogerontol. 14, 73–87 (2013).

    CAS  Google Scholar 

  67. Guo, T. et al. The autophagy-related gene Atg101 in Drosophila regulates both neuron and midgut homeostasis. J. Biol. Chem. 294, 5666–5676 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hosono, R., Sato, Y., Aizawa, S. I. & Mitsui, Y. Age-dependent changes in mobility and separation of the nematode Caenorhabditis elegans. Exp. Gerontol. 15, 285–289 (1980).

    CAS  PubMed  Google Scholar 

  69. Herndon, L. A. et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808–814 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank X. Wang and W. Liu (Zhejiang Academy of Agricultural Sciences) for sharing the anaerobic operating system and guidance on bacteria culture, Z. Song (Zhejiang University) for kindly providing Terc+/− G0 mice, F. Xu and Y. Wang (Zhejiang University) for helpful discussions, and L. Wang (University of Miami) and U. AI-Sheikh (Zhejiang University) for language editing. This project was supported by the National Foundation of Natural Science of China awarded to Liangjing W. (grant no. 82072623), X.Y. (grant no. 31900736) and L.K. (grant no. 31771113), and the National Key R&D Program of China awarded to Liangjing W. (grant no. 2016YFC1303200). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.C., Liangjing W., L.K., J.S., X.Y. and Y.X. conceived the research idea and designed the study. S.C., L.C., Y.Q. and J.X. carried out the experiments. L.C., Lan W. and Y.Z. collected clinical samples. S.C., L.C., Y.Q., J.X., Q.G., Y.F., D.C. and T.H. performed data analysis. S.C. and L.C. wrote the manuscript with input from the coauthors. All authors critically revised and approved the final version of the manuscript.

Corresponding authors

Correspondence to Jianmin Si, Lijun Kang or Liangjing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Aging thanks Sven Pettersson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Pathways predicted active in different age groups according to KEGG pathway analysis.

Red columns represented pathways more active in 20–40 yrs group, blue columns represented pathways more active in 40–60 yrs group, green columns represented pathways more active in 60+ yrs group. KEGG, Kyoto Encyclopedia of Genes and Genome. 20–40 yrs, n=46; 40–60 yrs, n=77; 60+ yrs, n=43.

Source data

Extended Data Fig. 2 Alteration of B. adolescentis abundance with aging in mice.

(a) Comparison of B. adolescentis abundance by quantitative real-time PCR between 3-month-old (n=16) and 10-month-old (n=11) mice, Wilcoxon rank sum test was performed, p<0.0001. (b) Comparison of B. adolescentis abundance by quantitative real-time PCR between 7-month-old wild-type mice (WT, n=5) and Terc-/- G3 mice (G3, n=7), two-sided Student’s t-test was performed, p=0.0017. Data were shown as mean ± SEM. **p<0.01; ****p<0.0001. n=3 biological independent replicates.

Source data

Extended Data Fig. 3 B. adolescentis induced locomotion ability improvement in C. elegans.

(a and b) Number of sine waves (≥1 mm) that N2 worms crawled out in 30s on day 2 (baseline) and on day 8 (a) and day16 (b) when fed on E. coli OP50, 1:1 or 1:2 mixture of E. coli OP50 and B. adolescentis, respectively. n=50 worms each group. Bounds of box show the 25th and 75th percentiles, the central lines in the box plots represent the median value and whiskers show minima and maxima. Wilcoxon rank sum test was performed. **p<0.01; ****p<0.0001; n.s., not significant. n=3 biological independent replicates.

Source data

Extended Data Fig. 4 Relative mRNA expression of aging-associated genes in Drosophila strain w1118 and C. elegans.

(a) Heatmap for relative mRNA expression of aging-associated genes in Drosophila strain w1118 supplemented with B. adolescentis (B.a) or 2.5% sucrose solution (NC) on day 40. (b) Venn plot showed the intersection of D. melanogaster and C. elegans relative mRNA expression results. (c) Relative mRNA expression of sod-3 and Cat in Drosophila supplemented with B. adolescentis (B.a) or 2.5% sucrose solution (NC) on day 40. n=3 biological independent replicates each group. Data were shown as mean ± SEM and two-sided Student’s t-test was performed. *p<0.05; **p<0.01; ****p<0.0001; n.s., not significant.

Source data

Extended Data Fig. 5 B. adolescentis supplement improves aging-related phenotypes in Terc-/- mice, suppressed cellular senescence in MEFs and regulates the activity of CAT.

(a) Relative mRNA expression of Cat in the muscle tissue of 7-month-old mice among three groups by quantitative real-time PCR. n=10 (WT+PBS), n=6 (G3+PBS), n=9 (G3+B.a). (b) Representative images of immunohistochemistry staining of p53 in the hippocampal DG region among three groups, scale bar, 200 μm. The black boxes indicate the area magnified in the down panels, scale bar, 50 μm. (c) Representative images of immunohistochemistry staining of CAT in brain region including hippocampal CA3, DG region and cortex. Scale bar, 50 μm. (d and e) Representative images of senescence-associated β-galactosidase (SA-β-gal) staining of replicative senescent MEFs supplemented with PBS (NC) or B. adolescentis (B.a) at passage 4 (P4) and passage 12 (P12) (d) and corresponding percentage evaluation of SA-β-gal-positive cells (e). Scale bar, 100 μm. (f and g) Representative images of SA-β-gal staining of wild-type MEFs supplemented with PBS (NC), DOX-induced senescent MEFs supplemented with PBS (D-sen) or B. adolescentis (D-sen+B.a) (f) and corresponding percentage evaluation of SA-β-gal-positive cells (g). Scale bar, 100 μm. (h) Quantitative real-time PCR of Cat expression in replicative senescent MEFs at P4 and P12. (i) Quantitative real-time PCR of Cat expression in DOX-induced senescent MEFs supplemented with PBS (D-sen) or B. adolescentis (D-sen+B.a). (j) Expression levels of CAT in replicative and DOX-induced senescent MEFs supplemented with PBS (D-sen) or B. adolescentis (D-sen+B.a). For a, e and g-i, data were shown as mean ± SEM. For a, Wilcoxon rank sum test was performed; for e and g-i, Student’ t-test was performed. *p<0.05; **p<0.01; ***p<0.001; n.s., not significant. For a and d-j, n=3 biological independent replicates. DOX, doxorubicin. WT + PBS, wild-type C57BL/6 mice gavaged with PBS; G3 + PBS, Terc-/- G3 mice gavaged with PBS; G3 + B.a, Terc-/- G3 mice gavaged with B. adolescentis.

Source data

Extended Data Fig. 6 B. adolescentis regulated oxidative stress-associated metabolites in Terc-/- mice.

(a) The volcano plot of the gut metabolites analysis of 7-month-old Terc-/- G3 mice gavage with PBS (n=7, 3 males, 4 females) or B. adolescentis (n=9, 6 males, 3 females). The labeled data points show the abundance of metabolites with two-fold or more difference. Red boxes represent the enrichment of metabolites in the feces of mice gavage with B. adolescentis, blue box represents the enrichment of metabolites in the feces of mice gavage with PBS. (b) Heatmap of hierarchical clustering analysis. The blue or red boxes indicate the fold change of metabolites abundance less or more than the mean. G3+PBS, Terc-/- G3 mice gavage with PBS, n=7; G3+B.a, Terc-/- G3 mice gavage with B. adolescentis, n=9. (c) Total ion chromatography (TIC) diagrams in positive (up) and negative (down) ion mode of quality control (QC) sample. 1, Ginsenoside Ia; 2, Cholic acid; 3, Hypoxanthine; 4, 4-Trimethylammoniobutanoic acid; 5, Enterodiol; 6, Apiin; 7, 3-Dehydroxycarnitine; 8, Erucic acid; 9, 9,10-DHOME; 10, Cosmosiin; 11, Daidzin; 12, 2-Hydroxycinnamic acid; 13, L-Malic acid. Metabolites in red were found in higher concentrations in Terc-/- G3 mice gavage with B. adolescentis; metabolites in blue were found in higher concentrations in Terc-/- G3 mice gavage with PBS.

Source data

Supplementary information

Supplementary Information

Supplementary Information, Fig. 1 and Tables 1–5.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 4

Unprocessed western blots

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 5

Unprocessed western blots.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Chen, L., Qi, Y. et al. Bifidobacterium adolescentis regulates catalase activity and host metabolism and improves healthspan and lifespan in multiple species. Nat Aging 1, 991–1001 (2021). https://doi.org/10.1038/s43587-021-00129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-021-00129-0

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing