Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Stimulated emission depletion microscopy

Abstract

In this Primer, we focus on the most recent advancements in stimulated emission depletion (STED) microscopy, encompassing optics, computational microscopy and probes design, which enable STED imaging to open new observation windows in challenging samples such as living cells and tissues. We showcase applications in which STED data have been essential to gain new biological insights in various cell types and model systems. Finally, we discuss what standardization will be important in our view to further advance STED imaging, including open and shareable software, analysis pipelines, data repositories and sample preparation protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of stimulated emission depletion microscopy.
Fig. 2: Typical stimulated emission depletion setup, depletion patterns and beam shaping using a spatial light modulator.
Fig. 3: Time-resolved stimulated emission depletion microscopy.
Fig. 4: Stimulated emission depletion-fluorescence correlation spectroscopy and stimulated emission depletion-image-scanning microscopy.
Fig. 5: Fluorophore types and labelling methods used for stimulated emission depletion microscopy.
Fig. 6: Examples of 2D and 3D stimulated emission depletion imaging data.
Fig. 7: Novel biological insights using stimulated emission depletion microscopy.
Fig. 8: Deep learning for stimulated emission depletion microscopy.

Similar content being viewed by others

References

  1. Harke, B., Ullal, C. K., Keller, J. & Hell, S. W. Three-dimensional nanoscopy of colloidal crystals. Nano Lett. 8, 1309–1313 (2008).

    Article  ADS  Google Scholar 

  2. Wildanger, D., Medda, R., Kastrup, L. & Hell, S. W. A compact STED microscope providing 3D nanoscale resolution. J. Microsc. 236, 35–43 (2009).

    Article  MathSciNet  Google Scholar 

  3. Wiktor, J. et al. RecA finds homologous DNA by reduced dimensionality search. Nature 597, 426–429 (2021).

    Article  ADS  Google Scholar 

  4. Velasco, M. G. M. et al. 3D super-resolution deep-tissue imaging in living mice. Optica 8, 442 (2021). This work describes a two-photon stimulated emission depletion microscope capable of imaging deep in scattering tissues in depth, providing a cutting-edge example of AO in stimulated emission depletion as well as a proof-of-principle application in brain samples.

    Article  ADS  Google Scholar 

  5. Patton, B. R. et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. Opt. Express 24, 8862 (2016).

    Article  ADS  Google Scholar 

  6. Tønnesen, J., Inavalli, V. V. G. K. & Nägerl, U. V. Super-resolution imaging of the extracellular space in living brain tissue. Cell 172, 1108–1121.e15 (2018).

    Article  Google Scholar 

  7. Gould, T. J., Burke, D., Bewersdorf, J. & Booth, M. J. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express 20, 20998 (2012).

    Article  ADS  Google Scholar 

  8. Zdankowski, P., Trusiak, M., McGloin, D. & Swedlow, J. R. Numerically enhanced stimulated emission depletion microscopy with adaptive optics for deep-tissue super-resolved imaging. ACS Nano 14, 394–405 (2020).

    Article  Google Scholar 

  9. Moneron, G. & Hell, S. W. Two-photon excitation STED microscopy. Opt. Express 17, 14567 (2009).

    Article  ADS  Google Scholar 

  10. Bianchini, P., Harke, B., Galiani, S., Vicidomini, G. & Diaspro, A. Single-wavelength two-photon excitation–stimulated emission depletion (SW2PE-STED) superresolution imaging. Proc. Natl Acad. Sci. USA 109, 6390–6393 (2012).

    Article  ADS  Google Scholar 

  11. Bethge, P., Chéreau, R., Avignone, E., Marsicano, G. & Nägerl, U. V. Two-photon excitation STED microscopy in two colors in acute brain slices. Biophys. J. 104, 778–785 (2013).

    Article  ADS  Google Scholar 

  12. Ding, J. B., Takasaki, K. T. & Sabatini, B. L. Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63, 429–437 (2009).

    Article  Google Scholar 

  13. ter Veer, M. J. T., Pfeiffer, T. & Nägerl, U. V. in Super-Resolution Microscopy: Methods and Protocols (ed. Erfle, H.) 45–64 (Springer, 2017).

  14. Takasaki, K. T., Ding, J. B. & Sabatini, B. L. Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys. J. 104, 770–777 (2013).

    Article  ADS  Google Scholar 

  15. Velasco, M. G. M., Allgeyer, E. S., Yuan, P., Grutzendler, J. & Bewersdorf, J. Absolute two-photon excitation spectra of red and far-red fluorescent probes. Opt. Lett. 40, 4915–4918 (2015).

    Article  ADS  Google Scholar 

  16. Vicidomini, G. et al. STED nanoscopy with time-gated detection: theoretical and experimental aspects. PLoS ONE 8, e54421 (2013).

    Article  ADS  Google Scholar 

  17. Castello, M. et al. Gated-STED microscopy with subnanosecond pulsed fiber laser for reducing photobleaching. Microsc. Res. Tech. 79, 785–791 (2016).

    Article  ADS  Google Scholar 

  18. Oracz, J., Westphal, V., Radzewicz, C., Sahl, S. J. & Hell, S. W. Photobleaching in STED nanoscopy and its dependence on the photon flux applied for reversible silencing of the fluorophore. Sci. Rep. 7, 11354 (2017).

    Article  ADS  Google Scholar 

  19. Tortarolo, G. et al. Photon-separation to enhance the spatial resolution of pulsed STED microscopy. Nanoscale 11, 1754–1761 (2019).

    Article  Google Scholar 

  20. Castello, M., Diaspro, A. & Vicidomini, G. Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy. Appl. Phys. Lett. 105, 234106 (2014).

    Article  ADS  Google Scholar 

  21. Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).

    Article  ADS  Google Scholar 

  22. Kastrup, L., Blom, H., Eggeling, C. & Hell, S. W. Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys. Rev. Lett. 94, 178104 (2005).

    Article  ADS  Google Scholar 

  23. Ringemann, C. et al. Exploring single-molecule dynamics with fluorescence nanoscopy. N. J. Phys. 11, 103054 (2009).

    Article  Google Scholar 

  24. Vicidomini, G. et al. STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics. Nano Lett. 15, 5912–5918 (2015).

    Article  ADS  Google Scholar 

  25. Lanzanò, L. et al. Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS. Nat. Commun. 8, 65 (2017).

    Article  ADS  Google Scholar 

  26. Honigmann, A. et al. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat. Commun. 5, 5412 (2014).

    Article  ADS  Google Scholar 

  27. Mueller, V. et al. in Methods in Enzymology Vol. 519 (ed. Tetin, S. Y.) 1–38 (Elsevier, 2013).

  28. Honigmann, A., Mueller, V., Hell, S. W. & Eggeling, C. STED microscopy detects and quantifies liquid phase separation in lipid membranes using a new far-red emitting fluorescent phosphoglycerolipid analogue. Faraday Discuss. 161, 77–89 (2013).

    Article  ADS  Google Scholar 

  29. Schneider, F. et al. High photon count rates improve the quality of super-resolution fluorescence fluctuation spectroscopy. J. Phys. D Appl. Phys. 53, 164003 (2020).

    Article  ADS  Google Scholar 

  30. Sheppard, C. J. R. Super-resolution in confocal imaging. Optik 80, 53–54 (1988).

    Google Scholar 

  31. Müller, C. B. & Enderlein, J. Image scanning microscopy. Phys. Rev. Lett. 104, 198101 (2010).

    Article  ADS  Google Scholar 

  32. Bertero, M., De Mol, C., Pike, E. R. & Walker, J. G. Resolution in diffraction-limited imaging, a singular value analysis. Optica Acta Int. J. Opt. 31, 923–946 (1984).

    Article  ADS  Google Scholar 

  33. Antolovic, I. M., Bruschini, C. & Charbon, E. Dynamic range extension for photon counting arrays. Opt. Express 26, 22234 (2018).

    Article  ADS  Google Scholar 

  34. Buttafava, M. et al. SPAD-based asynchronous-readout array detectors for image-scanning microscopy. Optica 7, 755 (2020).

    Article  ADS  Google Scholar 

  35. Zunino, A., Castello, M. & Vicidomini, G. Reconstructing the image scanning microscopy dataset: an inverse problem. Inverse Probl. 39, 064004 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  36. Castello, M. et al. A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM. Nat. Methods 16, 175–178 (2019).

    Article  Google Scholar 

  37. Tortarolo, G. et al. Focus image scanning microscopy for sharp and gentle super-resolved microscopy. Nat. Commun. 13, 7723 (2022).

    Article  ADS  Google Scholar 

  38. Tortarolo, G. et al. Compact and effective photon-resolved image scanning microscope. Adv. Photon. 6, 016003 (2024).

    Article  ADS  Google Scholar 

  39. Deshpande, A. V., Beidoun, A., Penzkofer, A. & Wagenblast, G. Absorption and emission spectroscopic investigation of cyanovinyldiethylaniline dye vapors. Chem. Phys. 142, 123–131 (1990).

    Article  Google Scholar 

  40. Butkevich, A. N., Lukinavičius, G., D’Este, E. & Hell, S. W. Cell-permeant large Stokes shift dyes for transfection-free multicolor nanoscopy. J. Am. Chem. Soc. 139, 12378–12381 (2017).

    Article  Google Scholar 

  41. Butkevich, A. N. et al. Photoactivatable fluorescent dyes with hydrophilic caging groups and their use in multicolor nanoscopy. J. Am. Chem. Soc. 143, 18388–18393 (2021).

    Article  Google Scholar 

  42. Zacharias, D. A. & Tsien, R. Y. Molecular biology and mutation of green fluorescent protein. Methods Biochem. Anal. 47, 83–120 (2006).

    Article  Google Scholar 

  43. Acharya, A. et al. Photoinduced chemistry in fluorescent proteins: curse or blessing? Chem. Rev. 117, 758–795 (2017).

    Article  Google Scholar 

  44. Yang, X. et al. Mitochondrial dynamics quantitatively revealed by STED nanoscopy with an enhanced squaraine variant probe. Nat. Commun. 11, 3699 (2020).

    Article  ADS  Google Scholar 

  45. O′ Connor, D., Byrne, A., Berselli, G. B., Long, C. & Keyes, T. E. Mega-Stokes pyrene ceramide conjugates for STED imaging of lipid droplets in live cells. Analyst 144, 1608–1621 (2019).

    Article  ADS  Google Scholar 

  46. Rankin, B. R., Kellner, R. R. & Hell, S. W. Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source. Opt. Lett. 33, 2491 (2008).

    Article  ADS  Google Scholar 

  47. Mitronova, G. Y. et al. High-affinity functional fluorescent ligands for human β-adrenoceptors. Sci. Rep. 7, 12319 (2017).

    Article  ADS  Google Scholar 

  48. Knorr, G. et al. Bioorthogonally applicable fluorogenic cyanine-tetrazines for no-wash super-resolution imaging. Bioconjug. Chem. 29, 1312–1318 (2018).

    Article  Google Scholar 

  49. Liu, T. et al. Multi-color live-cell STED nanoscopy of mitochondria with a gentle inner membrane stain. Proc. Natl Acad. Sci. USA 119, e2215799119 (2022).

    Article  Google Scholar 

  50. Lavis, L. D. Teaching old dyes new tricks: biological probes built from fluoresceins and rhodamines. Annu. Rev. Biochem. 86, 825–843 (2017).

    Article  Google Scholar 

  51. Lukinavičius, G. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5, 132–139 (2013). This work introduced one of the most used fluorophores for live-cell stimulated emission depletion imaging, which is both cell-permeable and fluorogenic.

    Article  Google Scholar 

  52. Hanne, J. et al. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 6, 7127 (2015).

    Article  ADS  Google Scholar 

  53. Alvelid, J., Bucci, A. & Testa, I. Far red‐shifted CdTe quantum dots for multicolour stimulated emission depletion nanoscopy. ChemPhysChem 24, e202200698 (2023).

    Article  Google Scholar 

  54. Liu, Y. et al. Shedding new lights into STED microscopy: emerging nanoprobes for imaging. Front. Chem. 9, 641330 (2021).

    Article  Google Scholar 

  55. Calloway, N. T. et al. Optimized fluorescent trimethoprim derivatives for in vivo protein labeling. ChemBioChem 8, 767–774 (2007).

    Article  Google Scholar 

  56. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    Article  Google Scholar 

  57. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  Google Scholar 

  58. Mo, J. et al. Third‐generation covalent TMP‐tag for fast labeling and multiplexed imaging of cellular proteins. Angew. Chem. Int. Ed. 61, e202207905 (2022).

    Article  ADS  Google Scholar 

  59. Wilhelm, J. et al. Kinetic and structural characterization of the self-labeling protein tags HaloTag7, SNAP-tag, and CLIP-tag. Biochemistry 60, 2560–2575 (2021).

    Article  Google Scholar 

  60. Wang, L. et al. A general strategy to develop cell permeable and fluorogenic probes for multicolour nanoscopy. Nat. Chem. 12, 165–172 (2020).

    Article  Google Scholar 

  61. Marques, S. M. et al. Mechanism-based strategy for optimizing HaloTag protein labeling. JACS Au 2, 1324–1337 (2022).

    Article  Google Scholar 

  62. Kompa, J. et al. Exchangeable HaloTag ligands for super-resolution fluorescence microscopy. J. Am. Chem. Soc. 145, 3075–3083 (2023).

    Article  Google Scholar 

  63. Benaissa, H. et al. Engineering of a fluorescent chemogenetic reporter with tunable color for advanced live-cell imaging. Nat. Commun. 12, 6989 (2021).

    Article  ADS  Google Scholar 

  64. Szent-Gyorgyi, C. et al. Fluorogen-activating single-chain antibodies for imaging cell surface proteins. Nat. Biotechnol. 26, 235–240 (2008).

    Article  Google Scholar 

  65. Vreja, I. C. et al. Super-resolution microscopy of clickable amino acids reveals the effects of fluorescent protein tagging on protein assemblies. ACS Nano 9, 11034–11041 (2015).

    Article  Google Scholar 

  66. Chen, I., Howarth, M., Lin, W. & Ting, A. Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2, 99–104 (2005).

    Article  Google Scholar 

  67. Yin, J. et al. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc. Natl Acad. Sci. USA 102, 15815–15820 (2005).

    Article  ADS  Google Scholar 

  68. Fernández-Suárez, M. et al. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat. Biotechnol. 25, 1483–1487 (2007).

    Article  Google Scholar 

  69. Kollmannsperger, A. et al. Live-cell protein labelling with nanometre precision by cell squeezing. Nat. Commun. 7, 10372 (2016).

    Article  ADS  Google Scholar 

  70. Griffin, B. A., Adams, S. R. & Tsien, R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  ADS  Google Scholar 

  71. Sun, C. et al. Electroporation-delivered fluorescent protein biosensors for probing molecular activities in cells without genetic encoding. Chem. Commun. 50, 11536–11539 (2014).

    Article  Google Scholar 

  72. Abbaci, M., Barberi-Heyob, M., Blondel, W., Guillemin, F. & Didelon, J. Advantages and limitations of commonly used methods to assay the molecular permeability of gap junctional intercellular communication. BioTechniques 45, 33–62 (2008).

    Article  Google Scholar 

  73. Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 9, 582–584 (2012).

    Article  Google Scholar 

  74. Herce, H. D. et al. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nat. Chem. 9, 762–771 (2017).

    Article  ADS  Google Scholar 

  75. Schneider, A. F. L., Benz, L. S., Lehmann, M. & Hackenberger, C. P. R. Cell-permeable nanobodies allow dual-color super-resolution microscopy in untransfected living cells. Angew. Chem. Int. Ed. 60, 22075–22080 (2021).

    Article  Google Scholar 

  76. Klein, A. et al. Live-cell labeling of endogenous proteins with nanometer precision by transduced nanobodies. Chem. Sci. 9, 7835–7842 (2018).

    Article  Google Scholar 

  77. Schumacher, D., Helma, J., Schneider, A. F. L., Leonhardt, H. & Hackenberger, C. P. R. Nanobodies: chemical functionalization strategies and intracellular applications. Angew. Chem. Int. Ed. 57, 2314–2333 (2018).

    Article  Google Scholar 

  78. Nikić, I. et al. Minimal tags for rapid dual‐color live‐cell labeling and super‐resolution microscopy. Angew. Chem. Int. Ed. 53, 2245–2249 (2014).

    Article  Google Scholar 

  79. Ratz, M., Testa, I., Hell, S. W. & Jakobs, S. CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells. Sci. Rep. 5, 9592 (2015).

    Article  ADS  Google Scholar 

  80. Butkevich, A. N. et al. Two-color 810 nm STED nanoscopy of living cells with endogenous SNAP-tagged fusion proteins. ACS Chem. Biol. 13, 475–480 (2018).

    Article  Google Scholar 

  81. Takagi, T. et al. Discovery of an F-actin-binding small molecule serving as a fluorescent probe and a scaffold for functional probes. Sci. Adv. 7, eabg8585 (2021).

    Article  ADS  Google Scholar 

  82. Bucevičius, J. et al. A general highly efficient synthesis of biocompatible rhodamine dyes and probes for live-cell multicolor nanoscopy. Nat. Commun. 14, 1306 (2023).

    Article  ADS  Google Scholar 

  83. Zheng, S. et al. Long-term super-resolution inner mitochondrial membrane imaging with a lipid probe. Nat. Chem. Biol. 20, 83–92 (2023).

    Article  Google Scholar 

  84. Cavazza, T. et al. Parental genome unification is highly error-prone in mammalian embryos. Cell 184, 2860–2877.e22 (2021).

    Article  Google Scholar 

  85. Salim, A. et al. Chemical probe for imaging of polo-like kinase 4 and centrioles. JACS Au 3, 2247–2256 (2023).

    Article  Google Scholar 

  86. Sakamoto, S. & Hamachi, I. Ligand‐directed chemistry for protein labeling for affinity‐based protein analysis. Isr. J. Chem. 63, e202200077 (2023).

    Article  Google Scholar 

  87. Sharom, F. J. The P-glycoprotein multidrug transporter. Essays Biochem. 50, 161–178 (2011).

    Article  Google Scholar 

  88. Martin, C., Walker, J., Rothnie, A. & Callaghan, R. The expression of P-glycoprotein does influence the distribution of novel fluorescent compounds in solid tumour models. Br. J. Cancer 89, 1581–1589 (2003).

    Article  Google Scholar 

  89. Gerasimaitė, R. et al. Efflux pump insensitive rhodamine–jasplakinolide conjugates for G- and F-actin imaging in living cells. Org. Biomol. Chem. 18, 2929–2937 (2020).

    Article  Google Scholar 

  90. Zielonka, J. et al. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 117, 10043–10120 (2017).

    Article  Google Scholar 

  91. Alford, R. et al. Toxicity of organic fluorophores used in molecular imaging: literature review. Mol. Imaging 8, 341–354 (2009).

    Article  Google Scholar 

  92. Tan, W. C. C. et al. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun. 40, 135–153 (2020).

    Article  Google Scholar 

  93. Mikhaylova, M. et al. Resolving bundled microtubules using anti-tubulin nanobodies. Nat. Commun. 6, 7933 (2015).

    Article  ADS  Google Scholar 

  94. Bucevičius, J., Kostiuk, G., Gerasimaitė, R., Gilat, T. & Lukinavičius, G. Enhancing the biocompatibility of rhodamine fluorescent probes by a neighbouring group effect. Chem. Sci. 11, 7313–7323 (2020).

    Article  Google Scholar 

  95. Sograte-Idrissi, S. et al. Circumvention of common labelling artefacts using secondary nanobodies. Nanoscale 12, 10226–10239 (2020).

    Article  Google Scholar 

  96. Cordell, P. et al. Affimers and nanobodies as molecular probes and their applications in imaging. J. Cell Sci. 135, jcs259168 (2022).

    Article  Google Scholar 

  97. Liu, S., Hoess, P. & Ries, J. Super-resolution microscopy for structural cell biology. Annu. Rev. Biophys. 51, 301–326 (2022).

    Article  Google Scholar 

  98. Pleiner, T. et al. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife 4, e11349 (2015).

    Article  Google Scholar 

  99. Maier, J., Traenkle, B. & Rothbauer, U. Real-time analysis of epithelial–mesenchymal transition using fluorescent single-domain antibodies. Sci. Rep. 5, 13402 (2015).

    Article  ADS  Google Scholar 

  100. Mishina, N. M. et al. Live-cell STED microscopy with genetically encoded biosensor. Nano Lett. 15, 2928–2932 (2015).

    Article  ADS  Google Scholar 

  101. Pleiner, T., Bates, M. & Görlich, D. A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies. J. Cell Biol. 217, 1143–1154 (2017).

    Article  Google Scholar 

  102. Im, K., Mareninov, S., Diaz, M. F. P. & Yong, W. H. in Biobanking: Methods and Protocols (ed. Yong, W. H.) 299–311 (Springer, 2019).

  103. Erdmann, R. S. et al. Labeling strategies matter for super-resolution microscopy: a comparison between HaloTags and SNAP-tags. Cell Chem. Biol. 26, 584–592.e6 (2019).

    Article  Google Scholar 

  104. Grimm, J. B. et al. A general method to optimize and functionalize red-shifted rhodamine dyes. Nat. Methods 17, 815–821 (2020).

    Article  Google Scholar 

  105. Wegner, W. et al. In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins. Sci. Rep. 7, 11781 (2017).

    Article  ADS  Google Scholar 

  106. Zanella, R. et al. Towards real-time image deconvolution: application to confocal and STED microscopy. Sci. Rep. 3, 2523 (2013).

    Article  Google Scholar 

  107. Scorrano, L. et al. Coming together to define membrane contact sites. Nat. Commun. 10, 1287 (2019).

    Article  ADS  Google Scholar 

  108. Cosson, P., Amherdt, M., Rothman, J. E. & Orci, L. A resident Golgi protein is excluded from peri-Golgi vesicles in NRK cells. Proc. Natl Acad. Sci. USA 99, 12831–12834 (2002).

    Article  ADS  Google Scholar 

  109. Orbach, R. & Su, X. Surfing on membrane waves: microvilli, curved membranes, and immune signaling. Front. Immunol. 11, 2187 (2020).

    Article  Google Scholar 

  110. Sezgin, E. et al. Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS. Nat. Protoc. 14, 1054–1083 (2019). This work provides guidance to perform stimulated emission depletion-fluorescence correlation spectroscopy experiments, including information on labels, imaging and analysis pipelines.

    Google Scholar 

  111. Mueller, V. et al. STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys. J. 101, 1651–1660 (2011).

    Article  ADS  Google Scholar 

  112. Andrade, D. M. et al. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane — a minimally invasive investigation by STED-FCS. Sci. Rep. 5, 11454 (2015).

    Article  ADS  Google Scholar 

  113. Schneider, F. et al. Nanoscale spatiotemporal diffusion modes measured by simultaneous confocal and stimulated emission depletion nanoscopy imaging. Nano Lett. 18, 4233–4240 (2018).

    Article  ADS  Google Scholar 

  114. Steshenko, O. et al. Reorganization of lipid diffusion by myelin basic protein as revealed by STED nanoscopy. Biophys. J. 110, 2441–2450 (2016).

    Article  ADS  Google Scholar 

  115. Rossboth, B. et al. TCRs are randomly distributed on the plasma membrane of resting antigen-experienced T cells. Nat. Immunol. 19, 821–827 (2018).

    Article  Google Scholar 

  116. Gutiérrez-Martínez, E. et al. Actin-regulated Siglec-1 nanoclustering influences HIV-1 capture and virus-containing compartment formation in dendritic cells. eLife 12, e78836 (2023).

    Article  Google Scholar 

  117. Piechocka, I. K. et al. Shear forces induce ICAM-1 nanoclustering on endothelial cells that impact on T-cell migration. Biophys. J. 120, 2644–2656 (2021).

    Article  ADS  Google Scholar 

  118. Xu, L. et al. Nanoscale localization of proteins within focal adhesions indicates discrete functional assemblies with selective force‐dependence. FEBS J. 285, 1635–1652 (2018).

    Article  Google Scholar 

  119. Spiess, M. et al. Active and inactive β1 integrins segregate into distinct nanoclusters in focal adhesions. J. Cell Biol. 217, 1929–1940 (2018).

    Article  Google Scholar 

  120. Chien, F., Kuo, C. W., Yang, Z., Chueh, D. & Chen, P. Exploring the formation of focal adhesions on patterned surfaces using super‐resolution imaging. Small 7, 2906–2913 (2011).

    Article  Google Scholar 

  121. Mangeol, P. et al. Super-resolution imaging uncovers the nanoscopic segregation of polarity proteins in epithelia. eLife 11, e62087 (2022).

    Article  Google Scholar 

  122. Yang, T. T. et al. Superresolution STED microscopy reveals differential localization in primary cilia. Cytoskeleton 70, 54–65 (2013).

    Article  Google Scholar 

  123. Hein, B., Willig, K. I. & Hell, S. W. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc. Natl Acad. Sci. USA 105, 14271–14276 (2008).

    Article  ADS  Google Scholar 

  124. Westphal, V. et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246–249 (2008).

    Article  ADS  Google Scholar 

  125. Bottanelli, F. et al. Two-colour live-cell nanoscale imaging of intracellular targets. Nat. Commun. 7, 10778 (2016). This work set the foundation of live-cell and multicolour stimulated emission depletion imaging with enzymatic labelling in cells.

    Article  ADS  Google Scholar 

  126. Wang, C. et al. A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial cristae. Proc. Natl Acad. Sci. USA 116, 15817–15822 (2019).

    Article  ADS  Google Scholar 

  127. Maib, H. et al. Recombinant biosensors for multiplex and super-resolution imaging of phosphoinositides. J. Cell Biol. 223, e202310095 (2024).

    Article  Google Scholar 

  128. Stephan, T., Roesch, A., Riedel, D. & Jakobs, S. Live-cell STED nanoscopy of mitochondrial cristae. Sci. Rep. 9, 12419 (2019).

    Article  ADS  Google Scholar 

  129. Kondadi, A. K. et al. Cristae undergo continuous cycles of membrane remodelling in a MICOS‐dependent manner. EMBO Rep. 21, e49776 (2020).

    Article  Google Scholar 

  130. Schroeder, L. K. et al. Dynamic nanoscale morphology of the ER surveyed by STED microscopy. J. Cell Biol. 218, 83–96 (2019).

    Article  Google Scholar 

  131. Damenti, M., Coceano, G., Pennacchietti, F., Bodén, A. & Testa, I. STED and parallelized RESOLFT optical nanoscopy of the tubular endoplasmic reticulum and its mitochondrial contacts in neuronal cells. Neurobiol. Dis. 155, 105361 (2021).

    Article  Google Scholar 

  132. Nascimbeni, A. C. et al. ER–plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. EMBO J. 36, 2018–2033 (2017).

    Article  Google Scholar 

  133. Jang, W. et al. Endosomal lipid signaling reshapes the endoplasmic reticulum to control mitochondrial function. Science 378, eabq5209 (2022).

    Article  Google Scholar 

  134. Raote, I. et al. TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. eLife 7, e32723 (2018).

    Article  Google Scholar 

  135. Wong-Dilworth, L. et al. STED imaging of endogenously tagged ARF GTPases reveals their distinct nanoscale localizations. J. Cell Biol. 222, e202205107 (2023).

    Article  Google Scholar 

  136. Bottanelli, F. et al. A novel physiological role for ARF1 in the formation of bidirectional tubules from the Golgi. Mol. Biol. Cell 28, 1676–1687 (2017).

    Article  Google Scholar 

  137. Liu, Y. et al. Clathrin-associated AP-1 controls termination of STING signalling. Nature 610, 761–767 (2022).

    Article  ADS  Google Scholar 

  138. Gemmink, A. et al. Super-resolution microscopy localizes perilipin 5 at lipid droplet–mitochondria interaction sites and at lipid droplets juxtaposing to perilipin 2. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863, 1423–1432 (2018).

    Article  Google Scholar 

  139. Otsuka, S. et al. Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope. eLife 5, e19071 (2016).

    Article  Google Scholar 

  140. Ashkenazy-Titelman, A., Atrash, M. K., Boocholez, A., Kinor, N. & Shav-Tal, Y. RNA export through the nuclear pore complex is directional. Nat. Commun. 13, 5881 (2022).

    Article  ADS  Google Scholar 

  141. Shi, K. Y. et al. Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export. Proc. Natl Acad. Sci. USA 114, E1111–E1117 (2017).

    Article  Google Scholar 

  142. Thevathasan, J. V. et al. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat. Methods 16, 1045–1053 (2019).

    Article  Google Scholar 

  143. Kostiuk, G., Bucevičius, J., Gerasimaitė, R. & Lukinavičius, G. Application of STED imaging for chromatin studies. J. Phys. D Appl. Phys. 52, 504003 (2019).

    Article  Google Scholar 

  144. Persson, F. et al. Fluorescence nanoscopy of single DNA molecules by using stimulated emission depletion (STED). Angew. Chem. Int. Ed. 50, 5581–5583 (2011).

    Article  Google Scholar 

  145. Kim, N., Kim, H. J., Kim, Y., Min, K. S. & Kim, S. K. Direct and precise length measurement of single, stretched DNA fragments by dynamic molecular combing and STED nanoscopy. Anal. Bioanal. Chem. 408, 6453–6459 (2016).

    Article  Google Scholar 

  146. Bucevičius, J., Keller-Findeisen, J., Gilat, T., Hell, S. W. & Lukinavičius, G. Rhodamine–Hoechst positional isomers for highly efficient staining of heterochromatin. Chem. Sci. 10, 1962–1970 (2019).

    Article  Google Scholar 

  147. Spahn, C., Grimm, J. B., Lavis, L. D., Lampe, M. & Heilemann, M. Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores. Nano Lett. 19, 500–505 (2019).

    Article  ADS  Google Scholar 

  148. Cseresnyes, Z., Schwarz, U. & Green, C. M. Analysis of replication factories in human cells by super-resolution light microscopy. BMC Mol. Cell Biol. 10, 88 (2009).

    Article  Google Scholar 

  149. Reindl, J. et al. Chromatin organization revealed by nanostructure of irradiation induced γH2AX, 53BP1 and Rad51 foci. Sci. Rep. 7, 40616 (2017).

    Article  ADS  Google Scholar 

  150. D’Abrantes, S. et al. Super-resolution nanoscopy imaging applied to DNA double-strand breaks. Radiat. Res. 189, 19 (2017).

    Article  ADS  Google Scholar 

  151. D’Este, E. et al. Subcortical cytoskeleton periodicity throughout the nervous system. Sci. Rep. 6, 22741 (2016).

    Article  ADS  Google Scholar 

  152. D’Este, E., Kamin, D., Göttfert, F., El-Hady, A. & Hell, S. W. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep. 10, 1246–1251 (2015).

    Article  Google Scholar 

  153. Lukinavičius, G. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11, 731–733 (2014).

    Article  Google Scholar 

  154. Van Steenbergen, V. et al. Nano-positioning and tubulin conformation contribute to axonal transport regulation of mitochondria along microtubules. Proc. Natl Acad. Sci. USA 119, e2203499119 (2022).

    Article  Google Scholar 

  155. Maraspini, R., Wang, C.-H. & Honigmann, A. Optimization of 2D and 3D cell culture to study membrane organization with STED microscopy. J. Phys. D Appl. Phys. 53, 014001 (2020).

    Article  ADS  Google Scholar 

  156. Wang, J., Fan, Y., Sanger, J. M. & Sanger, J. W. STED analysis reveals the organization of nonmuscle muscle II, muscle myosin II, and F‐actin in nascent myofibrils. Cytoskeleton 79, 122–132 (2022).

    Article  Google Scholar 

  157. Curry, N., Ghézali, G., Kaminski Schierle, G. S., Rouach, N. & Kaminski, C. F. Correlative STED and atomic force microscopy on live astrocytes reveals plasticity of cytoskeletal structure and membrane physical properties during polarized migration. Front. Cell. Neurosci. 11, 104 (2017).

    Article  Google Scholar 

  158. Deguchi, T. et al. Density and function of actin-microdomains in healthy and NF1 deficient osteoclasts revealed by the combined use of atomic force and stimulated emission depletion microscopy. J. Phys. D Appl. Phys. 53, 014003 (2020).

    Article  ADS  Google Scholar 

  159. Zelená, A. et al. Force generation in human blood platelets by filamentous actomyosin structures. Biophys. J. 122, 3340–3353 (2023).

    Article  ADS  Google Scholar 

  160. Fritzsche, M. et al. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation. Sci. Adv. 3, e1603032 (2017).

    Article  ADS  Google Scholar 

  161. Rak, G. D., Mace, E. M., Banerjee, P. P., Svitkina, T. & Orange, J. S. Natural killer cell lytic granule secretion occurs through a pervasive actin network at the immune synapse. PLoS Biol. 9, e1001151 (2011).

    Article  Google Scholar 

  162. Wang, J. C., Bolger-Munro, M. & Gold, M. R. Visualizing the actin and microtubule cytoskeletons at the B-cell immune synapse using stimulated emission depletion (STED) microscopy. J. Vis. Exp. https://doi.org/10.3791/57028 (2018).

  163. Lau, L., Lee, Y. L., Sahl, S. J., Stearns, T. & Moerner, W. E. STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. Biophys. J. 102, 2926–2935 (2012).

    Article  ADS  Google Scholar 

  164. Lee, Y. L. et al. Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole–cilium interface and facilitates proper cilium formation and function. Mol. Biol. Cell 25, 2919–2933 (2014).

    Article  Google Scholar 

  165. Vlijm, R. et al. STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles. Proc. Natl Acad. Sci. USA 115, E2246–E2253 (2018).

    Article  Google Scholar 

  166. Lukinavičius, G. et al. Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex. Curr. Biol. 23, 265–270 (2013).

    Article  Google Scholar 

  167. Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. & Hell, S. W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).

    Article  ADS  Google Scholar 

  168. Nägerl, U. V. & Bonhoeffer, T. Imaging living synapses at the nanoscale by STED microscopy. J. Neurosci. 30, 9341–9346 (2010).

    Article  Google Scholar 

  169. Nägerl, U. V., Willig, K. I., Hein, B., Hell, S. W. & Bonhoeffer, T. Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl Acad. Sci. USA 105, 18982–18987 (2008).

    Article  ADS  Google Scholar 

  170. Urban, N. T., Willig, K. I., Hell, S. W. & Nägerl, U. V. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J. 101, 1277–1284 (2011).

    Article  ADS  Google Scholar 

  171. Calovi, S., Soria, F. N. & Tønnesen, J. Super-resolution STED microscopy in live brain tissue. Neurobiol. Dis. 156, 105420 (2021).

    Article  Google Scholar 

  172. Kittel, R. J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    Article  ADS  Google Scholar 

  173. Jalalvand, E. et al. ExSTED microscopy reveals contrasting functions of dopamine and somatostatin CSF-c neurons along the lamprey central canal. eLife 11, e73114 (2022).

    Article  Google Scholar 

  174. Wegner, W., Steffens, H., Gregor, C., Wolf, F. & Willig, K. I. Environmental enrichment enhances patterning and remodeling of synaptic nanoarchitecture as revealed by STED nanoscopy. eLife 11, e73603 (2022).

    Article  Google Scholar 

  175. Berning, S., Willig, K. I., Steffens, H., Dibaj, P. & Hell, S. W. Nanoscopy in a living mouse brain. Science 335, 551–551 (2012).

    Article  ADS  Google Scholar 

  176. Arizono, M. et al. Structural basis of astrocytic Ca2+ signals at tripartite synapses. Nat. Commun. 11, 1906 (2020).

    Article  ADS  Google Scholar 

  177. Rankin, B. R. et al. Nanoscopy in a living multicellular organism expressing GFP. Biophys. J. 100, L63–L65 (2011).

    Article  Google Scholar 

  178. Steffens, H. et al. Stable but not rigid: chronic in vivo STED nanoscopy reveals extensive remodeling of spines, indicating multiple drivers of plasticity. Sci. Adv. 7, eabf2806 (2021).

    Article  ADS  Google Scholar 

  179. Wegner, W., Mott, A. C., Grant, S. G. N., Steffens, H. & Willig, K. I. In vivo STED microscopy visualizes PSD95 sub-structures and morphological changes over several hours in the mouse visual cortex. Sci. Rep. 8, 219 (2018).

    Article  ADS  Google Scholar 

  180. Nieuwenhuizen, R. P. J. et al. Measuring image resolution in optical nanoscopy. Nat. Methods 10, 557–562 (2013).

    Article  Google Scholar 

  181. Tortarolo, G., Castello, M., Diaspro, A., Koho, S. & Vicidomini, G. Evaluating image resolution in stimulated emission depletion microscopy. Optica 5, 32 (2018).

    Article  ADS  Google Scholar 

  182. Koho, S. et al. Fourier ring correlation simplifies image restoration in fluorescence microscopy. Nat. Commun. 10, 3103 (2019).

    Article  ADS  Google Scholar 

  183. Zhao, W. et al. Quantitatively mapping local quality of super-resolution microscopy by rolling Fourier ring correlation. Light. Sci. Appl. 12, 298 (2023).

    Article  ADS  Google Scholar 

  184. Alvelid, J., Damenti, M., Sgattoni, C. & Testa, I. Event-triggered STED imaging. Nat. Methods 19, 1268–1275 (2022). This work shows the latest development in live-cell stimulated emission depletion microscopy, combining smart and automated acquisition with high spatial and temporal resolution imaging.

    Article  Google Scholar 

  185. Kilian, N. et al. Assessing photodamage in live-cell STED microscopy. Nat. Methods 15, 755–756 (2018).

    Article  Google Scholar 

  186. Luo, C. et al. Shedding light on imaging safety: decoding the origin of photocytotoxicity in RhB-assisted fluorescence imaging. J. Biophoton. 17, e202400049 (2024).

    Article  Google Scholar 

  187. Donnert, G. et al. Macromolecular-scale resolution in biological fluorescence microscopy. Proc. Natl Acad. Sci. USA 103, 11440–11445 (2006).

    Article  ADS  Google Scholar 

  188. Staudt, T. et al. Far-field optical nanoscopy with reduced number of state transition cycles. Opt. Express 19, 5644 (2011).

    Article  ADS  Google Scholar 

  189. Bordenave, M. D., Balzarotti, F., Stefani, F. D. & Hell, S. W. STED nanoscopy with wavelengths at the emission maximum. J. Phys. D Appl. Phys. 49, 365102 (2016).

    Article  Google Scholar 

  190. Göttfert, F. et al. Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent. Proc. Natl Acad. Sci. USA 114, 2125–2130 (2017).

    Article  ADS  Google Scholar 

  191. Ando, R. et al. StayGold variants for molecular fusion and membrane-targeting applications. Nat. Methods 21, 648–656 (2024).

    Article  Google Scholar 

  192. Ivorra-Molla, E. et al. A monomeric StayGold fluorescent protein. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02018-w (2023).

  193. Liu, T. et al. Gentle rhodamines for live-cell fluorescence microscopy. Preprint at bioRxiv https://doi.org/10.1101/2024.02.06.579089 (2024).

  194. Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018).

    Article  Google Scholar 

  195. Belthangady, C. & Royer, L. A. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat. Methods 16, 1215–1225 (2019).

    Article  Google Scholar 

  196. Ebrahimi, V. et al. Deep learning enables fast, gentle STED microscopy. Commun. Biol. 6, 674 (2023).

    Article  Google Scholar 

  197. Velicky, P. et al. Dense 4D nanoscale reconstruction of living brain tissue. Nat. Methods 20, 1256–1265 (2023).

    Article  Google Scholar 

  198. Papereux, S. et al. DeepCristae, a CNN for the restoration of mitochondria cristae in live microscopy images. Preprint at bioRxiv https://doi.org/10.1101/2023.07.05.547594 (2023).

  199. Wang, H. et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods 16, 103–110 (2019).

    Article  Google Scholar 

  200. Chen, J. et al. Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes. Nat. Methods 18, 678–687 (2021).

    Article  ADS  Google Scholar 

  201. Ning, K. et al. Deep self-learning enables fast, high-fidelity isotropic resolution restoration for volumetric fluorescence microscopy. Light Sci. Appl. 12, 204 (2023).

    Article  ADS  Google Scholar 

  202. Bouchard, C. et al. Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition. Nat. Mach. Intell. 5, 830–844 (2023).

    Article  Google Scholar 

  203. Laine, R. F., Jacquemet, G. & Krull, A. Imaging in focus: an introduction to denoising bioimages in the era of deep learning. Int. J. Biochem. Cell Biol. 140, 106077 (2021).

    Article  Google Scholar 

  204. Li, Y. et al. Incorporating the image formation process into deep learning improves network performance. Nat. Methods 19, 1427–1437 (2022).

    Article  Google Scholar 

  205. Durand, A. et al. A machine learning approach for online automated optimization of super-resolution optical microscopy. Nat. Commun. 9, 5247 (2018).

    Article  ADS  Google Scholar 

  206. Heine, J. et al. Adaptive-illumination STED nanoscopy. Proc. Natl Acad. Sci. USA 114, 9797–9802 (2017).

    Article  ADS  Google Scholar 

  207. Dreier, J. et al. Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo. Nat. Commun. 10, 556 (2019).

    Article  ADS  Google Scholar 

  208. Vinçon, B., Geisler, C. & Egner, A. Pixel hopping enables fast STED nanoscopy at low light dose. Opt. Express 28, 4516–4528 (2020).

    Article  ADS  Google Scholar 

  209. Mahecic, D. et al. Event-driven acquisition for content-enriched microscopy. Nat. Methods 19, 1262–1267 (2022).

    Article  Google Scholar 

  210. Casas Moreno, X., Al-Kadhimi, S., Alvelid, J., Bodén, A. & Testa, I. ImSwitch: generalizing microscope control in Python. J. Open Source Softw. 6, 3394 (2021).

    Article  ADS  Google Scholar 

  211. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using µmanager. Curr. Protoc. Mol. Biol. https://doi.org/10.1002/0471142727.mb1420s92 (2010).

  212. Susano Pinto, D. M. et al. Python-microscope — a new open-source Python library for the control of microscopes. J. Cell Sci. 134, jcs258955 (2021).

    Article  Google Scholar 

  213. Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photon. 3, 144–147 (2009).

    Article  ADS  Google Scholar 

  214. Wurm, C. A. et al. Correlative STED super-resolution light and electron microscopy on resin sections. J. Phys. D Appl. Phys. 52, 374003 (2019).

    Article  Google Scholar 

  215. Bernhardt, M. et al. Correlative microscopy approach for biology using X-ray holography, X-ray scanning diffraction and STED microscopy. Nat. Commun. 9, 3641 (2018).

    Article  ADS  Google Scholar 

  216. Inavalli, V. V. G. K. et al. A super-resolution platform for correlative live single-molecule imaging and STED microscopy. Nat. Methods 16, 1263–1268 (2019).

    Article  Google Scholar 

  217. Weber, M. et al. MINSTED fluorescence localization and nanoscopy. Nat. Photon. 15, 361–366 (2021).

    Article  ADS  Google Scholar 

  218. Gao, M. et al. Expansion stimulated emission depletion microscopy (ExSTED). ACS Nano 12, 4178–4185 (2018).

    Article  Google Scholar 

  219. Gambarotto, D. et al. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat. Methods 16, 71–74 (2019).

    Article  Google Scholar 

  220. Wassie, A. T., Zhao, Y. & Boyden, E. S. Expansion microscopy: principles and uses in biological research. Nat. Methods 16, 33–41 (2019).

    Article  Google Scholar 

  221. Saal, K. A. et al. Heat denaturation enables multicolor X10-STED microscopy. Sci. Rep. 13, 5366 (2023).

    Article  ADS  Google Scholar 

  222. Jurriens, D., van Batenburg, V., Katrukha, E. A. & Kapitein, L. C. in Methods in Cell Biology Vol. 161 (eds Guichard, P. & Hamel, V.) Ch. 6, 105–124 (Academic Press, 2021).

  223. Unnersjö-Jess, D. et al. Confocal super-resolution imaging of the glomerular filtration barrier enabled by tissue expansion. Kidney Int. 93, 1008–1013 (2018).

    Article  Google Scholar 

  224. Pownall, M. E. et al. Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin. Science 381, 92–100 (2023).

    Article  ADS  Google Scholar 

  225. Pellett, P. A. et al. Two-color STED microscopy in living cells. Biomed. Opt. Express 2, 2364 (2011).

    Article  Google Scholar 

  226. Moneron, G. et al. Fast STED microscopy with continuous wave fiber lasers. Opt. Express 18, 1302 (2010).

    Article  ADS  Google Scholar 

  227. Lukinavičius, G. et al. Fluorescent dyes and probes for super-resolution microscopy of microtubules and tracheoles in living cells and tissues. Chem. Sci. 9, 3324–3334 (2018).

    Article  Google Scholar 

  228. Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015).

    Article  Google Scholar 

  229. Butkevich, A. N. et al. Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells. Angew. Chem. Int. Ed. 55, 3290–3294 (2016).

    Article  Google Scholar 

  230. Grimm, J. B. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, 987–994 (2017).

    Article  Google Scholar 

  231. Wildanger, D., Rittweger, E., Kastrup, L. & Hell, S. W. STED microscopy with a supercontinuum laser source. Opt. Express 16, 9614 (2008).

    Article  ADS  Google Scholar 

  232. Han, K. Y. & Ha, T. Dual-color three-dimensional STED microscopy with a single high-repetition-rate laser. Opt. Lett. 40, 2653–2656 (2015).

    Article  ADS  Google Scholar 

  233. Kolmakov, K. et al. Red‐emitting rhodamine dyes for fluorescence microscopy and nanoscopy. Chem. Eur. J. 16, 158–166 (2010).

    Article  Google Scholar 

  234. Willig, K. I., Harke, B., Medda, R. & Hell, S. W. STED microscopy with continuous wave beams. Nat. Methods 4, 915–918 (2007).

    Article  Google Scholar 

  235. Grimm, J. B. et al. A general method to improve fluorophores using deuterated auxochromes. JACS Au 1, 690–696 (2021).

    Article  Google Scholar 

  236. Lukinavičius, G. et al. Fluorogenic probes for multicolor imaging in living cells. J. Am. Chem. Soc. 138, 9365–9368 (2016).

    Article  Google Scholar 

  237. Ye, S., Guo, J., Song, J. & Qu, J. Achieving high-resolution of 21 nm for STED nanoscopy assisted by CdSe@ZnS quantum dots. Appl. Phys. Lett. 116, 041101 (2020).

    Article  ADS  Google Scholar 

  238. Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).

    Article  ADS  Google Scholar 

  239. Zhan, Q. et al. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun. 8, 1–11 (2017).

    Article  ADS  Google Scholar 

  240. Han, G. et al. Membrane‐penetrating carbon quantum dots for imaging nucleic acid structures in live organisms. Angew. Chem. Int. Ed. 58, 7087–7091 (2019).

    Article  ADS  Google Scholar 

  241. Leménager, G., De Luca, E., Sun, Y.-P. & Pompa, P. P. Super-resolution fluorescence imaging of biocompatible carbon dots. Nanoscale 6, 8617 (2014).

    Article  ADS  Google Scholar 

  242. Laporte, G. & Psaltis, D. STED imaging of green fluorescent nanodiamonds containing nitrogen-vacancy-nitrogen centers. Biomed. Opt. Express 7, 34–44 (2016).

    Article  Google Scholar 

  243. Wu, X. et al. A versatile platform for the highly efficient preparation of graphene quantum dots: photoluminescence emission and hydrophilicity–hydrophobicity regulation and organelle imaging. Nanoscale 10, 1532–1539 (2018).

    Article  Google Scholar 

  244. Wu, Y. et al. Fluorescent polymer dot-based multicolor stimulated emission depletion nanoscopy with a single laser beam pair for cellular tracking. Anal. Chem. 92, 12088–12096 (2020).

    Article  Google Scholar 

  245. Yu, J. et al. Low photobleaching and high emission depletion efficiency: the potential of AIE luminogen as fluorescent probe for STED microscopy. Opt. Lett. 40, 2313 (2015).

    Article  ADS  Google Scholar 

  246. Li, D., Qin, W., Xu, B., Qian, J. & Tang, B. Z. AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long‐term super‐resolution bioimaging. Adv. Mater. 29, 1703643 (2017).

    Article  Google Scholar 

  247. Schübbe, S. et al. Size-dependent localization and quantitative evaluation of the intracellular migration of silica nanoparticles in Caco-2 cells. Chem. Mater. 24, 914–923 (2012).

    Article  Google Scholar 

  248. Schübbe, S., Cavelius, C., Schumann, C., Koch, M. & Kraegeloh, A. STED microscopy to monitor agglomeration of silica particles inside A549 cells. Adv. Eng. Mater. 12, 417–422 (2010).

    Article  Google Scholar 

  249. Lanzanò, L. et al. Encoding and decoding spatio-temporal information for super-resolution microscopy. Nat. Commun. 6, 6701 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

K.Y.H. thanks the NIH (R35GM138039) for supporting this work. I.T. thanks the ERC-CoG (101002490 — InSpIRe) for supporting this work. F.B. acknowledges the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — Project Number 278001972 — TRR 186 grant and a HFSP Early career award that supports C.R.-R. J.A. thanks the Swedish Research Council (2022-06139_VR) for supporting this work. G.V. thanks all members of the Molecular Microscopy and Spectroscopy laboratory at the Istituto Italiano di Tecnologia for their continuous discussions during the writing process and the European Research Council for their support of his research through the BrightEyes Consolidator grant (No. 818699). G.L., R.G. and V.T.N. thank the Max Planck Society for supporting this work. V.T.N. is supported by the PhD program Genome Science — International Max Planck Research School.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ilaria Testa.

Ethics declarations

Competing interests

G.V. has a personal financial interest (co-founder) in Genoa Instruments, a company commercializing laser-scanning microscopy based on single-photon avalanche diode array detectors. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Cross-section

The probability of particle–photon interaction. A typical absorption cross-section for a fluorophore at room temperature is on the order of 10–16 cm2.

Deformable mirrors

Optical device typically used to shape the wavefront of reflected light.

Depletion

Induced de-excitation of a molecule to the ground state without detectable fluorescence emission.

Fluorescence photo-switching

Property of turning ‘on’ and ‘off’ the fluorescence emission of a molecule with light. Light-induced molecular pathways leading to photo-switching are stimulated emission or other molecular conformational changes connected to spectral shifts.

Fluorogenicity

Ability of the probe to increase fluorescence upon binding to the target. When free in solution, such a probe is only weakly fluorescent. Using fluorogenic probes helps in getting higher contrast images.

Fluorogens

Non-fluorescent small molecule that can become fluorescent after it is complexed with a specific fluorogen-activating protein.

Gated STED

Stimulated emission depletion (STED) technique in which not all detected emitted photons are considered but only the ones delayed with 0.5 ns or more, typically, when compared with the excitation pulse. It is used to filter the signal from unwanted low-resolution photon information emitted before the stimulated emission has taken full effect.

Phasor-based approach

Data visualization approach used in lifetime imaging, which helps to separate molecular species based on the temporal and spectral properties of the fluorescence emission.

Self-labelling protein tag

An enzyme that can be inactivated by suicide inhibition — a substrate analogue that forms an irreversible complex through a covalent bond during the catalysis reaction. The suicide inhibitor can carry any reporter group that generates a detectable signal, that is, fluorophore, radioactive atom, spin label or other.

Separation of photon by lifetime tuning (SPLIT)-STED microscopy

A stimulated emission depletion (STED) microscopy technique that utilizes fluorescence dynamics to select photons containing high spatial resolution information through a computational approach based on the phasor analysis of the fluorescence lifetime emission.

Spatial light modulator

Optical device typically used to modify the phase of reflected or transmitted light.

Spirolactone

A form of a rhodamine featuring a cyclic ester attached to the three-ring xanthene system. Usually, spirolactone formation results in neutralization of positive and negative charges on the fluorophore molecule.

Spot-variation (or diffusion law) FCS

Fluorescence correlation technique capable of unveiling constraints in the dynamics of the investigated molecule or particle. By plotting the apparent diffusion coefficients of the molecule as a function of the observation volume size during fluorescence correlation spectroscopy (FCS) measurements, it is possible to reconstruct the diffusion law, allowing for an understanding of whether the molecule is diffusing freely or is subject to partition dynamics, hopping or other types of mobility.

Zwitterionic state

A state of a rhodamine that is formed after spirolactone cleavage, resulting in the appearance of positive and negative charges on the same dye molecule.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukinavičius, G., Alvelid, J., Gerasimaitė, R. et al. Stimulated emission depletion microscopy. Nat Rev Methods Primers 4, 56 (2024). https://doi.org/10.1038/s43586-024-00335-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00335-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing