Abstract
In this Primer, we focus on the most recent advancements in stimulated emission depletion (STED) microscopy, encompassing optics, computational microscopy and probes design, which enable STED imaging to open new observation windows in challenging samples such as living cells and tissues. We showcase applications in which STED data have been essential to gain new biological insights in various cell types and model systems. Finally, we discuss what standardization will be important in our view to further advance STED imaging, including open and shareable software, analysis pipelines, data repositories and sample preparation protocols.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Harke, B., Ullal, C. K., Keller, J. & Hell, S. W. Three-dimensional nanoscopy of colloidal crystals. Nano Lett. 8, 1309–1313 (2008).
Wildanger, D., Medda, R., Kastrup, L. & Hell, S. W. A compact STED microscope providing 3D nanoscale resolution. J. Microsc. 236, 35–43 (2009).
Wiktor, J. et al. RecA finds homologous DNA by reduced dimensionality search. Nature 597, 426–429 (2021).
Velasco, M. G. M. et al. 3D super-resolution deep-tissue imaging in living mice. Optica 8, 442 (2021). This work describes a two-photon stimulated emission depletion microscope capable of imaging deep in scattering tissues in depth, providing a cutting-edge example of AO in stimulated emission depletion as well as a proof-of-principle application in brain samples.
Patton, B. R. et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. Opt. Express 24, 8862 (2016).
Tønnesen, J., Inavalli, V. V. G. K. & Nägerl, U. V. Super-resolution imaging of the extracellular space in living brain tissue. Cell 172, 1108–1121.e15 (2018).
Gould, T. J., Burke, D., Bewersdorf, J. & Booth, M. J. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express 20, 20998 (2012).
Zdankowski, P., Trusiak, M., McGloin, D. & Swedlow, J. R. Numerically enhanced stimulated emission depletion microscopy with adaptive optics for deep-tissue super-resolved imaging. ACS Nano 14, 394–405 (2020).
Moneron, G. & Hell, S. W. Two-photon excitation STED microscopy. Opt. Express 17, 14567 (2009).
Bianchini, P., Harke, B., Galiani, S., Vicidomini, G. & Diaspro, A. Single-wavelength two-photon excitation–stimulated emission depletion (SW2PE-STED) superresolution imaging. Proc. Natl Acad. Sci. USA 109, 6390–6393 (2012).
Bethge, P., Chéreau, R., Avignone, E., Marsicano, G. & Nägerl, U. V. Two-photon excitation STED microscopy in two colors in acute brain slices. Biophys. J. 104, 778–785 (2013).
Ding, J. B., Takasaki, K. T. & Sabatini, B. L. Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63, 429–437 (2009).
ter Veer, M. J. T., Pfeiffer, T. & Nägerl, U. V. in Super-Resolution Microscopy: Methods and Protocols (ed. Erfle, H.) 45–64 (Springer, 2017).
Takasaki, K. T., Ding, J. B. & Sabatini, B. L. Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys. J. 104, 770–777 (2013).
Velasco, M. G. M., Allgeyer, E. S., Yuan, P., Grutzendler, J. & Bewersdorf, J. Absolute two-photon excitation spectra of red and far-red fluorescent probes. Opt. Lett. 40, 4915–4918 (2015).
Vicidomini, G. et al. STED nanoscopy with time-gated detection: theoretical and experimental aspects. PLoS ONE 8, e54421 (2013).
Castello, M. et al. Gated-STED microscopy with subnanosecond pulsed fiber laser for reducing photobleaching. Microsc. Res. Tech. 79, 785–791 (2016).
Oracz, J., Westphal, V., Radzewicz, C., Sahl, S. J. & Hell, S. W. Photobleaching in STED nanoscopy and its dependence on the photon flux applied for reversible silencing of the fluorophore. Sci. Rep. 7, 11354 (2017).
Tortarolo, G. et al. Photon-separation to enhance the spatial resolution of pulsed STED microscopy. Nanoscale 11, 1754–1761 (2019).
Castello, M., Diaspro, A. & Vicidomini, G. Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy. Appl. Phys. Lett. 105, 234106 (2014).
Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).
Kastrup, L., Blom, H., Eggeling, C. & Hell, S. W. Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys. Rev. Lett. 94, 178104 (2005).
Ringemann, C. et al. Exploring single-molecule dynamics with fluorescence nanoscopy. N. J. Phys. 11, 103054 (2009).
Vicidomini, G. et al. STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics. Nano Lett. 15, 5912–5918 (2015).
Lanzanò, L. et al. Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS. Nat. Commun. 8, 65 (2017).
Honigmann, A. et al. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat. Commun. 5, 5412 (2014).
Mueller, V. et al. in Methods in Enzymology Vol. 519 (ed. Tetin, S. Y.) 1–38 (Elsevier, 2013).
Honigmann, A., Mueller, V., Hell, S. W. & Eggeling, C. STED microscopy detects and quantifies liquid phase separation in lipid membranes using a new far-red emitting fluorescent phosphoglycerolipid analogue. Faraday Discuss. 161, 77–89 (2013).
Schneider, F. et al. High photon count rates improve the quality of super-resolution fluorescence fluctuation spectroscopy. J. Phys. D Appl. Phys. 53, 164003 (2020).
Sheppard, C. J. R. Super-resolution in confocal imaging. Optik 80, 53–54 (1988).
Müller, C. B. & Enderlein, J. Image scanning microscopy. Phys. Rev. Lett. 104, 198101 (2010).
Bertero, M., De Mol, C., Pike, E. R. & Walker, J. G. Resolution in diffraction-limited imaging, a singular value analysis. Optica Acta Int. J. Opt. 31, 923–946 (1984).
Antolovic, I. M., Bruschini, C. & Charbon, E. Dynamic range extension for photon counting arrays. Opt. Express 26, 22234 (2018).
Buttafava, M. et al. SPAD-based asynchronous-readout array detectors for image-scanning microscopy. Optica 7, 755 (2020).
Zunino, A., Castello, M. & Vicidomini, G. Reconstructing the image scanning microscopy dataset: an inverse problem. Inverse Probl. 39, 064004 (2023).
Castello, M. et al. A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM. Nat. Methods 16, 175–178 (2019).
Tortarolo, G. et al. Focus image scanning microscopy for sharp and gentle super-resolved microscopy. Nat. Commun. 13, 7723 (2022).
Tortarolo, G. et al. Compact and effective photon-resolved image scanning microscope. Adv. Photon. 6, 016003 (2024).
Deshpande, A. V., Beidoun, A., Penzkofer, A. & Wagenblast, G. Absorption and emission spectroscopic investigation of cyanovinyldiethylaniline dye vapors. Chem. Phys. 142, 123–131 (1990).
Butkevich, A. N., Lukinavičius, G., D’Este, E. & Hell, S. W. Cell-permeant large Stokes shift dyes for transfection-free multicolor nanoscopy. J. Am. Chem. Soc. 139, 12378–12381 (2017).
Butkevich, A. N. et al. Photoactivatable fluorescent dyes with hydrophilic caging groups and their use in multicolor nanoscopy. J. Am. Chem. Soc. 143, 18388–18393 (2021).
Zacharias, D. A. & Tsien, R. Y. Molecular biology and mutation of green fluorescent protein. Methods Biochem. Anal. 47, 83–120 (2006).
Acharya, A. et al. Photoinduced chemistry in fluorescent proteins: curse or blessing? Chem. Rev. 117, 758–795 (2017).
Yang, X. et al. Mitochondrial dynamics quantitatively revealed by STED nanoscopy with an enhanced squaraine variant probe. Nat. Commun. 11, 3699 (2020).
O′ Connor, D., Byrne, A., Berselli, G. B., Long, C. & Keyes, T. E. Mega-Stokes pyrene ceramide conjugates for STED imaging of lipid droplets in live cells. Analyst 144, 1608–1621 (2019).
Rankin, B. R., Kellner, R. R. & Hell, S. W. Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source. Opt. Lett. 33, 2491 (2008).
Mitronova, G. Y. et al. High-affinity functional fluorescent ligands for human β-adrenoceptors. Sci. Rep. 7, 12319 (2017).
Knorr, G. et al. Bioorthogonally applicable fluorogenic cyanine-tetrazines for no-wash super-resolution imaging. Bioconjug. Chem. 29, 1312–1318 (2018).
Liu, T. et al. Multi-color live-cell STED nanoscopy of mitochondria with a gentle inner membrane stain. Proc. Natl Acad. Sci. USA 119, e2215799119 (2022).
Lavis, L. D. Teaching old dyes new tricks: biological probes built from fluoresceins and rhodamines. Annu. Rev. Biochem. 86, 825–843 (2017).
Lukinavičius, G. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5, 132–139 (2013). This work introduced one of the most used fluorophores for live-cell stimulated emission depletion imaging, which is both cell-permeable and fluorogenic.
Hanne, J. et al. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 6, 7127 (2015).
Alvelid, J., Bucci, A. & Testa, I. Far red‐shifted CdTe quantum dots for multicolour stimulated emission depletion nanoscopy. ChemPhysChem 24, e202200698 (2023).
Liu, Y. et al. Shedding new lights into STED microscopy: emerging nanoprobes for imaging. Front. Chem. 9, 641330 (2021).
Calloway, N. T. et al. Optimized fluorescent trimethoprim derivatives for in vivo protein labeling. ChemBioChem 8, 767–774 (2007).
Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).
Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).
Mo, J. et al. Third‐generation covalent TMP‐tag for fast labeling and multiplexed imaging of cellular proteins. Angew. Chem. Int. Ed. 61, e202207905 (2022).
Wilhelm, J. et al. Kinetic and structural characterization of the self-labeling protein tags HaloTag7, SNAP-tag, and CLIP-tag. Biochemistry 60, 2560–2575 (2021).
Wang, L. et al. A general strategy to develop cell permeable and fluorogenic probes for multicolour nanoscopy. Nat. Chem. 12, 165–172 (2020).
Marques, S. M. et al. Mechanism-based strategy for optimizing HaloTag protein labeling. JACS Au 2, 1324–1337 (2022).
Kompa, J. et al. Exchangeable HaloTag ligands for super-resolution fluorescence microscopy. J. Am. Chem. Soc. 145, 3075–3083 (2023).
Benaissa, H. et al. Engineering of a fluorescent chemogenetic reporter with tunable color for advanced live-cell imaging. Nat. Commun. 12, 6989 (2021).
Szent-Gyorgyi, C. et al. Fluorogen-activating single-chain antibodies for imaging cell surface proteins. Nat. Biotechnol. 26, 235–240 (2008).
Vreja, I. C. et al. Super-resolution microscopy of clickable amino acids reveals the effects of fluorescent protein tagging on protein assemblies. ACS Nano 9, 11034–11041 (2015).
Chen, I., Howarth, M., Lin, W. & Ting, A. Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2, 99–104 (2005).
Yin, J. et al. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc. Natl Acad. Sci. USA 102, 15815–15820 (2005).
Fernández-Suárez, M. et al. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat. Biotechnol. 25, 1483–1487 (2007).
Kollmannsperger, A. et al. Live-cell protein labelling with nanometre precision by cell squeezing. Nat. Commun. 7, 10372 (2016).
Griffin, B. A., Adams, S. R. & Tsien, R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).
Sun, C. et al. Electroporation-delivered fluorescent protein biosensors for probing molecular activities in cells without genetic encoding. Chem. Commun. 50, 11536–11539 (2014).
Abbaci, M., Barberi-Heyob, M., Blondel, W., Guillemin, F. & Didelon, J. Advantages and limitations of commonly used methods to assay the molecular permeability of gap junctional intercellular communication. BioTechniques 45, 33–62 (2008).
Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 9, 582–584 (2012).
Herce, H. D. et al. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nat. Chem. 9, 762–771 (2017).
Schneider, A. F. L., Benz, L. S., Lehmann, M. & Hackenberger, C. P. R. Cell-permeable nanobodies allow dual-color super-resolution microscopy in untransfected living cells. Angew. Chem. Int. Ed. 60, 22075–22080 (2021).
Klein, A. et al. Live-cell labeling of endogenous proteins with nanometer precision by transduced nanobodies. Chem. Sci. 9, 7835–7842 (2018).
Schumacher, D., Helma, J., Schneider, A. F. L., Leonhardt, H. & Hackenberger, C. P. R. Nanobodies: chemical functionalization strategies and intracellular applications. Angew. Chem. Int. Ed. 57, 2314–2333 (2018).
Nikić, I. et al. Minimal tags for rapid dual‐color live‐cell labeling and super‐resolution microscopy. Angew. Chem. Int. Ed. 53, 2245–2249 (2014).
Ratz, M., Testa, I., Hell, S. W. & Jakobs, S. CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells. Sci. Rep. 5, 9592 (2015).
Butkevich, A. N. et al. Two-color 810 nm STED nanoscopy of living cells with endogenous SNAP-tagged fusion proteins. ACS Chem. Biol. 13, 475–480 (2018).
Takagi, T. et al. Discovery of an F-actin-binding small molecule serving as a fluorescent probe and a scaffold for functional probes. Sci. Adv. 7, eabg8585 (2021).
Bucevičius, J. et al. A general highly efficient synthesis of biocompatible rhodamine dyes and probes for live-cell multicolor nanoscopy. Nat. Commun. 14, 1306 (2023).
Zheng, S. et al. Long-term super-resolution inner mitochondrial membrane imaging with a lipid probe. Nat. Chem. Biol. 20, 83–92 (2023).
Cavazza, T. et al. Parental genome unification is highly error-prone in mammalian embryos. Cell 184, 2860–2877.e22 (2021).
Salim, A. et al. Chemical probe for imaging of polo-like kinase 4 and centrioles. JACS Au 3, 2247–2256 (2023).
Sakamoto, S. & Hamachi, I. Ligand‐directed chemistry for protein labeling for affinity‐based protein analysis. Isr. J. Chem. 63, e202200077 (2023).
Sharom, F. J. The P-glycoprotein multidrug transporter. Essays Biochem. 50, 161–178 (2011).
Martin, C., Walker, J., Rothnie, A. & Callaghan, R. The expression of P-glycoprotein does influence the distribution of novel fluorescent compounds in solid tumour models. Br. J. Cancer 89, 1581–1589 (2003).
Gerasimaitė, R. et al. Efflux pump insensitive rhodamine–jasplakinolide conjugates for G- and F-actin imaging in living cells. Org. Biomol. Chem. 18, 2929–2937 (2020).
Zielonka, J. et al. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 117, 10043–10120 (2017).
Alford, R. et al. Toxicity of organic fluorophores used in molecular imaging: literature review. Mol. Imaging 8, 341–354 (2009).
Tan, W. C. C. et al. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun. 40, 135–153 (2020).
Mikhaylova, M. et al. Resolving bundled microtubules using anti-tubulin nanobodies. Nat. Commun. 6, 7933 (2015).
Bucevičius, J., Kostiuk, G., Gerasimaitė, R., Gilat, T. & Lukinavičius, G. Enhancing the biocompatibility of rhodamine fluorescent probes by a neighbouring group effect. Chem. Sci. 11, 7313–7323 (2020).
Sograte-Idrissi, S. et al. Circumvention of common labelling artefacts using secondary nanobodies. Nanoscale 12, 10226–10239 (2020).
Cordell, P. et al. Affimers and nanobodies as molecular probes and their applications in imaging. J. Cell Sci. 135, jcs259168 (2022).
Liu, S., Hoess, P. & Ries, J. Super-resolution microscopy for structural cell biology. Annu. Rev. Biophys. 51, 301–326 (2022).
Pleiner, T. et al. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife 4, e11349 (2015).
Maier, J., Traenkle, B. & Rothbauer, U. Real-time analysis of epithelial–mesenchymal transition using fluorescent single-domain antibodies. Sci. Rep. 5, 13402 (2015).
Mishina, N. M. et al. Live-cell STED microscopy with genetically encoded biosensor. Nano Lett. 15, 2928–2932 (2015).
Pleiner, T., Bates, M. & Görlich, D. A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies. J. Cell Biol. 217, 1143–1154 (2017).
Im, K., Mareninov, S., Diaz, M. F. P. & Yong, W. H. in Biobanking: Methods and Protocols (ed. Yong, W. H.) 299–311 (Springer, 2019).
Erdmann, R. S. et al. Labeling strategies matter for super-resolution microscopy: a comparison between HaloTags and SNAP-tags. Cell Chem. Biol. 26, 584–592.e6 (2019).
Grimm, J. B. et al. A general method to optimize and functionalize red-shifted rhodamine dyes. Nat. Methods 17, 815–821 (2020).
Wegner, W. et al. In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins. Sci. Rep. 7, 11781 (2017).
Zanella, R. et al. Towards real-time image deconvolution: application to confocal and STED microscopy. Sci. Rep. 3, 2523 (2013).
Scorrano, L. et al. Coming together to define membrane contact sites. Nat. Commun. 10, 1287 (2019).
Cosson, P., Amherdt, M., Rothman, J. E. & Orci, L. A resident Golgi protein is excluded from peri-Golgi vesicles in NRK cells. Proc. Natl Acad. Sci. USA 99, 12831–12834 (2002).
Orbach, R. & Su, X. Surfing on membrane waves: microvilli, curved membranes, and immune signaling. Front. Immunol. 11, 2187 (2020).
Sezgin, E. et al. Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS. Nat. Protoc. 14, 1054–1083 (2019). This work provides guidance to perform stimulated emission depletion-fluorescence correlation spectroscopy experiments, including information on labels, imaging and analysis pipelines.
Mueller, V. et al. STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys. J. 101, 1651–1660 (2011).
Andrade, D. M. et al. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane — a minimally invasive investigation by STED-FCS. Sci. Rep. 5, 11454 (2015).
Schneider, F. et al. Nanoscale spatiotemporal diffusion modes measured by simultaneous confocal and stimulated emission depletion nanoscopy imaging. Nano Lett. 18, 4233–4240 (2018).
Steshenko, O. et al. Reorganization of lipid diffusion by myelin basic protein as revealed by STED nanoscopy. Biophys. J. 110, 2441–2450 (2016).
Rossboth, B. et al. TCRs are randomly distributed on the plasma membrane of resting antigen-experienced T cells. Nat. Immunol. 19, 821–827 (2018).
Gutiérrez-Martínez, E. et al. Actin-regulated Siglec-1 nanoclustering influences HIV-1 capture and virus-containing compartment formation in dendritic cells. eLife 12, e78836 (2023).
Piechocka, I. K. et al. Shear forces induce ICAM-1 nanoclustering on endothelial cells that impact on T-cell migration. Biophys. J. 120, 2644–2656 (2021).
Xu, L. et al. Nanoscale localization of proteins within focal adhesions indicates discrete functional assemblies with selective force‐dependence. FEBS J. 285, 1635–1652 (2018).
Spiess, M. et al. Active and inactive β1 integrins segregate into distinct nanoclusters in focal adhesions. J. Cell Biol. 217, 1929–1940 (2018).
Chien, F., Kuo, C. W., Yang, Z., Chueh, D. & Chen, P. Exploring the formation of focal adhesions on patterned surfaces using super‐resolution imaging. Small 7, 2906–2913 (2011).
Mangeol, P. et al. Super-resolution imaging uncovers the nanoscopic segregation of polarity proteins in epithelia. eLife 11, e62087 (2022).
Yang, T. T. et al. Superresolution STED microscopy reveals differential localization in primary cilia. Cytoskeleton 70, 54–65 (2013).
Hein, B., Willig, K. I. & Hell, S. W. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc. Natl Acad. Sci. USA 105, 14271–14276 (2008).
Westphal, V. et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246–249 (2008).
Bottanelli, F. et al. Two-colour live-cell nanoscale imaging of intracellular targets. Nat. Commun. 7, 10778 (2016). This work set the foundation of live-cell and multicolour stimulated emission depletion imaging with enzymatic labelling in cells.
Wang, C. et al. A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial cristae. Proc. Natl Acad. Sci. USA 116, 15817–15822 (2019).
Maib, H. et al. Recombinant biosensors for multiplex and super-resolution imaging of phosphoinositides. J. Cell Biol. 223, e202310095 (2024).
Stephan, T., Roesch, A., Riedel, D. & Jakobs, S. Live-cell STED nanoscopy of mitochondrial cristae. Sci. Rep. 9, 12419 (2019).
Kondadi, A. K. et al. Cristae undergo continuous cycles of membrane remodelling in a MICOS‐dependent manner. EMBO Rep. 21, e49776 (2020).
Schroeder, L. K. et al. Dynamic nanoscale morphology of the ER surveyed by STED microscopy. J. Cell Biol. 218, 83–96 (2019).
Damenti, M., Coceano, G., Pennacchietti, F., Bodén, A. & Testa, I. STED and parallelized RESOLFT optical nanoscopy of the tubular endoplasmic reticulum and its mitochondrial contacts in neuronal cells. Neurobiol. Dis. 155, 105361 (2021).
Nascimbeni, A. C. et al. ER–plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. EMBO J. 36, 2018–2033 (2017).
Jang, W. et al. Endosomal lipid signaling reshapes the endoplasmic reticulum to control mitochondrial function. Science 378, eabq5209 (2022).
Raote, I. et al. TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. eLife 7, e32723 (2018).
Wong-Dilworth, L. et al. STED imaging of endogenously tagged ARF GTPases reveals their distinct nanoscale localizations. J. Cell Biol. 222, e202205107 (2023).
Bottanelli, F. et al. A novel physiological role for ARF1 in the formation of bidirectional tubules from the Golgi. Mol. Biol. Cell 28, 1676–1687 (2017).
Liu, Y. et al. Clathrin-associated AP-1 controls termination of STING signalling. Nature 610, 761–767 (2022).
Gemmink, A. et al. Super-resolution microscopy localizes perilipin 5 at lipid droplet–mitochondria interaction sites and at lipid droplets juxtaposing to perilipin 2. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863, 1423–1432 (2018).
Otsuka, S. et al. Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope. eLife 5, e19071 (2016).
Ashkenazy-Titelman, A., Atrash, M. K., Boocholez, A., Kinor, N. & Shav-Tal, Y. RNA export through the nuclear pore complex is directional. Nat. Commun. 13, 5881 (2022).
Shi, K. Y. et al. Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export. Proc. Natl Acad. Sci. USA 114, E1111–E1117 (2017).
Thevathasan, J. V. et al. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat. Methods 16, 1045–1053 (2019).
Kostiuk, G., Bucevičius, J., Gerasimaitė, R. & Lukinavičius, G. Application of STED imaging for chromatin studies. J. Phys. D Appl. Phys. 52, 504003 (2019).
Persson, F. et al. Fluorescence nanoscopy of single DNA molecules by using stimulated emission depletion (STED). Angew. Chem. Int. Ed. 50, 5581–5583 (2011).
Kim, N., Kim, H. J., Kim, Y., Min, K. S. & Kim, S. K. Direct and precise length measurement of single, stretched DNA fragments by dynamic molecular combing and STED nanoscopy. Anal. Bioanal. Chem. 408, 6453–6459 (2016).
Bucevičius, J., Keller-Findeisen, J., Gilat, T., Hell, S. W. & Lukinavičius, G. Rhodamine–Hoechst positional isomers for highly efficient staining of heterochromatin. Chem. Sci. 10, 1962–1970 (2019).
Spahn, C., Grimm, J. B., Lavis, L. D., Lampe, M. & Heilemann, M. Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores. Nano Lett. 19, 500–505 (2019).
Cseresnyes, Z., Schwarz, U. & Green, C. M. Analysis of replication factories in human cells by super-resolution light microscopy. BMC Mol. Cell Biol. 10, 88 (2009).
Reindl, J. et al. Chromatin organization revealed by nanostructure of irradiation induced γH2AX, 53BP1 and Rad51 foci. Sci. Rep. 7, 40616 (2017).
D’Abrantes, S. et al. Super-resolution nanoscopy imaging applied to DNA double-strand breaks. Radiat. Res. 189, 19 (2017).
D’Este, E. et al. Subcortical cytoskeleton periodicity throughout the nervous system. Sci. Rep. 6, 22741 (2016).
D’Este, E., Kamin, D., Göttfert, F., El-Hady, A. & Hell, S. W. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep. 10, 1246–1251 (2015).
Lukinavičius, G. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11, 731–733 (2014).
Van Steenbergen, V. et al. Nano-positioning and tubulin conformation contribute to axonal transport regulation of mitochondria along microtubules. Proc. Natl Acad. Sci. USA 119, e2203499119 (2022).
Maraspini, R., Wang, C.-H. & Honigmann, A. Optimization of 2D and 3D cell culture to study membrane organization with STED microscopy. J. Phys. D Appl. Phys. 53, 014001 (2020).
Wang, J., Fan, Y., Sanger, J. M. & Sanger, J. W. STED analysis reveals the organization of nonmuscle muscle II, muscle myosin II, and F‐actin in nascent myofibrils. Cytoskeleton 79, 122–132 (2022).
Curry, N., Ghézali, G., Kaminski Schierle, G. S., Rouach, N. & Kaminski, C. F. Correlative STED and atomic force microscopy on live astrocytes reveals plasticity of cytoskeletal structure and membrane physical properties during polarized migration. Front. Cell. Neurosci. 11, 104 (2017).
Deguchi, T. et al. Density and function of actin-microdomains in healthy and NF1 deficient osteoclasts revealed by the combined use of atomic force and stimulated emission depletion microscopy. J. Phys. D Appl. Phys. 53, 014003 (2020).
Zelená, A. et al. Force generation in human blood platelets by filamentous actomyosin structures. Biophys. J. 122, 3340–3353 (2023).
Fritzsche, M. et al. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation. Sci. Adv. 3, e1603032 (2017).
Rak, G. D., Mace, E. M., Banerjee, P. P., Svitkina, T. & Orange, J. S. Natural killer cell lytic granule secretion occurs through a pervasive actin network at the immune synapse. PLoS Biol. 9, e1001151 (2011).
Wang, J. C., Bolger-Munro, M. & Gold, M. R. Visualizing the actin and microtubule cytoskeletons at the B-cell immune synapse using stimulated emission depletion (STED) microscopy. J. Vis. Exp. https://doi.org/10.3791/57028 (2018).
Lau, L., Lee, Y. L., Sahl, S. J., Stearns, T. & Moerner, W. E. STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. Biophys. J. 102, 2926–2935 (2012).
Lee, Y. L. et al. Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole–cilium interface and facilitates proper cilium formation and function. Mol. Biol. Cell 25, 2919–2933 (2014).
Vlijm, R. et al. STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles. Proc. Natl Acad. Sci. USA 115, E2246–E2253 (2018).
Lukinavičius, G. et al. Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex. Curr. Biol. 23, 265–270 (2013).
Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. & Hell, S. W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).
Nägerl, U. V. & Bonhoeffer, T. Imaging living synapses at the nanoscale by STED microscopy. J. Neurosci. 30, 9341–9346 (2010).
Nägerl, U. V., Willig, K. I., Hein, B., Hell, S. W. & Bonhoeffer, T. Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl Acad. Sci. USA 105, 18982–18987 (2008).
Urban, N. T., Willig, K. I., Hell, S. W. & Nägerl, U. V. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J. 101, 1277–1284 (2011).
Calovi, S., Soria, F. N. & Tønnesen, J. Super-resolution STED microscopy in live brain tissue. Neurobiol. Dis. 156, 105420 (2021).
Kittel, R. J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).
Jalalvand, E. et al. ExSTED microscopy reveals contrasting functions of dopamine and somatostatin CSF-c neurons along the lamprey central canal. eLife 11, e73114 (2022).
Wegner, W., Steffens, H., Gregor, C., Wolf, F. & Willig, K. I. Environmental enrichment enhances patterning and remodeling of synaptic nanoarchitecture as revealed by STED nanoscopy. eLife 11, e73603 (2022).
Berning, S., Willig, K. I., Steffens, H., Dibaj, P. & Hell, S. W. Nanoscopy in a living mouse brain. Science 335, 551–551 (2012).
Arizono, M. et al. Structural basis of astrocytic Ca2+ signals at tripartite synapses. Nat. Commun. 11, 1906 (2020).
Rankin, B. R. et al. Nanoscopy in a living multicellular organism expressing GFP. Biophys. J. 100, L63–L65 (2011).
Steffens, H. et al. Stable but not rigid: chronic in vivo STED nanoscopy reveals extensive remodeling of spines, indicating multiple drivers of plasticity. Sci. Adv. 7, eabf2806 (2021).
Wegner, W., Mott, A. C., Grant, S. G. N., Steffens, H. & Willig, K. I. In vivo STED microscopy visualizes PSD95 sub-structures and morphological changes over several hours in the mouse visual cortex. Sci. Rep. 8, 219 (2018).
Nieuwenhuizen, R. P. J. et al. Measuring image resolution in optical nanoscopy. Nat. Methods 10, 557–562 (2013).
Tortarolo, G., Castello, M., Diaspro, A., Koho, S. & Vicidomini, G. Evaluating image resolution in stimulated emission depletion microscopy. Optica 5, 32 (2018).
Koho, S. et al. Fourier ring correlation simplifies image restoration in fluorescence microscopy. Nat. Commun. 10, 3103 (2019).
Zhao, W. et al. Quantitatively mapping local quality of super-resolution microscopy by rolling Fourier ring correlation. Light. Sci. Appl. 12, 298 (2023).
Alvelid, J., Damenti, M., Sgattoni, C. & Testa, I. Event-triggered STED imaging. Nat. Methods 19, 1268–1275 (2022). This work shows the latest development in live-cell stimulated emission depletion microscopy, combining smart and automated acquisition with high spatial and temporal resolution imaging.
Kilian, N. et al. Assessing photodamage in live-cell STED microscopy. Nat. Methods 15, 755–756 (2018).
Luo, C. et al. Shedding light on imaging safety: decoding the origin of photocytotoxicity in RhB-assisted fluorescence imaging. J. Biophoton. 17, e202400049 (2024).
Donnert, G. et al. Macromolecular-scale resolution in biological fluorescence microscopy. Proc. Natl Acad. Sci. USA 103, 11440–11445 (2006).
Staudt, T. et al. Far-field optical nanoscopy with reduced number of state transition cycles. Opt. Express 19, 5644 (2011).
Bordenave, M. D., Balzarotti, F., Stefani, F. D. & Hell, S. W. STED nanoscopy with wavelengths at the emission maximum. J. Phys. D Appl. Phys. 49, 365102 (2016).
Göttfert, F. et al. Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent. Proc. Natl Acad. Sci. USA 114, 2125–2130 (2017).
Ando, R. et al. StayGold variants for molecular fusion and membrane-targeting applications. Nat. Methods 21, 648–656 (2024).
Ivorra-Molla, E. et al. A monomeric StayGold fluorescent protein. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02018-w (2023).
Liu, T. et al. Gentle rhodamines for live-cell fluorescence microscopy. Preprint at bioRxiv https://doi.org/10.1101/2024.02.06.579089 (2024).
Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018).
Belthangady, C. & Royer, L. A. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat. Methods 16, 1215–1225 (2019).
Ebrahimi, V. et al. Deep learning enables fast, gentle STED microscopy. Commun. Biol. 6, 674 (2023).
Velicky, P. et al. Dense 4D nanoscale reconstruction of living brain tissue. Nat. Methods 20, 1256–1265 (2023).
Papereux, S. et al. DeepCristae, a CNN for the restoration of mitochondria cristae in live microscopy images. Preprint at bioRxiv https://doi.org/10.1101/2023.07.05.547594 (2023).
Wang, H. et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods 16, 103–110 (2019).
Chen, J. et al. Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes. Nat. Methods 18, 678–687 (2021).
Ning, K. et al. Deep self-learning enables fast, high-fidelity isotropic resolution restoration for volumetric fluorescence microscopy. Light Sci. Appl. 12, 204 (2023).
Bouchard, C. et al. Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition. Nat. Mach. Intell. 5, 830–844 (2023).
Laine, R. F., Jacquemet, G. & Krull, A. Imaging in focus: an introduction to denoising bioimages in the era of deep learning. Int. J. Biochem. Cell Biol. 140, 106077 (2021).
Li, Y. et al. Incorporating the image formation process into deep learning improves network performance. Nat. Methods 19, 1427–1437 (2022).
Durand, A. et al. A machine learning approach for online automated optimization of super-resolution optical microscopy. Nat. Commun. 9, 5247 (2018).
Heine, J. et al. Adaptive-illumination STED nanoscopy. Proc. Natl Acad. Sci. USA 114, 9797–9802 (2017).
Dreier, J. et al. Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo. Nat. Commun. 10, 556 (2019).
Vinçon, B., Geisler, C. & Egner, A. Pixel hopping enables fast STED nanoscopy at low light dose. Opt. Express 28, 4516–4528 (2020).
Mahecic, D. et al. Event-driven acquisition for content-enriched microscopy. Nat. Methods 19, 1262–1267 (2022).
Casas Moreno, X., Al-Kadhimi, S., Alvelid, J., Bodén, A. & Testa, I. ImSwitch: generalizing microscope control in Python. J. Open Source Softw. 6, 3394 (2021).
Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using µmanager. Curr. Protoc. Mol. Biol. https://doi.org/10.1002/0471142727.mb1420s92 (2010).
Susano Pinto, D. M. et al. Python-microscope — a new open-source Python library for the control of microscopes. J. Cell Sci. 134, jcs258955 (2021).
Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photon. 3, 144–147 (2009).
Wurm, C. A. et al. Correlative STED super-resolution light and electron microscopy on resin sections. J. Phys. D Appl. Phys. 52, 374003 (2019).
Bernhardt, M. et al. Correlative microscopy approach for biology using X-ray holography, X-ray scanning diffraction and STED microscopy. Nat. Commun. 9, 3641 (2018).
Inavalli, V. V. G. K. et al. A super-resolution platform for correlative live single-molecule imaging and STED microscopy. Nat. Methods 16, 1263–1268 (2019).
Weber, M. et al. MINSTED fluorescence localization and nanoscopy. Nat. Photon. 15, 361–366 (2021).
Gao, M. et al. Expansion stimulated emission depletion microscopy (ExSTED). ACS Nano 12, 4178–4185 (2018).
Gambarotto, D. et al. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat. Methods 16, 71–74 (2019).
Wassie, A. T., Zhao, Y. & Boyden, E. S. Expansion microscopy: principles and uses in biological research. Nat. Methods 16, 33–41 (2019).
Saal, K. A. et al. Heat denaturation enables multicolor X10-STED microscopy. Sci. Rep. 13, 5366 (2023).
Jurriens, D., van Batenburg, V., Katrukha, E. A. & Kapitein, L. C. in Methods in Cell Biology Vol. 161 (eds Guichard, P. & Hamel, V.) Ch. 6, 105–124 (Academic Press, 2021).
Unnersjö-Jess, D. et al. Confocal super-resolution imaging of the glomerular filtration barrier enabled by tissue expansion. Kidney Int. 93, 1008–1013 (2018).
Pownall, M. E. et al. Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin. Science 381, 92–100 (2023).
Pellett, P. A. et al. Two-color STED microscopy in living cells. Biomed. Opt. Express 2, 2364 (2011).
Moneron, G. et al. Fast STED microscopy with continuous wave fiber lasers. Opt. Express 18, 1302 (2010).
Lukinavičius, G. et al. Fluorescent dyes and probes for super-resolution microscopy of microtubules and tracheoles in living cells and tissues. Chem. Sci. 9, 3324–3334 (2018).
Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015).
Butkevich, A. N. et al. Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells. Angew. Chem. Int. Ed. 55, 3290–3294 (2016).
Grimm, J. B. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, 987–994 (2017).
Wildanger, D., Rittweger, E., Kastrup, L. & Hell, S. W. STED microscopy with a supercontinuum laser source. Opt. Express 16, 9614 (2008).
Han, K. Y. & Ha, T. Dual-color three-dimensional STED microscopy with a single high-repetition-rate laser. Opt. Lett. 40, 2653–2656 (2015).
Kolmakov, K. et al. Red‐emitting rhodamine dyes for fluorescence microscopy and nanoscopy. Chem. Eur. J. 16, 158–166 (2010).
Willig, K. I., Harke, B., Medda, R. & Hell, S. W. STED microscopy with continuous wave beams. Nat. Methods 4, 915–918 (2007).
Grimm, J. B. et al. A general method to improve fluorophores using deuterated auxochromes. JACS Au 1, 690–696 (2021).
Lukinavičius, G. et al. Fluorogenic probes for multicolor imaging in living cells. J. Am. Chem. Soc. 138, 9365–9368 (2016).
Ye, S., Guo, J., Song, J. & Qu, J. Achieving high-resolution of 21 nm for STED nanoscopy assisted by CdSe@ZnS quantum dots. Appl. Phys. Lett. 116, 041101 (2020).
Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).
Zhan, Q. et al. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun. 8, 1–11 (2017).
Han, G. et al. Membrane‐penetrating carbon quantum dots for imaging nucleic acid structures in live organisms. Angew. Chem. Int. Ed. 58, 7087–7091 (2019).
Leménager, G., De Luca, E., Sun, Y.-P. & Pompa, P. P. Super-resolution fluorescence imaging of biocompatible carbon dots. Nanoscale 6, 8617 (2014).
Laporte, G. & Psaltis, D. STED imaging of green fluorescent nanodiamonds containing nitrogen-vacancy-nitrogen centers. Biomed. Opt. Express 7, 34–44 (2016).
Wu, X. et al. A versatile platform for the highly efficient preparation of graphene quantum dots: photoluminescence emission and hydrophilicity–hydrophobicity regulation and organelle imaging. Nanoscale 10, 1532–1539 (2018).
Wu, Y. et al. Fluorescent polymer dot-based multicolor stimulated emission depletion nanoscopy with a single laser beam pair for cellular tracking. Anal. Chem. 92, 12088–12096 (2020).
Yu, J. et al. Low photobleaching and high emission depletion efficiency: the potential of AIE luminogen as fluorescent probe for STED microscopy. Opt. Lett. 40, 2313 (2015).
Li, D., Qin, W., Xu, B., Qian, J. & Tang, B. Z. AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long‐term super‐resolution bioimaging. Adv. Mater. 29, 1703643 (2017).
Schübbe, S. et al. Size-dependent localization and quantitative evaluation of the intracellular migration of silica nanoparticles in Caco-2 cells. Chem. Mater. 24, 914–923 (2012).
Schübbe, S., Cavelius, C., Schumann, C., Koch, M. & Kraegeloh, A. STED microscopy to monitor agglomeration of silica particles inside A549 cells. Adv. Eng. Mater. 12, 417–422 (2010).
Lanzanò, L. et al. Encoding and decoding spatio-temporal information for super-resolution microscopy. Nat. Commun. 6, 6701 (2015).
Acknowledgements
K.Y.H. thanks the NIH (R35GM138039) for supporting this work. I.T. thanks the ERC-CoG (101002490 — InSpIRe) for supporting this work. F.B. acknowledges the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — Project Number 278001972 — TRR 186 grant and a HFSP Early career award that supports C.R.-R. J.A. thanks the Swedish Research Council (2022-06139_VR) for supporting this work. G.V. thanks all members of the Molecular Microscopy and Spectroscopy laboratory at the Istituto Italiano di Tecnologia for their continuous discussions during the writing process and the European Research Council for their support of his research through the BrightEyes Consolidator grant (No. 818699). G.L., R.G. and V.T.N. thank the Max Planck Society for supporting this work. V.T.N. is supported by the PhD program Genome Science — International Max Planck Research School.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
G.V. has a personal financial interest (co-founder) in Genoa Instruments, a company commercializing laser-scanning microscopy based on single-photon avalanche diode array detectors. The other authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Cross-section
-
The probability of particle–photon interaction. A typical absorption cross-section for a fluorophore at room temperature is on the order of 10–16 cm2.
- Deformable mirrors
-
Optical device typically used to shape the wavefront of reflected light.
- Depletion
-
Induced de-excitation of a molecule to the ground state without detectable fluorescence emission.
- Fluorescence photo-switching
-
Property of turning ‘on’ and ‘off’ the fluorescence emission of a molecule with light. Light-induced molecular pathways leading to photo-switching are stimulated emission or other molecular conformational changes connected to spectral shifts.
- Fluorogenicity
-
Ability of the probe to increase fluorescence upon binding to the target. When free in solution, such a probe is only weakly fluorescent. Using fluorogenic probes helps in getting higher contrast images.
- Fluorogens
-
Non-fluorescent small molecule that can become fluorescent after it is complexed with a specific fluorogen-activating protein.
- Gated STED
-
Stimulated emission depletion (STED) technique in which not all detected emitted photons are considered but only the ones delayed with 0.5 ns or more, typically, when compared with the excitation pulse. It is used to filter the signal from unwanted low-resolution photon information emitted before the stimulated emission has taken full effect.
- Phasor-based approach
-
Data visualization approach used in lifetime imaging, which helps to separate molecular species based on the temporal and spectral properties of the fluorescence emission.
- Self-labelling protein tag
-
An enzyme that can be inactivated by suicide inhibition — a substrate analogue that forms an irreversible complex through a covalent bond during the catalysis reaction. The suicide inhibitor can carry any reporter group that generates a detectable signal, that is, fluorophore, radioactive atom, spin label or other.
- Separation of photon by lifetime tuning (SPLIT)-STED microscopy
-
A stimulated emission depletion (STED) microscopy technique that utilizes fluorescence dynamics to select photons containing high spatial resolution information through a computational approach based on the phasor analysis of the fluorescence lifetime emission.
- Spatial light modulator
-
Optical device typically used to modify the phase of reflected or transmitted light.
- Spirolactone
-
A form of a rhodamine featuring a cyclic ester attached to the three-ring xanthene system. Usually, spirolactone formation results in neutralization of positive and negative charges on the fluorophore molecule.
- Spot-variation (or diffusion law) FCS
-
Fluorescence correlation technique capable of unveiling constraints in the dynamics of the investigated molecule or particle. By plotting the apparent diffusion coefficients of the molecule as a function of the observation volume size during fluorescence correlation spectroscopy (FCS) measurements, it is possible to reconstruct the diffusion law, allowing for an understanding of whether the molecule is diffusing freely or is subject to partition dynamics, hopping or other types of mobility.
- Zwitterionic state
-
A state of a rhodamine that is formed after spirolactone cleavage, resulting in the appearance of positive and negative charges on the same dye molecule.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lukinavičius, G., Alvelid, J., Gerasimaitė, R. et al. Stimulated emission depletion microscopy. Nat Rev Methods Primers 4, 56 (2024). https://doi.org/10.1038/s43586-024-00335-1
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-024-00335-1