Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disparities in the pace of biological aging among midlife adults of the same chronological age have implications for future frailty risk and policy

Abstract

Some humans age faster than others. Variation in biological aging can be measured in midlife, but the implications of this variation are poorly understood. We tested associations between midlife biological aging and indicators of future frailty risk in the Dunedin cohort of 1,037 infants born the same year and followed to age 45. Participants’ ‘Pace of Aging’ was quantified by tracking declining function in 19 biomarkers indexing the cardiovascular, metabolic, renal, immune, dental and pulmonary systems across ages 26, 32, 38 and 45 years. At age 45 in 2019, participants with faster Pace of Aging had more cognitive difficulties, signs of advanced brain aging, diminished sensory–motor functions, older appearances and more pessimistic perceptions of aging. People who are aging more rapidly than same-age peers in midlife may prematurely need supports to sustain independence that are usually reserved for older adults. Chronological age does not adequately identify need for such supports.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design.
Fig. 2: Biological aging across two decades from age 26 to age 45.
Fig. 3: Study members who were aging faster showed signs of advanced brain aging relative to slower-aging peers.
Fig. 4: Study members who were aging faster were perceived as less healthy and looking older when compared to slower-aging peers.

Similar content being viewed by others

Data availability

The Dunedin Study datasets reported in the current Article are not publicly available due to a lack of informed consent and ethical approval for public data sharing. The Dunedin study datasets are available on request by qualified scientists. Requests require a concept paper describing the purpose of data access, ethical approval at the applicant’s university and provision for secure data access (https://moffittcaspi.trinity.duke.edu/research-topics/dunedin). We offer secure access on the Duke, Otago and King’s College campuses.

Code availability

Custom code that supports the findings of this study is available from the corresponding author on request.

References

  1. Vos, T. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2163–2196 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Crimmins, E. M. Lifespan and healthspan: past, present, and promise. Gerontologist 55, 901–911 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kaeberlein, M. Longevity and aging. F1000Prime Rep. 5, 5 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kirkwood, T. B. L. Understanding the odd science of aging. Cell 120, 437–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Gladyshev, V. N. Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell 15, 594–602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaeberlein, M., Rabinovitch, P. S. & Martin, G. M. Healthy aging: the ultimate preventative medicine. Science 350, 1191–1193 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Melzer, D., Pilling, L. C. & Ferrucci, L. The genetics of human ageing. Nat. Rev. Genet. 21, 88–101 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8, 1844–1865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parker, D. C. et al. Association of blood chemistry quantifications of biological aging with disability and mortality in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 16, 1671–1679 (2020).

    Article  Google Scholar 

  12. Levine, M. E. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J. Gerontol. A Biol. Sci. Med. Sci. 68, 667–674 (2013).

    Article  PubMed  Google Scholar 

  13. Belsky, D. W. et al. Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: do they measure the same thing? Am. J. Epidemiol. 187, 1220–1230 (2018).

    Article  PubMed  Google Scholar 

  14. Li, Q. et al. Homeostatic dysregulation proceeds in parallel in multiple physiological systems. Aging Cell 14, 1103–1112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sebastiani, P. et al. Biomarker signatures of aging. Aging Cell 16, 329–338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10, 573–591 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sierra, F. Geroscience and the challenges of aging societies. Aging Med. 2, 132–134 (2019).

    Article  Google Scholar 

  18. Fahy, G. M. et al. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell 18, e13028 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Belsky, D. W., Huffman, K. M., Pieper, C. F., Shalev, I. & Kraus, W. E. Change in the rate of biological aging in response to caloric restriction: CALERIE Biobank. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 73, 4–10 (2017).

    Article  Google Scholar 

  20. Moffitt, T. E., Belsky, D. W., Danese, A., Poulton, R. & Caspi, A. The longitudinal study of aging in human young adults: knowledge gaps and research agenda. J. Gerontol. A. Biol. Sci. Med. Sci. 72, 210–215 (2017).

    Article  PubMed  Google Scholar 

  21. Poulton, R., Moffitt, T. E. & Silva, P. A. The Dunedin multidisciplinary health and development study: overview of the first 40 years, with an eye to the future. Soc. Psychiatry Psychiatr. Epidemiol. 50, 679–693 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Belsky, D. W. et al. Quantification of biological aging in young adults. Proc. Natl Acad. Sci. USA 112, E4104–E4110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilson, R. S., Leurgans, S. E., Boyle, P. A., Schneider, J. A. & Bennett, D. A. Neurodegenerative basis of age-related cognitive decline. Neurology 75, 1070–1078 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feigin, V. L. et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 18, 459–480 (2019).

    Article  Google Scholar 

  25. Elliott, M. L. MRI-Based biomarkers of accelerated aging and dementia risk in midlife: how close are we?. Ageing Res. Rev. 61, 101075 (2020).

    Article  PubMed  Google Scholar 

  26. Sperling, R., Mormino, E. & Johnson, K. The evolution of preclinical Alzheimer’s disease: implications for prevention trials. Neuron 84, 608–622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rensma, S. P., van Sloten, T. T., Launer, L. J. & Stehouwer, C. D. A. Cerebral small vessel disease and risk of incident stroke, dementia and depression, and all-cause mortality: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 90, 164–173 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Franke, K. & Gaser, C. Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer’s disease. GeroPsych (Bern) 25, 235–245 (2012).

    Article  Google Scholar 

  29. Fjell, A. M. et al. Accelerating cortical thinning: unique to dementia or universal in aging? Cereb. Cortex 24, 919–934 (2014).

    Article  PubMed  Google Scholar 

  30. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nyberg, L. & Pudas, S. Successful memory aging. Annu. Rev. Psychol. 70, 219–243 (2019).

    Article  PubMed  Google Scholar 

  32. Liem, F. et al. Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage 148, 179–188 (2017).

    Article  PubMed  Google Scholar 

  33. Tucker-Drob, E. M. Cognitive aging and dementia: a life-span. Perspect. Annu. Rev. Dev. Psychol. 1, 177–196 (2019).

    Article  Google Scholar 

  34. Whalley, L. J. et al. Childhood mental ability and dementia. Neurology 55, 1455–1459 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Knudtson, M. D., Klein, B. E. K. & Klein, R. Biomarkers of aging and falling: the beaver dam eye study. Arch. Gerontol. Geriatr. 49, 22–26 (2009).

    Article  PubMed  Google Scholar 

  36. Studenski, S. et al. Gait speed and survival in older adults. J. Am. Med. Assoc. 305, 50–58 (2011).

    Article  CAS  Google Scholar 

  37. Rantanen, T. et al. Midlife hand grip strength as a predictor of old age disability. J. Am. Med. Assoc. 281, 558–560 (1999).

    Article  CAS  Google Scholar 

  38. Genther, D. J. et al. Association of hearing impairment and mortality in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 70, 85–90 (2015).

    Article  PubMed  Google Scholar 

  39. Lin, F. R. et al. Hearing loss and cognition in the Baltimore longitudinal study of aging. Neuropsychology 25, 763–770 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rippon, I. & Steptoe, A. Feeling old vs being old: associations between self-perceived age and mortality. JAMA Intern. Med. 175, 307–309 (2015).

    Article  PubMed  Google Scholar 

  41. Levy, B. R., Slade, M. D. & Kasl, S. V. Longitudinal benefit of positive self-perceptions of aging on functional health. J. Gerontol. B Psychol. Sci. Soc. Sci. 57, 409–417 (2002).

    Article  Google Scholar 

  42. Brown, R. T. & Covinsky, K. E. Moving prevention of functional impairment upstream: is middle age an ideal time for intervention? Women’s Midlife Heal. 6, https://doi.org/10.1186/s40695-020-00054-z (2020).

  43. Brunner, E. J. et al. Midlife contributors to socioeconomic differences in frailty during later life: a prospective cohort study. Lancet Public Heal. 3, E313–E222 (2018).

    Article  Google Scholar 

  44. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a tool to target aging. Cell Metab. 23, 1060–1065 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Justice, J. N. & Kritchevsky, S. B. Putting epigenetic biomarkers to the test for clinical trials. eLife 9, e54870 (2020).

    Article  Google Scholar 

  47. Schaie, K. W. Age changes and age differences. Gerontologist 7, 128–132 (1967).

    Article  CAS  PubMed  Google Scholar 

  48. Belsky, D. W., Ma, J., Cohen, A. A., Griffith, L. E. & Raina, P. Comparing biological age estimates using domain-specific measures from the Canadian longitudinal study on aging. J. Gerontol. A Biol. Sci. Med. Sci. 76, 187–194 (2021).

  49. Feng, D., Silverstein, M., Giarrusso, R., McArdle, J. J. & Bengtson, V. L. Attrition of older adults in longitudinal surveys: detection and correction of sample selection bias using multigenerational data. J. Gerontol. B Psychol Sci. Soc. Sci. 61, S323–S328 (2006).

    Article  PubMed  Google Scholar 

  50. Goudy, W. J. Sample attrition and multivariate analysis in the retirement history study. J. Gerontol. 40, 358–367 (1985).

    Article  CAS  PubMed  Google Scholar 

  51. Belsky, D. W. et al. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. eLife 9, e54870 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Funder, D. C. & Ozer, D. J. Evaluating effect size in psychological research: sense and nonsense. Adv. Methods Pract. Psychol. Sci. 2, 156–168 (2019).

    Article  Google Scholar 

  53. Hofer, S. M., Sliwinski, M. J. & Flaherty, B. P. Understanding ageing: further commentary on the limitations of cross-sectional designs for ageing research. Gerontology 48, 22–29 (2002).

    Article  Google Scholar 

  54. Goldman, D. P. et al. Substantial health and economic returns from delayed aging may warrant a new focus for medical research. Health Aff. 32, 1698–1705 (2013).

    Article  Google Scholar 

  55. Moffitt, T. E. Behavioral and social research to accelerate the geroscience translation agenda. Ageing Res. Rev. 63, 101146 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sierra, F. et al. The role of multidisciplinary team science in overcoming barriers to moving geroscience from the bench to clinical care and health policy. J. Am. Geriatr. Soc. (in the press).

  57. Arias, E. United States Life Tables, 2017. National Vital Statistics Reports 68, https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf (2019).

  58. Song, Z. Potential implications of lowering the medicare eligibility age to 60. J. Am. Med. Assoc. 323, 2472–2473 (2020).

    Article  Google Scholar 

  59. Moffitt, R. A. & Ziliak, J. P. Entitlements: options for reforming the social safety net in the United States. Ann. Am. Acad. Polit. Soc. Sci. 686, 8–35 (2019).

    Article  Google Scholar 

  60. Richmond-Rakerd, L. S. et al. Clustering of health, crime and social-welfare inequality in 4 million citizens from two nations. Nat. Hum. Behav. 44, 255–264 (2020).

    Article  Google Scholar 

  61. Thomas, S. Telomeres as sentinels for environmental exposures, psychosocial stress, and disease susceptibility. In Workshop Summary. A Workshop Co-sponsored by the National Institute of Environmental Health Sciences (NIEHS) and the National Institute on Aging (NIA) (Rose Li and Associates, 2017).

  62. Glasser, M. F. et al. The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013).

    Article  PubMed  Google Scholar 

  63. Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48, 63–72 (2009).

    Article  PubMed  Google Scholar 

  64. Robinson, E. C. et al. MSM: a new flexible framework for multimodal surface matching. Neuroimage 100, 414–426 (2014).

    Article  PubMed  Google Scholar 

  65. Elliott, M. L. et al. What is the test–retest reliability of common task-functional MRI measures? New empirical evidence and a meta-analysis. Psychol. Sci. 31, 792–806 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jiang, J. et al. UBO detector – a cluster-based, fully automated pipeline for extracting white matter hyperintensities. Neuroimage 174, 539–549 (2018).

    Article  PubMed  Google Scholar 

  67. d’Arbeloff, T. et al. White matter hyperintensities are common in midlife and already associated with cognitive decline. Brain Commun. 1, fcz041 (2019).

  68. Jahanshad, N. et al. Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. Neuroimage 81, 455–469 (2013).

    Article  PubMed  Google Scholar 

  69. Smith, S. M. et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505 (2006).

    Article  PubMed  Google Scholar 

  70. Mori, S. et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40, 570–582 (2008).

    Article  PubMed  Google Scholar 

  71. Elliott, M. L. et al. Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Mol. Psychiatry https://doi.org/10.1038/s41380-019-0626-7 (2019).

  72. Liang, H., Zhang, F. & Niu, X. Investigating systematic bias in brain age estimation with application to post‐traumatic stress disorders. Hum. Brain Mapp. 40, 3143–3152 https://doi.org/10.1002/hbm.24588 (2019).

  73. Wechsler, D. Wechsler Adult Intelligence Scale 4th edn (Pearson Assessment, 2008).

  74. Wechsler, D. Manual for the Wechsler Intelligence Scale for Children, Revised (Psychological Corporation, 1974).

  75. Tucker-Drob, E. M., Brandmaier, A. M. & Lindenberger, U. Coupled cognitive changes in adulthood: a meta-analysis. Psychol. Bull. 145, 273–301 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lezak, D, Howieson, D, Loring, D, Hannay, H. & Fischer, J. Neuropsychological Assessment 4th edn (Oxford Univ. Press, 2004).

  77. Ganguli, M. Can the DSM-5 framework enhance the diagnosis of MCI? Neurology 81, 2045–2050 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rasmussen, L. J. H. et al. Association of neurocognitive and physical function with gait speed in midlife. JAMA Netw. Open 2, e1913123 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bohannon, R. W., Larkin, P. A., Cook, A. C., Gear, J. & Singer, J. Decrease in timed balance test scores with aging. Phys. Ther. 64, 1067–1070 (1984).

    Article  CAS  PubMed  Google Scholar 

  80. Vereeck, L., Wuyts, F., Truijen, S. & Van de Heyning, P. Clinical assessment of balance: normative data, and gender and age effects. Int. J. Audiol. 47, 67–75 (2008).

    Article  PubMed  Google Scholar 

  81. Springer, B. A., Marin, R., Cyhan, T., Roberts, H. & Gill, N. W. Normative values for the unipedal stance test with eyes open and closed. J. Geriatr. Phys. Ther. 30, 8–15 (2007).

    Article  PubMed  Google Scholar 

  82. Jones, C. J., Rikli, R. E. & Beam, W. C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 70, 113–119 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Jones, C. J. & Rikli, R. E. Measuring functional fitness of older adults. J. Act. Aging 2002, 24–30 (2002).

  84. Rikli, R. E. & Jones, C. J. Functional fitness normative scores for community-residing older adults, ages 60–94. J. Aging Phys. Act. 7, 162–181 (1999).

    Article  Google Scholar 

  85. Mathiowetz, V. et al. Grip and pinch strength: normative data for adults. Arch. Phys. Med. Rehabil. 66, 69–74 (1985).

    CAS  PubMed  Google Scholar 

  86. Cameron, S. & Dillon, H. Development of the listening in spatialized noise-sentences test (LISN-S). Ear Hear. 28, 196–211 (2007).

    Article  PubMed  Google Scholar 

  87. RAND 36-Item Short Form Survey (SF-36); https://www.rand.org/health-care/surveys_tools/mos/36-item-short-form.html

  88. DeBruine, L. debruine/webmorph: Beta release v.2 (Zenodo, 2018); https://doi.org/10.5281/ZENODO.1162670

Download references

Acknowledgements

This research was supported by the National Institute on Aging (NIA) grant nos. R01AG032282 and R01AG049789, and the UK Medical Research Council grant no. MR/P005918/1. Additional support was provided by the Jacobs Foundation, grant nos. NIA P30 AG028716 and NIA P30 AG034424. The Dunedin Multidisciplinary Health and Development Research Unit was supported by the New Zealand Health Research Council (Project Grant nos. 15-265 and 16-604) and the New Zealand Ministry of Business, Innovation and Employment (MBIE). M.L.E. is supported by the National Science Foundation Graduate Research Fellowship (no. NSF DGE-1644868) and grant no. NIA F99 AG068432-01. We thank members of the Advisory Board for the Dunedin Neuroimaging Study, Dunedin Study members, Unit research staff, Pacific Radiology Group staff and study founder P. Silva.

Author information

Authors and Affiliations

Authors

Contributions

M.L.E., A.C., A.R.H., R.P. and T.E.M. designed the research. M.L.E., A.C., R.M.H, A.A., J.M.B., R.J.H., H.L.H., S.H., R.K., A.K., J.H.L., T.R.M., S.C.P., S.R., L.S.R.-R., A.R., K.S., W.M.T., P.R.T., B.S.W., G.W., A.R.H., R.P. and T.E.M. performed the research. M.L.E., R.M.H. and A.K. analyzed data. M.L.E., A.C., A.R.H. and T.E.M. wrote the paper.

Corresponding author

Correspondence to Maxwell L. Elliott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Aging thanks William Jagust, Juulia Jylhava, Diana Kuh, John Rowe and Thomas Travison for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Tables 1–7.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, M.L., Caspi, A., Houts, R.M. et al. Disparities in the pace of biological aging among midlife adults of the same chronological age have implications for future frailty risk and policy. Nat Aging 1, 295–308 (2021). https://doi.org/10.1038/s43587-021-00044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-021-00044-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing