Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Distinct organization of adaptive immunity in the long-lived rodent Spalax galili

Abstract

A balanced immune response is a cornerstone of healthy aging. Here, we uncover distinctive features of the long-lived blind mole-rat (Spalax spp.) adaptive immune system, relative to humans and mice. The T-cell repertoire remains diverse throughout the Spalax lifespan, suggesting a paucity of large long-lived clones of effector-memory T cells. Expression of master transcription factors of T-cell differentiation, as well as checkpoint and cytotoxicity genes, remains low as Spalax ages. The thymus shrinks as in mice and humans, while interleukin-7 and interleukin-7 receptor expression remains high, potentially reflecting the sustained homeostasis of naive T cells. With aging, immunoglobulin hypermutation level does not increase and the immunoglobulin-M repertoire remains diverse, suggesting shorter B-cell memory and sustained homeostasis of innate-like B cells. The Spalax adaptive immune system thus appears biased towards sustained functional and receptor diversity over specialized, long-lived effector-memory clones—a unique organizational strategy that potentially underlies this animal’s extraordinary longevity and healthy aging.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Comparative phylogenetic analysis of Spalax, mouse and rat TCR and IGH genes.
Fig. 2: TCR diversity and thymus involution.
Fig. 3: Characteristics of TCR CDR3β repertoires for four age groups in Spalax, mouse and human.
Fig. 4: Expression of T-cell-related genes in mouse and Spalax spleen across age groups.
Fig. 5: Immunoglobulin repertoire features in Spalax and mouse across age groups.

Data availability

TCR and IGH profiling and RNA-seq raw sequencing data were deposited in GenBank under BioProjects PRJNA432350 and PRJNA643223. Spalax TCR and IGH gene references are available at https://doi.org/10.5281/zenodo.4473340. Extracted TCR clonesets, gene expression data and cloneset metrics are available in figshare: https://figshare.com/projects/Distinct_organization_of_adaptive_immunity_in_long-lived_rodent_Spalax_Galili/28773.

Code availability

See Supplementary Note 2 for the de novo transcriptome assembly pipeline. MiXCR software is available from MiLaboratory LLC: https://milaboratory.com/.

References

  1. 1.

    Jameson, S. C. & Masopust, D. Understanding subset diversity in T cell memory. Immunity 48, 214–226 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Gasper, D. J., Tejera, M. M. & Suresh, M. CD4 T-cell memory generation and maintenance. Crit. Rev. Immunol. 34, 121–146 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Kurosaki, T., Kometani, K. & Ise, W. Memory B cells. Nat. Rev. Immunol. 15, 149–159 (2015).

    CAS  Google Scholar 

  4. 4.

    McHeyzer-Williams, M., Okitsu, S., Wang, N. & McHeyzer-Williams, L. Molecular programming of B cell memory. Nat. Rev. Immunol. 12, 24–34 (2011).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Grimsholm, O. et al. The interplay between CD27(dull) and CD27(bright) B cells ensures the flexibility, stability, and resilience of human B cell memory. Cell Rep. 30, 2963–2977 (2020).

    CAS  Google Scholar 

  6. 6.

    Britanova, O. V. et al. Dynamics of individual T cell repertoires: from cord blood to centenarians. J. Immunol. 196, 5005–5013 (2016).

    CAS  Google Scholar 

  7. 7.

    Rose, N. R. Infection, mimics, and autoimmune disease. J. Clin. Invest. 107, 943–944 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kivity, S., Agmon-Levin, N., Blank, M. & Shoenfeld, Y. Infections and autoimmunity—friends or foes? Trends Immunol. 30, 409–414 (2009).

    CAS  Google Scholar 

  9. 9.

    Van Den Berg, H. A., Molina-Paris, C. & Sewell, A. K. Specific T-cell activation in an unspecific T-cell repertoire. Sci. Prog. 94, 245–264 (2011).

    Google Scholar 

  10. 10.

    Goronzy, J. J. & Weyand, C. M. Successful and maladaptive T cell aging. Immunity 46, 364–378 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Minato, N., Hattori, M. & Hamazaki, Y. Physiology and pathology of T-cell aging. Int. Immunol. 32, 223–231 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Turner, D. L. & Farber, D. L. Mucosal resident memory CD4 T cells in protection and immunopathology. Front. Immunol. 5, 331 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Tacutu, R. et al. Human ageing genomic resources: new and updated databases. Nucleic Acids Res. 46, D1083–D1090 (2018).

    CAS  Google Scholar 

  14. 14.

    Ruby, J. G., Smith, M. & Buffenstein, R. Naked mole-rat mortality rates defy gompertzian laws by not increasing with age. eLife 7, e31157 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Edrey, Y. H., Hanes, M., Pinto, M., Mele, J. & Buffenstein, R. Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research. ILAR J. 52, 41–53 (2011).

    CAS  Google Scholar 

  16. 16.

    Gorbunova, V. et al. Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proc. Natl Acad. Sci. USA 109, 19392–19396 (2012).

    CAS  Google Scholar 

  17. 17.

    Tian, X. et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499, 346–349 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Manov, I. et al. Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: in vivo and in vitro evidence. BMC Biol. 11, 91 (2013).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Gorbunova, V., Seluanov, A., Zhang, Z., Gladyshev, V. N. & Vijg, J. Comparative genetics of longevity and cancer: insights from long-lived rodents. Nat. Rev. Genet. 15, 531–540 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Schmidt, H. et al. Hypoxia tolerance, longevity and cancer-resistance in the mole rat Spalax—a liver transcriptomics approach. Sci. Rep. 7, 14348 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Altwasser, R. et al. The transcriptome landscape of the carcinogenic treatment response in the blind mole rat: insights into cancer resistance mechanisms. BMC Genomics 20, 17 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Fang, X. et al. Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nat. Commun. 5, 3966 (2014).

    CAS  Google Scholar 

  23. 23.

    Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).

    CAS  Google Scholar 

  24. 24.

    Lanning, D. K., Esteves, P. J. & Knight, K. L. The remnant of the European rabbit (Oryctolagus cuniculus) IgD gene. PLoS ONE 12, e0182029 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Izraelson, M. et al. Comparative analysis of murine T-cell receptor repertoires. Immunology 153, 133–144 (2018).

    CAS  Google Scholar 

  26. 26.

    Posnett, D. N., Sinha, R., Kabak, S. & Russo, C. Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign monoclonal gammapathy”. J. Exp. Med. 179, 609–618 (1994).

    CAS  Google Scholar 

  27. 27.

    Messaoudi, I., Lemaoult, J., Guevara-Patino, J. A., Metzner, B. M. & Nikolich-Zugich, J. Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense. J. Exp. Med. 200, 1347–1358 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Mogilenko, D. A. et al. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. Immunity 54, 99–115 (2020).

    Google Scholar 

  29. 29.

    Franckaert, D. et al. Premature thymic involution is independent of structural plasticity of the thymic stroma. Eur. J. Immunol. 45, 1535–1547 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Gui, J., Mustachio, L. M., Su, D. M. & Craig, R. W. Thymus size and age-related thymic involution: early programming, sexual dimorphism, progenitors and stroma. Aging Dis. 3, 280–290 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Bonati, A. et al. T-cell receptor beta-chain gene rearrangement and expression during human thymic ontogenesis. Blood 79, 1472–1483 (1992).

    CAS  Google Scholar 

  32. 32.

    Murugan, A., Mora, T., Walczak, A. M. & Callan, C. G. Jr. Statistical inference of the generation probability of T-cell receptors from sequence repertoires. Proc. Natl Acad. Sci. USA 109, 16161–16166 (2012).

    CAS  Google Scholar 

  33. 33.

    Venturi, V. et al. A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing. J. Immunol. 186, 4285–4294 (2011).

    CAS  Google Scholar 

  34. 34.

    Quigley, M. F. et al. Convergent recombination shapes the clonotypic landscape of the naive T-cell repertoire. Proc. Natl Acad. Sci. USA 107, 19414–19419 (2010).

    CAS  Google Scholar 

  35. 35.

    Nizetic, D. et al. Major histocompatibility complex of the mole-rat. I. Serological and biochemical analysis. Immunogenetics 20, 443–451 (1984).

    CAS  Google Scholar 

  36. 36.

    Krishna, C., Chowell, D., Gonen, M., Elhanati, Y. & Chan, T. A. Genetic and environmental determinants of human TCR repertoire diversity. Immun. Ageing 17, 26 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Zvyagin, I. V. et al. Distinctive properties of identical twins’ TCR repertoires revealed by high-throughput sequencing. Proc. Natl Acad. Sci. USA 111, 5980–5985 (2014).

    CAS  Google Scholar 

  38. 38.

    Tanno, H. et al. Determinants governing T cell receptor alpha/beta-chain pairing in repertoire formation of identical twins. Proc. Natl Acad. Sci. USA 117, 532–540 (2020).

    CAS  Google Scholar 

  39. 39.

    Logunova, N. N. et al. MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naive CD4+ T cells. Proc. Natl Acad. Sci. USA 117, 13659–13669 (2020).

    CAS  Google Scholar 

  40. 40.

    Egorov, E. S. et al. The changing landscape of naive T cell receptor repertoire with human aging. Front. Immunol. 9, 1618 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Garner, L. C., Klenerman, P. & Provine, N. M. Insights into mucosal-associated invariant T cell biology from studies of invariant natural killer T cells. Front. Immunol. 9, 1478 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Howson, L. J. et al. MAIT cell clonal expansion and TCR repertoire shaping in human volunteers challenged with Salmonella Paratyphi A. Nat. Commun. 9, 253 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Reantragoon, R. et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 210, 2305–2320 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Madi, A. et al. T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences. eLife 6, e22057 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Shugay, M. E. A. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res. 46, D419–D427 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Bedel, R. et al. Effective functional maturation of invariant natural killer T cells is constrained by negative selection and T-cell antigen receptor affinity. Proc. Natl Acad. Sci. USA 111, E119–E128 (2014).

    CAS  Google Scholar 

  47. 47.

    Koay, H. F. et al. Diverse MR1-restricted T cells in mice and humans. Nat. Commun. 10, 2243 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    DeWitt, W. S. 3rd et al. Human T cell receptor occurrence patterns encode immune history, genetic background, and receptor specificity. eLife 7, e38358 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Pieren, D. K. J., Smits, N. A. M., van de Garde, M. D. B. & Guichelaar, T. Response kinetics reveal novel features of ageing in murine T cells. Sci. Rep. 9, 5587 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Fang, D. & Zhu, J. Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets. J. Exp. Med. 214, 1861–1876 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Elyahu, Y. et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci. Adv. 5, eaaw8330 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Peters, M. J. et al. The transcriptional landscape of age in human peripheral blood. Nat. Commun. 6, 8570 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Marquez, E. J. et al. Sexual-dimorphism in human immune system aging. Nat. Commun. 11, 751 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Eberl, G. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5, 64–73 (2004).

    CAS  Google Scholar 

  55. 55.

    Garg, S. K. et al. Aging is associated with increased regulatory T-cell function. Aging Cell 13, 441–448 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Channappanavar, R., Twardy, B. S., Krishna, P. & Suvas, S. Advancing age leads to predominance of inhibitory receptor expressing CD4 T cells. Mech. Ageing Dev. 130, 709–712 (2009).

    CAS  Google Scholar 

  57. 57.

    Burchill, M. A., Yang, J., Vogtenhuber, C., Blazar, B. R. & Farrar, M. A. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. 178, 280–290 (2007).

    CAS  Google Scholar 

  58. 58.

    Williams, M. A., Tyznik, A. J. & Bevan, M. J. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441, 890–893 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Leonard, W. J. & Wan, C. K. IL-21 signaling in immunity. F1000Res 5, 224 (2016).

    Google Scholar 

  60. 60.

    Skak, K., Frederiksen, K. S. & Lundsgaard, D. Interleukin-21 activates human natural killer cells and modulates their surface receptor expression. Immunology 123, 575–583 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).

    CAS  Google Scholar 

  62. 62.

    Lynch, E. A., Heijens, C. A., Horst, N. F., Center, D. M. & Cruikshank, W. W. Cutting edge: IL-16/CD4 preferentially induces Th1 cell migration: requirement of CCR5. J. Immunol. 171, 4965–4968 (2003).

    CAS  Google Scholar 

  63. 63.

    Skundric, D. S., Cai, J., Cruikshank, W. W. & Gveric, D. Production of IL-16 correlates with CD4+ Th1 inflammation and phosphorylation of axonal cytoskeleton in multiple sclerosis lesions. J. Neuroinflammation 3, 13 (2006).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Fiorentino, D. F., Bond, M. W. & Mosmann, T. R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J. Exp. Med. 170, 2081–2095 (1989).

    CAS  Google Scholar 

  65. 65.

    Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O’Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    CAS  Google Scholar 

  66. 66.

    Bagnasco, D., Ferrando, M., Varricchi, G., Passalacqua, G. & Canonica, G. W. A critical evaluation of anti-IL-13 and anti-IL-4 strategies in severe asthma. Int. Arch. Allergy Immunol. 170, 122–131 (2016).

    CAS  Google Scholar 

  67. 67.

    Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    CAS  Google Scholar 

  69. 69.

    Soares, M. V. et al. IL-7-dependent extrathymic expansion of CD45RA+ T cells enables preservation of a naive repertoire. J. Immunol. 161, 5909–5917 (1998).

    CAS  Google Scholar 

  70. 70.

    Nguyen, V., Mendelsohn, A. & Larrick, J. W. Interleukin-7 and immunosenescence. J. Immunol. Res. 2017, 4807853 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Passtoors, W. M. et al. IL7R gene expression network associates with human healthy ageing. Immun. Ageing 12, 21 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Horns, F. et al. Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching. eLife 5, e16578 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Ventura, M. T., Casciaro, M., Gangemi, S. & Buquicchio, R. Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. Clin. Mol. Allergy 15, 21 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Paganelli, R. et al. Changes in circulating B cells and immunoglobulin classes and subclasses in a healthy aged population. Clin. Exp. Immunol. 90, 351–354 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Rogosch, T. et al. IgA response in preterm neonates shows little evidence of antigen-driven selection. J. Immunol. 189, 5449–5456 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    de Jong, B. G. et al. Human IgG2- and IgG4-expressing memory B cells display enhanced molecular and phenotypic signs of maturity and accumulate with age. Immunol. Cell Biol. 95, 744–752 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Ghraichy, M. et al. Maturation of the human immunoglobulin heavy chain repertoire with age. Front. Immunol. 11, 1734 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Choi, Y. S., Dieter, J. A., Rothaeusler, K., Luo, Z. & Baumgarth, N. B-1 cells in the bone marrow are a significant source of natural IgM. Eur. J. Immunol. 42, 120–129 (2012).

    CAS  Google Scholar 

  79. 79.

    Baumgarth, N. A Hard(y) look at B-1 cell development and function. J. Immunol. 199, 3387–3394 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Holodick, N. E. & Rothstein, T. L. B cells in the aging immune system: time to consider B-1 cells. Ann. N. Y. Acad. Sci. 1362, 176–187 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Prohaska, T. A. et al. Massively parallel sequencing of peritoneal and splenic B cell repertoires highlights unique properties of B-1 cell antibodies. J. Immunol. 200, 1702–1717 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Kosmrlj, A., Jha, A. K., Huseby, E. S., Kardar, M. & Chakraborty, A. K. How the thymus designs antigen-specific and self-tolerant T cell receptor sequences. Proc. Natl Acad. Sci. USA 105, 16671–16676 (2008).

    CAS  Google Scholar 

  83. 83.

    Kosmrlj, A. et al. Effects of thymic selection of the T-cell repertoire on HLA class I-associated control of HIV infection. Nature 465, 350–354 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Stadinski, B. D. et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat. Immunol. 17, 946–955 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Tang, A. L. et al. CTLA4 expression is an indicator and regulator of steady-state CD4+ FoxP3+ T cell homeostasis. J. Immunol. 181, 1806–1813 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Klocke, K., Sakaguchi, S., Holmdahl, R. & Wing, K. Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc. Natl Acad. Sci. USA 113, E2383–E2392 (2016).

    CAS  Google Scholar 

  87. 87.

    Walker, L. S. K. EFIS lecture: understanding the CTLA-4 checkpoint in the maintenance of immune homeostasis. Immunol. Lett. 184, 43–50 (2017).

    CAS  Google Scholar 

  88. 88.

    den Braber, I. et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36, 288–297 (2012).

    Google Scholar 

  89. 89.

    Kim, E. B. et al. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479, 223–227 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Lewis, K. N. et al. Unraveling the message: insights into comparative genomics of the naked mole-rat. Mamm. Genome 27, 259–278 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Malik, A. et al. Genome maintenance and bioenergetics of the long-lived hypoxia-tolerant and cancer-resistant blind mole rat, Spalax: a cross-species analysis of brain transcriptome. Sci. Rep. 6, 38624 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Matz, M. et al. Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res. 27, 1558–1560 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Egorov, E. S. et al. Quantitative profiling of immune repertoires for minor lymphocyte counts using unique molecular identifiers. J. Immunol. 194, 6155–6163 (2015).

    CAS  Google Scholar 

  94. 94.

    Turchaninova, M. A. et al. High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nat. Protoc. 11, 1599–1616 (2016).

    CAS  Google Scholar 

  95. 95.

    Weber, J. et al. PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice. Nat. Commun. 10, 1415 (2019).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2012).

    CAS  Google Scholar 

  97. 97.

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Yu, Y. et al. A rat RNA-seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nat. Commun. 5, 3230 (2014).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Shugay, M. et al. Towards error-free profiling of immune repertoires. Nat. Methods 11, 653–655 (2014).

    CAS  Google Scholar 

  100. 100.

    Shugay, M. et al. VDJtools: unifying post-analysis of T cell receptor repertoires. PLoS Comput. Biol. 11, e1004503 (2015).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Bolotin, D. A. et al. Antigen receptor repertoire profiling from RNA-seq data. Nat. Biotechnol. 35, 908–911 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Hughes, J. B., Hellmann, J. J., Ricketts, T. H. & Bohannan, B. J. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67, 4399–4406 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Chiu, C. H. & Chao, A. Estimating and comparing microbial diversity in the presence of sequencing errors. PeerJ 4, e1634 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Shugay, M. et al. Huge overlap of individual TCR beta repertoires. Front. Immunol. 4, 466 (2013).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Mamrot, J. et al. De novo transcriptome assembly for the spiny mouse (Acomys cahirinus). Sci. Rep. 7, 8996 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Bushmanova, E., Antipov, D., Lapidus, A. & Prjibelski, A. D. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-seq data. Gigascience 8, giz100 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    CAS  Google Scholar 

  111. 111.

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

    CAS  Google Scholar 

  113. 113.

    Nielsen, H. Predicting secretory proteins with SignalP. Methods Mol. Biol. 1611, 59–73 (2017).

    CAS  Google Scholar 

  114. 114.

    Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    CAS  Google Scholar 

  115. 115.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank O. Schwartz and E. Suss-Toby, BCF Bioimaging Center, Faculty of Medicine, Technion, for the MR imaging and image analysis. The work was supported by the Russian Science Foundation (grant no. 16-15-00149, to O.V.B.), the Ministry of Education and Science of the Russian Federation (grant no. 14.W03.31.0005, to D.M.C., for part of mouse samples preparation) and the Israel Science Foundation (grant no. 1935/17, to I.S.). M.M. was supported by the European Regional Development Fund–Project ‘MSCAfellow3@MUNI’ (grant no. CZ.02.2.69/0.0/0.0/19_074/0012727).

Author information

Affiliations

Authors

Contributions

M.I., I.A.S., M.A.D., D.A.M., I.Z.M., L.N.V., T.O.N., D.B.S., G.V.S., E.Y.K., I.S. and O.V.B. performed wet laboratory experiments. M.I., M.M., A.N.D., A.S.O., M.S., D.A.B. and O.V.B. performed data analysis. E.V.Z., S.L., I.S., O.V.B. and D.M.C. designed and supervised the project, designed experiments and worked on the manuscript. I.S., O.V.B. and D.M.C. are the co-senior authors.

Corresponding authors

Correspondence to O. V. Britanova or D. M. Chudakov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Aging thanks Vera Gorbunova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Phylogenetic tree of nucleotide sequences of IGVH segments.

The gene segments are highlighted in blue for mouse, orange for Spalax, and green for rat. Number after asterisk corresponds to the allele name. Only functional alleles are shown. The neighbour-joining trees were constructed with the evolutionary distances computed using the Maximum Composite Likelihood method, with a bootstrap of 1,000 replicates.

Extended Data Fig. 2 Phylogenetic tree of nucleotide sequences of TRAV segments.

Gene segments are highlighted in blue for mouse, orange for Spalax, and green for rat. The neighbour-joining trees were constructed with the evolutionary distances computed using the Maximum Composite Likelihood method, with a bootstrap of 1,000 replicates. The tree is drawn to scale, with branch lengths in the same units as the evolutionary distances used to output the phylogenetic tree. Number after asterisk corresponds to the allele name. Only functional alleles are shown.

Extended Data Fig. 3 Assessing the size of the thymus in young and adult Spalax.

a. Histological verification of thymic tissue localization showing its connection to surrounding tissues. Paraffin-embedded tissue after PFA fixation. Hematoxylin and eosin staining of section from young Spalax (<3 years) at 20x magnification. H - heart (aorta), T - thymus. Staining was performed on two animals. a,b. Representative thymus MRI sequential images for young (b) and old (c) Spalax showing the sagittal sections. White arrows point to the thymic lobes.

Extended Data Fig. 4 Physicochemical characteristics of TCR CDR3β repertoires.

Mean characteristics of the five amino acid residues in the center of CDR3β are shown for the four age groups in human, mouse, and Spalax. The measured parameters are a, normalized strength (strongly interacting amino acids), b, normalized volume (bulky amino acids), and c, normalized hydrophobicity (based on inverted Kidera factor 4). P-values were calculated using two-sided Welch’s t-test. * < 0.05, ** < 0.01, *** - < 0.001, ****<0.0001. n = 19 mice and 17 Spalax animals.

Extended Data Fig. 5 Expression of T-cell-related genes in mouse and Spalax spleen across age groups.

Expression of a, T cell transcription factors, b, checkpoint molecules, and c, naive/homeostatic genes, presented as non-normalized TPM values (corresponding to data shown in Fig. 4b–d). a-c. P-values represent one-way ANOVA with Tukey’s test, * < 0.05, ** < 0.01, *** - < 0.001. The boxplots visualize the median, hinges representing the 25th and 75th percentiles, and whiskers extending to the values that are no further than 1.5 × IQR from the upper or the lower hinge. n = 12 mice and 12 Spalax (3 animals per age group) were used for the analysis. d,e. Expression levels of (d) basic cytokines and (e) receptors (non z-scaled data corresponding to data shown in Fig. 4e,f). The P-value and Log-transformed fold changes (Log2FC) shown on the left represent the differential gene expression analysis results calculated between species (9 animals for each species excluding newborn, 3 animals per age group) according to the procedure described in the Methods section.

Extended Data Fig. 6 Busco analysis of transcriptome completeness.

Cumulative percentage of orthologues calculated using BUSCO with --auto-lineage-euk option against four transcriptome assemblies prepared by different tools (Shannon, SPAdes with kmer size of 55 and 75, Trinity). The Final_assembly represents the result of EvidentialGene pipeline applied to the merged data from 4 different assemblies.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2 and Tables 1, 3 and 4.

Reporting Summary

Supplementary Table

Supplementary Table 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Izraelson, M., Metsger, M., Davydov, A.N. et al. Distinct organization of adaptive immunity in the long-lived rodent Spalax galili. Nat Aging 1, 179–189 (2021). https://doi.org/10.1038/s43587-021-00029-3

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing