Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Asynchronous, contagious and digital aging

Abstract

Organismal aging is often characterized as a steady, monotonic decline of organ and tissue function. However, recent studies indicate spatial and temporal variations of aging rates across the lifespan. We consider these variations from the perspective of underlying cellular changes. Cells in certain tissues may age earlier and produce signals that accelerate the aging of other cells, locally or distantly, acting as drivers for organismal aging and leading to a lack of synchronous aging between tissues. As cells adopt new homeostatic states, cellular aging can be viewed, at least in part, as a quantal process we refer to as digital aging. Analog declines of tissue function with age may be the sum of underlying digital events. Cellular aging, digital or otherwise, is not uniform across time or space within organisms or between organisms of the same species. Advanced systems-level and single-cell methodologies will refine our understanding of cell and tissue aging, and how these processes integrate to produce the complexities of individual, organismal aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lifespan as an integration of rates of aging at multiple levels.
Fig. 2: Asynchronous aging of different tissues and organs.
Fig. 3: Digital aging.

Similar content being viewed by others

References

  1. Flatt, T. & Partridge, L. Horizons in the evolution of aging. BMC Biol. 16, 93 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Medawar, P. B. An Unsolved Problem of Biology (H. K. Lewis, 1952).

  3. Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).

    Article  Google Scholar 

  4. Kirkwood, T. B. Evolution of ageing. Nature 270, 301–304 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gladyshev, V. N. The ground zero of organismal life and aging. Trends Mol. Med. 27, 11–19 (2020).

    Article  PubMed  CAS  Google Scholar 

  7. Rose, M. R. Adaptation, aging, and genomic information. Aging 1, 444–450 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gladyshev, V. N. Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell 15, 594–602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tissenbaum, H. A. & Guarente, L. Model organisms as a guide to mammalian aging. Dev. Cell 2, 9–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Piper, M. D. W. & Partridge, L. Drosophila as a model for ageing. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 2707–2717 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Singh, P. P., Demmitt, B. A., Nath, R. D. & Brunet, A. The genetics of aging: a vertebrate perspective. Cell 177, 200–220 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gonzalez-Freire, M. et al. The road ahead for health and lifespan interventions. Ageing Res. Rev. 59, 101037 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span—from yeast to humans. Science 328, 321–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hayflick, L. Entropy explains aging, genetic determinism explains longevity, and undefined terminology explains misunderstanding both. PLoS Genet. 3, e220 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Goodell, M. A. & Rando, T. A. Stem cells and healthy aging. Science 350, 1199–1204 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Brett, J. O. & Rando, T. A. Alive and well? Exploring disease by studying lifespan. Curr. Opin. Genet. Dev. 26, 33–40 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Bansal, A., Zhu, L. J., Yen, K. & Tissenbaum, H. A. Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proc. Natl Acad. Sci. USA 112, E277–E286 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pearl, R. The Rate of Living (University of London Press, 1928).

  19. Rando, T. A. Stem cells, ageing and the quest for immortality. Nature 441, 1080–1086 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Butler, P. G., Wanamaker, A. D., Scourse, J. D., Richardson, C. A. & Reynolds, D. J. Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Artica islandica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 373, 141–151 (2013).

    Article  Google Scholar 

  21. Ailshire, J. A., Beltran-Sanchez, H. & Crimmins, E. M. Becoming centenarians: disease and functioning trajectories of older US adults as they survive to 100. J. Gerontol. A Biol. Sci. Med. Sci. 70, 193–201 (2015).

    Article  PubMed  Google Scholar 

  22. Kirkwood, T. B. et al. What accounts for the wide variation in life span of genetically identical organisms reared in a constant environment? Mech. Ageing Dev. 126, 439–443 (2005).

    Article  PubMed  Google Scholar 

  23. Khan, S. S., Singer, B. D. & Vaughan, D. E. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell 16, 624–633 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bocklandt, S. et al. Epigenetic predictor of age. PLoS ONE 6, e14821 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 68 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Heidinger, B. J. et al. Telomere length in early life predicts lifespan. Proc. Natl Acad. Sci. USA 109, 1743–1748 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Steenstrup, T. et al. Telomeres and the natural lifespan limit in humans. Aging 9, 1130–1142 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lehallier, B. et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat. Med. 25, 1843–1850 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, W. et al. Three-dimensional human facial morphologies as robust aging markers. Cell Res. 25, 574–587 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Herndon, L. A. et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Tricoire, H. & Rera, M. A new, discontinuous 2 phases of aging model: lessons from Drosophila melanogaster. PLoS ONE 10, e0141920 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Isildak, U., Somel, M., Thornton, J. M. & Donertas, H. M. Temporal changes in the gene expression heterogeneity during brain development and aging. Sci. Rep. 10, 4080 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li, X. et al. Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. eLife 9, e51507 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marquez, E. J. et al. Sexual-dimorphism in human immune system aging. Nat. Commun. 11, 751 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holzscheck, N. et al. Multi-omics network analysis reveals distinct stages in the human aging progression in epidermal tissue. Aging 12, 12393–12409 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Edde, M., Leroux, G., Altena, E. & Chanraud, S. Functional brain connectivity changes across the human life span: from fetal development to old age. J. Neurosci. Res. 99, 236–262 (2020).

    Article  PubMed  CAS  Google Scholar 

  39. Biteau, B., Hochmuth, C. E. & Jasper, H. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3, 442–455 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clark, R. I. et al. Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality. Cell Rep. 12, 1656–1667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Demontis, F. & Perrimon, N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143, 813–825 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Owusu-Ansah, E., Song, W. & Perrimon, N. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155, 699–712 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Ori, A. et al. Integrated transcriptome and proteome analyses reveal organ-specific proteome deterioration in old rats. Cell Syst. 1, 224–237 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahadi, S. et al. Personal aging markers and ageotypes revealed by deep longitudinal profiling. Nat. Med. 26, 83–90 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Arrojo e Drigo, R. et al. Age mosaicism across multiple scales in adult tissues. Cell Metab. 30, 343–351 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martinez-Jimenez, C. P. et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 355, 1433–1436 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Enge, M. et al. Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171, 321–330 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tabula Muris Consortium. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020).

    Article  CAS  Google Scholar 

  50. Ma, S. et al. Caloric restriction reprograms the single-cell transcriptional landscape of Rattus norvegicus aging. Cell 180, 984–1001 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Kimmel, J. C. et al. Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging. Genome Res. 29, 2088–2103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goronzy, J. J. & Weyand, C. M. T cell development and receptor diversity during aging. Curr. Opin. Immunol. 17, 468–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Tower, J. Programmed cell death in aging. Ageing Res. Rev. 23, 90–100 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Hernandez-Segura, A. et al. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652–2660 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Robbins P. D. et al. Senolytic drugs: reducing senescent cell viability to extend health span. Annu. Rev. Pharmacol. Toxicol. https://doi.org/10.1146/annurev-pharmtox-050120-105018 (2020).

  57. Tyshkovskiy, A. et al. Identification and application of gene expression signatures associated with lifespan extension. Cell Metab. 30, 573–593 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Davis, A. A., Leyns, C. E. G. & Holtzman, D. M. Intercellular spread of protein aggregates in neurodegenerative disease. Annu. Rev. Cell Dev. Biol. 34, 545–568 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Prusiner, S. B. Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet. 47, 601–623 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guo, J. L. & Lee, V. M. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat. Med. 20, 130–138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Morimoto, R. I.Cell-nonautonomous regulation of proteostasis in aging and disease.Cold Spring Harb. Perspect. Biol. 12, a034074 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ruckh, J. M. et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10, 96–103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Salpeter, S. J. et al. Systemic regulation of the age-related decline of pancreatic β-cell replication. Diabetes 62, 2843–2848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Castellano, J. M. et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544, 488–492 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, M. B. et al. Brain endothelial cells are exquisite sensors of age-related circulatory cues. Cell Rep. 30, 4418–4432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Niccoli, T. & Partridge, L. Ageing as a risk factor for disease. Curr. Biol. 22, R741–R752 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Keating, N. L., Norredam, M., Landrum, M. B., Huskamp, H. A. & Meara, E. Physical and mental health status of older long-term cancer survivors. J. Am. Geriatr. Soc. 53, 2145–2152 (2005).

    Article  PubMed  Google Scholar 

  73. Kirkman, M. S. et al. Diabetes in older adults: a consensus report. J. Am. Geriatr. Soc. 60, 2342–2356 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. High, K. P. et al. HIV and aging: state of knowledge and areas of critical need for research. A report to the NIH Office of AIDS Research by the HIV and Aging Working Group. J. Acquir. Immune Defic. Syndr. 60, S1–S18 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Longo, V. D. et al. Interventions to slow aging in humans: are we ready? Aging Cell 14, 497–510 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schleit, J. et al. Molecular mechanisms underlying genotype-dependent responses to dietary restriction. Aging Cell 12, 1050–1061 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Rikke, B. A., Liao, C. Y., McQueen, M. B., Nelson, J. F. & Johnson, T. E. Genetic dissection of dietary restriction in mice supports the metabolic efficiency model of life extension. Exp. Gerontol. 45, 691–701 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Liao, C. Y., Rikke, B. A., Johnson, T. E., Diaz, V. & Nelson, J. F. Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell 9, 92–95 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Rando, T. A. & Chang, H. Y. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148, 46–57 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20, 659–663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sarkar, T. J. et al. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat. Commun. 11, 1545 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dobzhansky, T. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teacher 35, 125–129 (1973).

    Article  Google Scholar 

  85. Zhang, R., Chen, H. Z. & Liu, D. P. The four layers of aging. Cell Syst. 1, 180–186 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Glenn Foundation for Medical Research, Nan Fung Life Sciences and the NOMIS Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas A. Rando or Tony Wyss-Coray.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Aging thanks Steven Austad, Vadim Gladyshev and Jing-Dong Jackie Han for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rando, T.A., Wyss-Coray, T. Asynchronous, contagious and digital aging. Nat Aging 1, 29–35 (2021). https://doi.org/10.1038/s43587-020-00015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-020-00015-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing