Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural circuits and behavioral pathways linking hearing loss to affective dysregulation in older adults

This article has been updated

Abstract

Substantial evidence now links age-related hearing loss to incident major depressive disorder in older adults. However, research examining the neural circuits and behavioral mechanisms by which age-related hearing loss leads to depression is at an early phase. It is known that hearing loss has adverse structural and functional brain consequences, is associated with reduced social engagement and loneliness, and often results in tinnitus, which can independently affect cognitive control and emotion processing circuits. While pathways leading from these sequelae of hearing loss to affective dysregulation and depression are intuitive to hypothesize, few studies have yet been designed to provide conclusive evidence for specific pathophysiological mechanisms. Here we review the neurobiological and behavioral consequences of age-related hearing loss, present a model linking them to increased risk for major depressive disorder and suggest how future studies may facilitate the development of rationally designed therapeutic interventions for older adults with impaired hearing to reduce risk for depression and/or ameliorate depressive symptoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural and functional consequences of hearing loss on a pathway leading to MDD.
Fig. 2: Patient profiles in hearing loss may lead to different neural and behavioral phenotypes at risk for MDD.

Similar content being viewed by others

Change history

  • 21 February 2021

    In the version of this Review originally published, there was an erroneous empty box at the top left of Fig. 2; this has now been removed.

References

  1. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article  Google Scholar 

  2. Lawrence, B. J. et al. Hearing loss and depression in older adults: a systematic review and meta-analysis. Gerontologist 60, e137–e154 (2020).

    Article  Google Scholar 

  3. Brewster, K. K. et al. Age-related hearing loss and its association with depression in later life. Am. J. Geriatr. Psychiatry 26, 788–796 (2018).

    Article  Google Scholar 

  4. Brewster, K. K. et al. Age-related hearing loss, late-life depression, and risk for incident dementia in older adults. J. Gerontol. A Biol. Sci. Med. Sci. https://doi.org/10.1093/gerona/glaa242 (2020).

  5. Golub, J. S. et al. Association of audiometric age-related hearing loss with depressive symptoms among Hispanic individuals. JAMA Otolaryngol. Head Neck Surg. 145, 132–139 (2019).

    Article  Google Scholar 

  6. Bigelow, R. T. et al. Association of hearing loss with psychological distress and utilization of mental health services among adults in the United States. JAMA Netw. Open 3, e2010986 (2020).

    Article  Google Scholar 

  7. Kim, S. Y., Min, C., Lee, C. H., Park, B. & Choi, H. G. Bidirectional relation between depression and sudden sensorineural hearing loss: two longitudinal follow-up studies using a national sample cohort. Sci. Rep. 10, 1482 (2020).

    Article  CAS  Google Scholar 

  8. Shukla, A. et al. Hearing loss, hearing aid use, and depressive symptoms in older adults—findings from the atherosclerosis risk in communities neurocognitive study (ARIC-NCS). J. Gerontol. B Psychol. Sci. Soc. Sci. 76, 518–523 (2021).

    Article  Google Scholar 

  9. Golub, J. S. et al. Subclinical hearing loss is associated with depressive symptoms. Am. J. Geriatr. Psychiatry 28, 545–556 (2020).

    Article  Google Scholar 

  10. Brewster, K. K. et al. A pilot randomized controlled trial of hearing aids to improve mood and cognition in older adults. Int. J. Geriatr. Psychiatry 35, 842–850 (2020).

    Article  Google Scholar 

  11. Chien, W. & Lin, F. R. Prevalence of hearing aid use among older adults in the United States. Arch. Intern. Med. 172, 292–293 (2012).

    Article  Google Scholar 

  12. Hardy, C. J. et al. Hearing and dementia. J. Neurol. 263, 2339–2354 (2016).

    Article  Google Scholar 

  13. Slade, K., Plack, C. J. & Nuttall, H. E. The effects of age-related hearing loss on the brain and cognitive function. Trends Neurosci. 43, 810–821 (2020).

    Article  CAS  Google Scholar 

  14. Wayne, R. V. & Johnsrude, I. S. A review of causal mechanisms underlying the link between age-related hearing loss and cognitive decline. Ageing Res. Rev. 23, 154–166 (2015).

    Article  Google Scholar 

  15. van Agtmaal, M. J. M., Houben, A., Pouwer, F., Stehouwer, C. D. A. & Schram, M. T. Association of microvascular dysfunction with late-life depression: a systematic review and meta-analysis. JAMA Psychiatry 74, 729–739 (2017).

    Article  Google Scholar 

  16. Diniz, B. S. et al. Oxidative stress markers imbalance in late-life depression. J. Psychiatr. Res. 102, 29–33 (2018).

    Article  Google Scholar 

  17. Fetoni, A. R., Picciotti, P. M., Paludetti, G. & Troiani, D. Pathogenesis of presbycusis in animal models: a review. Exp. Gerontol. 46, 413–425 (2011).

    Article  Google Scholar 

  18. Eckert, M. A., Vaden, K. I. Jr. & Dubno, J. R. Age-related hearing loss associations with changes in brain morphology. Trends Hear. https://doi.org/10.1177/2331216519857267 (2019).

  19. Picciotti, P. et al. Age-dependent modifications of expression level of VEGF and its receptors in the inner ear. Exp. Gerontol. 39, 1253–1258 (2004).

    Article  CAS  Google Scholar 

  20. Kalinec, G. M., Lomberk, G., Urrutia, R. A. & Kalinec, F. Resolution of cochlear inflammation: novel target for preventing or ameliorating drug-, noise- and age-related hearing loss. Front. Cell Neurosci. 11, 192 (2017).

    Article  Google Scholar 

  21. Hegeman, J. M., Kok, R. M., van der Mast, R. C. & Giltay, E. J. Phenomenology of depression in older compared with younger adults: meta-analysis. Br. J. Psychiatry 200, 275–281 (2012).

    Article  CAS  Google Scholar 

  22. Lin, F. R. et al. Association of hearing impairment with brain volume changes in older adults. Neuroimage 90, 84–92 (2014).

    Article  CAS  Google Scholar 

  23. Peelle, J. E., Troiani, V., Grossman, M. & Wingfield, A. Hearing loss in older adults affects neural systems supporting speech comprehension. J. Neurosci. 31, 12638–12643 (2011).

    Article  CAS  Google Scholar 

  24. Yang, M. et al. Brain structural and functional alterations in patients with unilateral hearing loss. Hear. Res. 316, 37–43 (2014).

    Article  Google Scholar 

  25. Husain, F. T. et al. Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res. 1369, 74–88 (2011).

    Article  CAS  Google Scholar 

  26. Qian, Z. J., Chang, P. D., Moonis, G. & Lalwani, A. K. A novel method of quantifying brain atrophy associated with age-related hearing loss. Neuroimage Clin. 16, 205–209 (2017).

    Article  Google Scholar 

  27. Boyen, K., Langers, D. R., de Kleine, E. & van Dijk, P. Gray matter in the brain: differences associated with tinnitus and hearing loss. Hear. Res. 295, 67–78 (2013).

    Article  Google Scholar 

  28. Rutherford, B. R., Brewster, K., Golub, J. S., Kim, A. H. & Roose, S. P. Sensation and psychiatry: linking age-related hearing loss to late-life depression and cognitive decline. Am. J. Psychiatry 175, 215–224 (2018).

    Article  Google Scholar 

  29. Belkhiria, C. et al. Cingulate cortex atrophy is associated with hearing loss in presbycusis with cochlear amplifier dysfunction. Front. Aging Neurosci. 11, 97 (2019).

    Article  Google Scholar 

  30. Ren, F. et al. Gray matter atrophy is associated with cognitive impairment in patients with presbycusis: a comprehensive morphometric study. Front. Neurosci. 12, 744 (2018).

    Article  Google Scholar 

  31. Glick, H. A. & Sharma, A. Cortical neuroplasticity and cognitive function in early-stage, mild-moderate hearing loss: evidence of neurocognitive benefit from hearing aid use. Front. Neurosci. 14, 93 (2020).

    Article  Google Scholar 

  32. Alexopoulos, G. S. et al. Executive dysfunction and long-term outcomes of geriatric depression. Arch. Gen. Psychiatry 57, 285–290 (2000).

    Article  CAS  Google Scholar 

  33. Erb, J. & Obleser, J. Upregulation of cognitive control networks in older adults’ speech comprehension. Front. Syst. Neurosci. 7, 116 (2013).

    Article  Google Scholar 

  34. Wild, C. J. et al. Effortful listening: the processing of degraded speech depends critically on attention. J. Neurosci. 32, 14010–14021 (2012).

    Article  CAS  Google Scholar 

  35. Tyler, L. K. et al. Preserving syntactic processing across the adult life span: the modulation of the frontotemporal language system in the context of age-related atrophy. Cereb. Cortex 20, 352–364 (2010).

    Article  Google Scholar 

  36. Rosemann, S. & Thiel, C. M. Audio-visual speech processing in age-related hearing loss: stronger integration and increased frontal lobe recruitment. Neuroimage 175, 425–437 (2018).

    Article  Google Scholar 

  37. Husain, F. T. et al. Discrimination task reveals differences in neural bases of tinnitus and hearing impairment. PLoS ONE 6, e26639 (2011).

    Article  CAS  Google Scholar 

  38. Chen, Y. C. et al. Presbycusis disrupts spontaneous activity revealed by resting-state functional MRI. Front. Behav. Neurosci. 12, 44 (2018).

    Article  Google Scholar 

  39. Lemke, U. & Besser, J. Cognitive load and listening effort: concepts and age-related considerations. Ear Hear. 37, 77S–84S (2016).

    Article  Google Scholar 

  40. Pichora-Fuller, M. K. et al. Hearing impairment and cognitive energy: the Framework for Understanding Effortful Listening (FUEL). Ear Hear. 37, 5S–27S (2016).

    Article  Google Scholar 

  41. Rudner, M. et al. Listening comprehension and listening effort in the primary school classroom. Front. Psychol. 9, 1193 (2018).

    Article  Google Scholar 

  42. Rosemann, S. & Thiel, C. M. The effect of age-related hearing loss and listening effort on resting state connectivity. Sci. Rep. 9, 2337 (2019).

    Article  Google Scholar 

  43. Fitzhugh, M. C., Hemesath, A., Schaefer, S. Y., Baxter, L. C. & Rogalsky, C. Functional connectivity of Heschl’s gyrus associated with age-related hearing loss: a resting-state fMRI study. Front. Psychol. 10, 2485 (2019).

    Article  Google Scholar 

  44. Wang, X. et al. Altered regional and circuit resting-state activity associated with unilateral hearing loss. PLoS ONE 9, e96126 (2014).

    Article  Google Scholar 

  45. Schmidt, S. A., Akrofi, K., Carpenter-Thompson, J. R. & Husain, F. T. Default mode, dorsal attention and auditory resting state networks exhibit differential functional connectivity in tinnitus and hearing loss. PLoS ONE 8, e76488 (2013).

    Article  CAS  Google Scholar 

  46. Middlebrooks, J., Simon, J. Z., Popper, A. N. & Fay, R. R. (eds) The Auditory System at the Cocktail Party (Springer, 2017).

  47. Russo, F. A., Ives, D. T., Goy, H., Pichora-Fuller, M. K. & Patterson, R. D. Age-related difference in melodic pitch perception is probably mediated by temporal processing: empirical and computational evidence. Ear Hear. 33, 177–186 (2012).

    Article  Google Scholar 

  48. Dupuis, K. & Pichora-Fuller, M. K. Intelligibility of emotional speech in younger and older adults. Ear Hear. 35, 695–707 (2014).

    Article  Google Scholar 

  49. Peelle, J. E. Listening effort: how the cognitive consequences of acoustic challenge are reflected in brain and behavior. Ear Hear. 39, 204–214 (2018).

    Article  Google Scholar 

  50. LeDoux, J. E., Sakaguchi, A. & Reis, D. J. Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J. Neurosci. 4, 683–698 (1984).

    Article  CAS  Google Scholar 

  51. Kumar, S., von Kriegstein, K., Friston, K. & Griffiths, T. D. Features versus feelings: dissociable representations of the acoustic features and valence of aversive sounds. J. Neurosci. 32, 14184–14192 (2012).

    Article  CAS  Google Scholar 

  52. Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A. & Ochsner, K. N. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008).

    Article  CAS  Google Scholar 

  53. Husain, F. T., Carpenter-Thompson, J. R. & Schmidt, S. A. The effect of mild-to-moderate hearing loss on auditory and emotion processing networks. Front. Syst. Neurosci. 8, 10 (2014).

    Article  Google Scholar 

  54. Christensen, J. A., Sis, J., Kulkarni, A. M. & Chatterjee, M. Effects of age and hearing loss on the recognition of emotions in speech. Ear Hear. 40, 1069–1083 (2019).

    Article  Google Scholar 

  55. Picou, E. M. How hearing loss and age affect emotional responses to nonspeech sounds. J. Speech Lang. Hear. Res. 59, 1233–1246 (2016).

    Article  Google Scholar 

  56. Zinchenko, A. et al. Modulation of cognitive and emotional control in age-related mild-to-moderate hearing loss. Front. Neurol. 9, 783 (2018).

    Article  Google Scholar 

  57. Belkhiria, C. et al. Insula and amygdala atrophy are associated with functional impairment in subjects with presbycusis. Front. Aging Neurosci. 12, 102 (2020).

    Article  Google Scholar 

  58. Keesom, S. M. & Hurley, L. M. Silence, solitude, and serotonin: neural mechanisms linking hearing loss and social isolation. Brain Sci. https://doi.org/10.3390/brainsci10060367 (2020).

  59. Cruz, O. L., Kasse, C. A., Sanchez, M., Barbosa, F. & Barros, F. A. Serotonin reuptake inhibitors in auditory processing disorders in elderly patients: preliminary results. Laryngoscope 114, 1656–1659 (2004).

    Article  CAS  Google Scholar 

  60. Peelle, J. E. Methodological challenges and solutions in auditory functional magnetic resonance imaging. Front. Neurosci. 8, 253 (2014).

    Article  Google Scholar 

  61. Picou, E. M. et al. Hearing, Emotion, Amplification, Research, and Training workshop: current understanding of hearing loss and emotion perception and priorities for future research. Trends Hear. https://doi.org/10.1177/2331216518803215 (2018).

  62. Mick, P., Kawachi, I. & Lin, F. R. The association between hearing loss and social isolation in older adults. Otolaryngol. Head Neck Surg. 150, 378–384 (2014).

    Article  Google Scholar 

  63. Pichora-Fuller, M. K., Mick, P. & Reed, M. Hearing, cognition, and healthy aging: social and public health implications of the links between age-related declines in hearing and cognition. Semin. Hear. 36, 122–139 (2015).

    Article  Google Scholar 

  64. Arlinger, S. Negative consequences of uncorrected hearing loss—a review. Int. J. Audio. 42, 2S17–20S17 (2003).

    Article  Google Scholar 

  65. Perissinotto, C. M., Stijacic Cenzer, I. & Covinsky, K. E. Loneliness in older persons: a predictor of functional decline and death. Arch. Intern. Med. 172, 1078–1083 (2012).

    Article  Google Scholar 

  66. Wang, H. X., Karp, A., Winblad, B. & Fratiglioni, L. Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: a longitudinal study from the Kungsholmen Project. Am. J. Epidemiol. 155, 1081–1087 (2002).

    Article  Google Scholar 

  67. Glass, T. A., De Leon, C. F., Bassuk, S. S. & Berkman, L. F. Social engagement and depressive symptoms in late life: longitudinal findings. J. Aging Health 18, 604–628 (2006).

    Article  Google Scholar 

  68. Sung, Y. K., Li, L., Blake, C., Betz, J. & Lin, F. R. Association of hearing loss and loneliness in older adults. J. Aging Health 28, 979–994 (2016).

    Article  Google Scholar 

  69. Mick, P. & Pichora-Fuller, M. K. Is hearing loss associated with poorer health in older adults who might benefit from hearing screening? Ear Hear. 37, e194–e201 (2016).

    Article  Google Scholar 

  70. Aylaz, R., Akturk, U., Erci, B., Ozturk, H. & Aslan, H. Relationship between depression and loneliness in elderly and examination of influential factors. Arch. Gerontol. Geriatr. 55, 548–554 (2012).

    Article  Google Scholar 

  71. Hamalainen, A., Phillips, N., Wittich, W., Pichora-Fuller, M. K. & Mick, P. Sensory-cognitive associations are only weakly mediated or moderated by social factors in the Canadian Longitudinal Study on Aging. Sci. Rep. 9, 19660 (2019).

    Article  CAS  Google Scholar 

  72. Kanai, R. et al. Brain structure links loneliness to social perception. Curr. Biol. 22, 1975–1979 (2012).

    Article  CAS  Google Scholar 

  73. Nakagawa, S. et al. White matter structures associated with loneliness in young adults. Sci. Rep. 5, 17001 (2015).

    Article  CAS  Google Scholar 

  74. Duzel, S. et al. Structural brain correlates of loneliness among older adults. Sci. Rep. 9, 13569 (2019).

    Article  Google Scholar 

  75. Inagaki, T. K. et al. Yearning for connection? Loneliness is associated with increased ventral striatum activity to close others. Soc. Cogn. Affect. Neurosci. 11, 1096–1101 (2016).

    Article  Google Scholar 

  76. Cacioppo, J. T., Norris, C. J., Decety, J., Monteleone, G. & Nusbaum, H. In the eye of the beholder: individual differences in perceived social isolation predict regional brain activation to social stimuli. J. Cogn. Neurosci. 21, 83–92 (2009).

    Article  Google Scholar 

  77. Wong, N. M. et al. Loneliness in late-life depression: structural and functional connectivity during affective processing. Psychol. Med. 46, 2485–2499 (2016).

    Article  CAS  Google Scholar 

  78. Feng, C., Wang, L., Li, T. & Xu, P. Connectome-based individualized prediction of loneliness. Soc. Cogn. Affect. Neurosci. 14, 353–365 (2019).

    Article  Google Scholar 

  79. Bhatt, J. M., Lin, H. W. & Bhattacharyya, N. Prevalence, severity, exposures, and treatment patterns of tinnitus in the United States. JAMA Otolaryngol. Head Neck Surg. 142, 959–965 (2016).

    Article  Google Scholar 

  80. Tyler, R. S. Tinnitus Handbook (Singular, 2000).

  81. Nondahl, D. M. et al. Tinnitus and its risk factors in the Beaver Dam Offspring Study. Int. J. Audio. 50, 313–320 (2011).

    Article  Google Scholar 

  82. Yakunina, N., Lee, W. H., Ryu, Y. J. & Nam, E. C. Tinnitus suppression effect of hearing aids in patients with high-frequency hearing loss: a randomized double-blind controlled trial. Otol. Neurotol. 40, 865–871 (2019).

    Article  Google Scholar 

  83. De Ridder, D. et al. An integrative model of auditory phantom perception: tinnitus as a unified percept of interacting separable subnetworks. Neurosci. Biobehav. Rev. 44, 16–32 (2014).

    Article  Google Scholar 

  84. Trevis, K. J. et al. Identification of a neurocognitive mechanism underpinning awareness of chronic tinnitus. Sci. Rep. 7, 15220 (2017).

    Article  Google Scholar 

  85. Araneda, R. et al. A key role of the prefrontal cortex in the maintenance of chronic tinnitus: an fMRI study using a Stroop task. Neuroimage Clin. 17, 325–334 (2018).

    Article  Google Scholar 

  86. Heeren, A. et al. Tinnitus specifically alters the top-down executive control sub-component of attention: evidence from the Attention Network Task. Behav. Brain Res. 269, 147–154 (2014).

    Article  Google Scholar 

  87. Lee, S. Y. et al. Neurocognition of aged patients with chronic tinnitus: focus on mild cognitive impairment. Clin. Exp. Otorhinolaryngol. 13, 8–14 (2020).

    Article  Google Scholar 

  88. Golm, D., Schmidt-Samoa, C., Dechent, P. & Kroner-Herwig, B. Neural correlates of tinnitus related distress: an fMRI-study. Hear. Res. 295, 87–99 (2013).

    Article  Google Scholar 

  89. Davies, J. E., Gander, P. E. & Hall, D. A. Does chronic tinnitus alter the emotional response function of the amygdala?: A sound-evoked fMRI study. Front. Aging Neurosci. 9, 31 (2017).

    Article  Google Scholar 

  90. Carpenter-Thompson, J. R., Akrofi, K., Schmidt, S. A., Dolcos, F. & Husain, F. T. Alterations of the emotional processing system may underlie preserved rapid reaction time in tinnitus. Brain Res. 1567, 28–41 (2014).

    Article  CAS  Google Scholar 

  91. Rauschecker, J. P., Leaver, A. M. & Muhlau, M. Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron 66, 819–826 (2010).

    Article  CAS  Google Scholar 

  92. Chen, Y. C. et al. Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex. Hum. Brain Mapp. 38, 2384–2397 (2017).

    Article  Google Scholar 

  93. Chen, Y. C. et al. Amygdala functional disconnection with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood. Prog. Neuropsychopharmacol. Biol. Psychiatry 79, 249–257 (2017).

    Article  Google Scholar 

  94. Nondahl, D. M. et al. The impact of tinnitus on quality of life in older adults. J. Am. Acad. Audio. 18, 257–266 (2007).

    Article  Google Scholar 

  95. Salazar, J. W. et al. Depression in patients with tinnitus: a systematic review. Otolaryngol. Head Neck Surg. 161, 28–35 (2019).

    Article  Google Scholar 

  96. Bhatt, J. M., Bhattacharyya, N. & Lin, H. W. Relationships between tinnitus and the prevalence of anxiety and depression. Laryngoscope 127, 466–469 (2017).

    Article  Google Scholar 

  97. Lewis, J. E., Stephens, S. D. & McKenna, L. Tinnitus and suicide. Clin. Otolaryngol. Allied Sci. 19, 50–54 (1994).

    Article  CAS  Google Scholar 

  98. Beukes, E. W., Andersson, G., Allen, P. M., Manchaiah, V. & Baguley, D. M. Effectiveness of guided internet-based cognitive behavioral therapy vs face-to-face clinical care for treatment of tinnitus: a randomized clinical trial. JAMA Otolaryngol. Head Neck Surg. 144, 1126–1133 (2018).

    Article  Google Scholar 

  99. Johnson, R. M., Brummett, R. & Schleuning, A. Use of alprazolam for relief of tinnitus. A double-blind study. Arch. Otolaryngol. Head Neck Surg. 119, 842–845 (1993).

    Article  CAS  Google Scholar 

  100. Robinson, S. K., Viirre, E. S. & Stein, M. B. Antidepressant therapy in tinnitus. Hear. Res. 226, 221–231 (2007).

    Article  CAS  Google Scholar 

  101. Sziklai, I., Szilvassy, J. & Szilvassy, Z. Tinnitus control by dopamine agonist pramipexole in presbycusis patients: a randomized, placebo-controlled, double-blind study. Laryngoscope 121, 888–893 (2011).

    Article  CAS  Google Scholar 

  102. Pereira-Jorge, M. R. et al. Anatomical and functional MRI changes after one year of auditory rehabilitation with hearing aids. Neural Plast. 2018, 9303674 (2018).

    Article  CAS  Google Scholar 

  103. Cardon, G. & Sharma, A. Somatosensory cross-modal reorganization in adults with age-related, early-stage hearing loss. Front. Hum. Neurosci. 12, 172 (2018).

    Article  Google Scholar 

  104. Campbell, J. & Sharma, A. Cross-modal re-organization in adults with early stage hearing loss. PLoS ONE 9, e90594 (2014).

    Article  Google Scholar 

  105. Pichora-Fuller, M. K. & Levitt, H. Speech comprehension training and auditory and cognitive processing in older adults. Am. J. Audio. 21, 351–357 (2012).

    Article  Google Scholar 

  106. Claes, A. J. et al. The Repeatable Battery for the Assessment of Neuropsychological Status for Hearing impaired individuals (RBANS-H) before and after cochlear implantation: a protocol for a prospective, longitudinal cohort study. Front. Neurosci. 10, 512 (2016).

    Article  Google Scholar 

  107. Brewster, K. K. et al. Age-related hearing loss, neuropsychological performance, and incident dementia in older adults. J. Alzheimers Dis. https://doi.org/10.3233/JAD-200908 (2021).

  108. US Congress, Senate. Over-the-Counter Hearing Aid Act of 2017 S.670, 115th Congress (2017); https://www.congress.gov/bill/115th-congress/senate-bill/670

  109. Morimoto, S. S. et al. Targeting cognitive control deficits with neuroplasticity-based computerized cognitive remediation in patients with geriatric major depression: a randomized, double-blind, controlled trial. Am. J. Geriatr. Psychiatry 28, 971–980 (2020).

    Article  Google Scholar 

  110. Warringa, L. T. L., Henke, C. E., Pronk, M., Kramer, S. E. & Stam, M. Relationships between coping behaviors and social loneliness in adults with self-reported hearing problems. Ear Hear. 41, 1040–1050 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The manuscript was supported by the NIMH grant T32 MH020004-22.

Author information

Authors and Affiliations

Authors

Contributions

All authors (K.K.B., J.S.G. and B.R.R.) contributed to the literature search, data interpretation and writing of the manuscript.

Corresponding author

Correspondence to Katharine K. Brewster.

Ethics declarations

Competing interests

K.K.B. and B.R.R. have no competing interests or financial disclosures to report. J.S.G. received travel expenses for industry-sponsored meetings (Cochlear, Advanced Bionics and Oticon Medical), consulting fees or honoraria (Oticon Medical, Auditory Insight, Optinose, Abbott and Decibel Therapeutics), and his department received unrestricted educational grants (Storz, Stryker, Acclarent, 3NT and Decibel Therapeutics).

Additional information

Peer review information Nature Aging thanks Matthew Amans, Blake Lawrence, Helen Nuttall and Kathy Pichora-Fuller for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brewster, K.K., Golub, J.S. & Rutherford, B.R. Neural circuits and behavioral pathways linking hearing loss to affective dysregulation in older adults. Nat Aging 1, 422–429 (2021). https://doi.org/10.1038/s43587-021-00065-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-021-00065-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing