Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Microbial electrodes

Abstract

Microorganisms interacting with electrodes are at the centre of the evolving research field of microbial electrochemical technologies. The interdisciplinarity of the topic of microbial electrodes, including electrochemistry, microbiology and engineering, provides exciting opportunities and poses challenges. For further consolidation of the field, a solid methodology and approach as well as reporting are required. In this Primer, we provide an overview of the key parameters and main electrochemical methods, and the insights that can be obtained from microbial electrodes. These are exemplified and discussed for two case studies, one related to bioanodes and one related to biocathodes. The main applications of microbial electrodes, as well as challenges and directions for research, are summarized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An electrochemical cell consisting of a microbial electrode coupled to a second (counter) electrode.
Fig. 2: Example results for the bioanode experiment using continuous flow reactors.
Fig. 3: Cyclic voltammograms of an electrode with and without biofilm.
Fig. 4: Analysis of performance through polarization curves and efficiency.
Fig. 5: Methods to determine microbial electrode performance.

Similar content being viewed by others

References

  1. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  ADS  Google Scholar 

  2. Harnisch F., Sleutels, T. & ter Heijne, A. Basic Electrochemistry for Biotechnology 1st edn (Wiley-VCH, 2023).

  3. Gralnick, J. A. & Bond, D. R. Electron transfer beyond the outer membrane: putting electrons to rest. Annu. Rev. Microbiol. 77, 517–539 (2023).

    Article  Google Scholar 

  4. Philipp, L. A., Bühler, K., Ulber, R. & Gescher, J. Beneficial applications of biofilms. Nat. Rev. Microbiol. 22, 276–290 (2023).

    Article  Google Scholar 

  5. Logan, B. E. et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol. 42, 8630–8640 (2008).

    Article  ADS  Google Scholar 

  6. Logan, B. E. et al. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006). Principles and overview of microbial fuel cells in the early stage of research, including well-explained thermodynamic calculations.

    Article  ADS  Google Scholar 

  7. Hamelers, H. V. M. et al. New applications and performance of bioelectrochemical systems. Appl. Microbiol. Biotechnol. 85, 1673–1685 (2010).

    Article  Google Scholar 

  8. Wang, X. et al. Microbial electrochemistry for bioremediation. Environ. Sci. Ecotechnol. 1, 100013 (2020).

    Article  Google Scholar 

  9. Dominguez-Benetton, X. et al. Metal recovery by microbial electro-metallurgy. Prog. Mater. Sci. 94, 435–461 (2018). Review article on metal recovery using METs that includes challenges and future directions.

    Article  Google Scholar 

  10. Wang, H. & Ren, Z. J. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol. Adv. 31, 1796–1807 (2013).

    Article  Google Scholar 

  11. Rabaey, K. & Rozendal, R. A. Microbial electrosynthesis — revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706–716 (2010).

    Article  Google Scholar 

  12. Sevda, S., Sreekishnan, T. R., Pous, N., Puig, S. & Pant, D. Bioelectroremediation of perchlorate and nitrate contaminated water: a review. Bioresour. Technol. 255, 331–339 (2018).

    Article  Google Scholar 

  13. Pant, D., Van Bogaert, G., Diels, L. & Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 101, 1533–1543 (2010).

    Article  Google Scholar 

  14. Santoro, C., Bollella, P., Erable, B., Atanassov, P. & Pant, D. Oxygen reduction reaction electrocatalysis in neutral media for bioelectrochemical systems. Nat. Catal. 5, 473–484 (2022).

    Article  Google Scholar 

  15. Savla, N. et al. Recent advancements in the cathodic catalyst for the hydrogen evolution reaction in microbial electrolytic cells. Int. J. Hydrog. Energy 47, 15333–15356 (2022).

    Article  ADS  Google Scholar 

  16. Santoro, C., Arbizzani, C., Erable, B. & Ieropoulos, I. Microbial fuel cells: from fundamentals to applications. A review. J. Power Sources 356, 225–244 (2017).

    Article  ADS  Google Scholar 

  17. He, Z. & Angenent, L. T. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18, 2009–2015 (2006).

    Article  Google Scholar 

  18. Jourdin, L. & Burdyny, T. Microbial electrosynthesis: where do we go from here? Trends Biotechnol. 39, 359–369 (2021).

    Article  Google Scholar 

  19. Van Eerten-Jansen, M. C. A. A. et al. Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures. ACS Sustain. Chem. Eng. 1, 513–518 (2013).

    Article  Google Scholar 

  20. Bajracharya, S. et al. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour. Technol. 195, 14–24 (2015).

    Article  Google Scholar 

  21. Cheng, S., Xing, D., Call, D. F. & Logan, B. E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43, 3953–3958 (2009).

    Article  ADS  Google Scholar 

  22. Boto, S. T., Bardl, B., Harnisch, F. & Rosenbaum, M. A. Microbial electrosynthesis with Clostridium ljungdahlii benefits from hydrogen electron mediation and permits a greater variety of products. Green Chem. 25, 4375–4386 (2023).

    Article  Google Scholar 

  23. Abdollahi, M., Al Sbei, S., Rosenbaum, M. A. & Harnisch, F. The oxygen dilemma: the challenge of the anode reaction for microbial electrosynthesis from CO2. Front. Microbiol. 13, 947550 (2022).

    Article  Google Scholar 

  24. Torres, C. I., Marcus, A. K., Parameswaran, P. & Rittmann, B. E. Kinetic experiments for evaluating the Nernst–Monod model for anode-respiring bacteria (ARB) in a biofilm anode. Environ. Sci. Technol. 42, 6593–6597 (2008).

    Article  ADS  Google Scholar 

  25. Hamelers, H. V. M., ter Heijne, A., Stein, N., Rozendal, R. A. & Buisman, C. J. N. Butler–Volmer–Monod model for describing bio-anode polarization curves. Bioresour. Technol. 102, 381–387 (2011).

    Article  Google Scholar 

  26. Korth, B., Pereira, J., Sleutels, T., Harnisch, F. & ter Heijne, A. Comparing theoretical and practical biomass yields calls for revisiting thermodynamic growth models for electroactive microorganisms. Water Res. 242, 120279 (2023).

    Article  Google Scholar 

  27. Hamann, C. H., Hamnett, A. & Vielstich, W. Electrochemistry 2nd edn (Wiley-VCH, 2007).

  28. Yee, M. O., Deutzmann, J., Spormann, A. & Rotaru, A. E. Cultivating electroactive microbes—from field to bench. Nanotechnology 31, 174003 (2020).

    Article  ADS  Google Scholar 

  29. Koch, C. & Harnisch, F. Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 3, 1282–1295 (2016).

    Article  Google Scholar 

  30. Dhar, B. R. & Lee, H. S. Membranes for bioelectrochemical systems: challenges and research advances. Environ. Technol. 34, 1751–1764 (2013).

    Article  Google Scholar 

  31. Harnisch, F., Schröder, U. & Scholz, F. The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells. Environ. Sci. Technol. 42, 1740–1746 (2008).

    Article  ADS  Google Scholar 

  32. Koók, L. et al. Biofouling of membranes in microbial electrochemical technologies: causes, characterization methods and mitigation strategies. Bioresour. Technol. 279, 327–338 (2019).

    Article  Google Scholar 

  33. Krieg, T. et al. in Bioelectrosynthesis. Advances in Biochemical Engineering/Biotechnology, Vol. 167 (eds Harnisch, F. & Holtmann, D.) 231–271 (Springer, 2019).

  34. Liu, Z. et al. Recent progress on microbial electrosynthesis reactor designs and strategies to enhance the reactor performance. Biochem. Eng. J. 190, 108745 (2023).

    Article  Google Scholar 

  35. Krieg, T., Sydow, A., Schröder, U., Schrader, J. & Holtmann, D. Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol. 32, 645–655 (2014).

    Article  Google Scholar 

  36. Schröder, U., Harnisch, F. & Angenent, L. T. Microbial electrochemistry and technology: terminology and classification. Energy Environ. Sci. 8, 513–519 (2015).

    Article  Google Scholar 

  37. Caizán-Juanarena, L., Servin-Balderas, I., Chen, X., Buisman, C. J. N. & ter Heijne, A. Electrochemical and microbiological characterization of single carbon granules in a multi-anode microbial fuel cell. J. Power Sources 435, 126514 (2019).

    Article  Google Scholar 

  38. Caizán-Juanarena, L., Sleutels, T., Borsje, C. & ter Heijne, A. Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems. Renew. Energy 157, 782–792 (2020).

    Article  Google Scholar 

  39. Zhang, X., Prévoteau, A., Louro, R. O., Paquete, C. M. & Rabaey, K. Periodic polarization of electroactive biofilms increases current density and charge carriers concentration while modifying biofilm structure. Biosens. Bioelectron. 121, 183–191 (2018).

    Article  Google Scholar 

  40. Logan, B. E. Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments. ChemSusChem 5, 988–994 (2012).

    Article  Google Scholar 

  41. Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci. USA 105, 3968–3973 (2008). To the best of our knowledge, this is the first paper on Shewanella proving its mediated EET for which it is now serving as model organism using different electrochemical techniques.

    Article  ADS  Google Scholar 

  42. Fricke, K., Harnisch, F. & Schröder, U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy Environ. Sci. 1, 144–147 (2008).

    Article  Google Scholar 

  43. Torres, C. I. et al. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev. 34, 3–17 (2010).

    Article  Google Scholar 

  44. Yoho, R. A. et al. in Biofilms in Bioelectrochemical Systems: From Laboratory Practice to Data Interpretation 1st edn (eds Beyenal, H. & Babauta, J. T.) Ch. 8 (Wiley, 2015).

  45. Kretzschmar, J. & Harnisch, F. Electrochemical impedance spectroscopy on biofilm electrodes – conclusive or euphonious? Curr. Opin. Electrochem. 29, 100757 (2021).

    Article  Google Scholar 

  46. Lovley, D. R. & Holmes, D. E. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat. Rev. Microbiol. 20, 5–19 (2022).

    Article  Google Scholar 

  47. Harnisch, F. & Schröder, U. Selectivity versus mobility: separation of anode and cathode in microbial bioelectrochemical systems. ChemSusChem 2, 921–926 (2009).

    Article  Google Scholar 

  48. Yang, G., Mai, Q., Zhuang, Z. & Zhuang, L. Buffer capacity regulates the stratification of anode-respiring biofilm during brewery wastewater treatment. Environ. Res. 201, 111572 (2021).

    Article  Google Scholar 

  49. Vassilev, I., Dessì, P., Puig, S. & Kokko, M. Cathodic biofilms – a prerequisite for microbial electrosynthesis. Bioresour. Technol. 348, 126788 (2022).

    Article  Google Scholar 

  50. de Smit, S. M. et al. Methodology for in situ microsensor profiling of hydrogen, pH, oxidation–reduction potential, and electric potential throughout three-dimensional porous cathodes of (bio)electrochemical systems. Anal. Chem. 95, 2680–2689 (2023).

    Article  Google Scholar 

  51. Sandfeld, T. et al. Considerations on the use of microsensors to profile dissolved H2 concentrations in microbial electrochemical reactors. PLoS ONE 19, e0293734 (2024).

    Article  Google Scholar 

  52. Harnisch, F., Deutzmann, J. S., Boto, S. T. & Rosenbaum, M. A. Microbial electrosynthesis: opportunities for microbial pure cultures. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2024.02.004 (2024).

    Article  Google Scholar 

  53. Ledezma, P., Greenman, J. & Ieropoulos, I. Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells. Bioresour. Technol. 118, 615–618 (2012).

    Article  Google Scholar 

  54. Sleutels, T. H. J. A., Hamelers, H. V. M., Rozendal, R. A. & Buisman, C. J. N. Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Int. J. Hydrog. Energy 34, 3612–3620 (2009).

    Article  ADS  Google Scholar 

  55. Paquete, C. M., Rosenbaum, M. A., Bañeras, L., Rotaru, A. E. & Puig, S. Let’s chat: communication between electroactive microorganisms. Bioresour. Technol. 347, 126705 (2022).

    Article  Google Scholar 

  56. Gu, T., Wang, D., Lekbach, Y. & Xu, D. Extracellular electron transfer in microbial biocorrosion. Curr. Opin. Electrochem. 29, 100763 (2021).

    Article  Google Scholar 

  57. Naradasu, D., Miran, W., Sakamoto, M. & Okamoto, A. Isolation and characterization of human gut bacteria capable of extracellular electron transport by electrochemical techniques. Front. Microbiol. 10, 431549 (2019). Showcasing the omnipresence of electroactive microorganisms through isolation from the human gut microbiome.

    Google Scholar 

  58. Schwab, L., Rago, L., Koch, C. & Harnisch, F. Identification of Clostridium cochlearium as an electroactive microorganism from the mouse gut microbiome. Bioelectrochemistry 130, 107334 (2019).

    Article  Google Scholar 

  59. Dong, M., Nielsen, L. P., Yang, S., Klausen, L. H. & Xu, M. Cable bacteria: widespread filamentous electroactive microorganisms protecting environments. Trends Microbiol. https://doi.org/10.1016/j.tim.2023.12.001 (2023).

  60. Fu, T. et al. Bioinspired bio-voltage memristors. Nat. Commun. 11, 1861 (2020).

    Article  ADS  Google Scholar 

  61. Li, Z. et al. Bacteria-based AND logic gate: a decision-making and self-powered biosensor. Chem. Commun. 47, 3060–3062 (2011).

    Article  Google Scholar 

  62. Digel, L. et al. Cable bacteria skeletons as catalytically active electrodes. Angew. Chem. Int. Ed. 63, e202312647 (2024).

    Article  Google Scholar 

  63. Chatterjee, P., Dessì, P., Kokko, M., Lakaniemi, A. M. & Lens, P. Selective enrichment of biocatalysts for bioelectrochemical systems: a critical review. Renew. Sustain. Energy Rev. 109, 10–23 (2019).

    Article  Google Scholar 

  64. Singh, R., Chaudhary, S., Yadav, S. & Patil, S. A. Protocol for bioelectrochemical enrichment, cultivation, and characterization of extreme electroactive microorganisms. STAR Protoc. 3, 101114 (2022).

    Article  Google Scholar 

  65. Pillot, G. et al. Specific enrichment of hyperthermophilic electroactive Archaea from deep-sea hydrothermal vent on electrically conductive support. Bioresour. Technol. 259, 304–311 (2018).

    Article  Google Scholar 

  66. Aiyer, K. & Doyle, L. E. Capturing the signal of weak electricigens: a worthy endeavour. Trends Biotechnol. 40, 564–575 (2022).

    Article  Google Scholar 

  67. Schröder, U. Discover the possibilities: microbial bioelectrochemical systems and the revival of a 100-year-old discovery. J. Solid State Electrochem. 15, 1481–1486 (2011).

    Article  Google Scholar 

  68. Aiken, D. C., Curtis, T. P. & Heidrich, E. S. Avenues to the financial viability of microbial electrolysis cells [MEC] for domestic wastewater treatment and hydrogen production. Int. J. Hydrog. Energy 44, 2426–2434 (2019).

    Article  ADS  Google Scholar 

  69. Sleutels, T. H. J. A., ter Heijne, A., Buisman, C. J. N. & Hamelers, H. V. M. Bioelectrochemical systems: an outlook for practical applications. ChemSusChem 5, 1012–1019 (2012).

    Article  Google Scholar 

  70. Kretzschmar, J., Koch, C., Liebetrau, J., Mertig, M. & Harnisch, F. Electroactive biofilms as sensor for volatile fatty acids: cross sensitivity, response dynamics, latency and stability. Sens. Actuators B Chem. 241, 466–472 (2017).

    Article  ADS  Google Scholar 

  71. Spurr, M. W. A., Yu, E. H., Scott, K. & Head, I. M. Extending the dynamic range of biochemical oxygen demand sensing with multi-stage microbial fuel cells. Environ. Sci. Water Res. Technol. 4, 2029–2040 (2018).

    Article  Google Scholar 

  72. Kumar, T., Naik, S. & Jujjavarappu, S. E. A critical review on early-warning electrochemical system on microbial fuel cell-based biosensor for on-site water quality monitoring. Chemosphere 291, 133098 (2022).

    Article  Google Scholar 

  73. Stein, N. E., Hamelers, H. V. M. & Buisman, C. N. J. Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions. Bioelectrochemistry 78, 87–91 (2010).

    Article  Google Scholar 

  74. Geppert, F. et al. Bioelectrochemical power-to-gas: state of the art and future perspectives. Trends Biotechnol. 34, 879–894 (2016).

    Article  Google Scholar 

  75. Flynn, J. M., Ross, D. E., Hunt, K. A., Bond, D. R. & Gralnick, J. A. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. mBio 1, e00190-10 (2010).

    Article  Google Scholar 

  76. Virdis, B. et al. Electro-fermentation: sustainable bioproductions steered by electricity. Biotechnol. Adv. 59, 107950 (2022).

    Article  Google Scholar 

  77. Vassilev, I., Averesch, N. J. H., Ledezma, P. & Kokko, M. Anodic electro-fermentation: empowering anaerobic production processes via anodic respiration. Biotechnol. Adv. 48, 107728 (2021).

    Article  Google Scholar 

  78. Sturm-Richter, K. et al. Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. Bioresour. Technol. 186, 89–96 (2015).

    Article  Google Scholar 

  79. Moscoviz, R., Toledo-Alarcón, J., Trably, E. & Bernet, N. Electro-fermentation: how to drive fermentation using electrochemical systems. Trends Biotechnol. 34, 856–865 (2016). To the best of our knowledge, this is the first definition of electrofermentation, and so it is a must-read for all those endeavouring to investigate this exciting field.

    Article  Google Scholar 

  80. Rodríguez Arredondo, M. et al. Bioelectrochemical systems for nitrogen removal and recovery from wastewater. Environ. Sci. Water Res. Technol. 1, 22–33 (2015).

    Article  Google Scholar 

  81. Wu, X. & Modin, O. Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor. Bioresour. Technol. 146, 530–536 (2013).

    Article  Google Scholar 

  82. Galeano, M. B. et al. Bioelectrochemical ammonium recovery from wastewater: a review. Chem. Eng. J. 472, 144855 (2023).

    Article  Google Scholar 

  83. Barbosa, S. G. et al. Investigating bacterial community changes and organic substrate degradation in microbial fuel cells operating on real human urine. Environ. Sci. Water Res. Technol. 3, 897–904 (2017).

    Article  Google Scholar 

  84. Rodríguez Arredondo, M., Kuntke, P., ter Heijne, A. & Buisman, C. J. The concept of load ratio applied to bioelectrochemical systems for ammonia recovery. J. Chem. Technol. Biotechnol. 94, 2055–2061 (2019).

    Article  Google Scholar 

  85. Ieropoulos, I., Greenman, J. & Melhuish, C. Urine utilisation by microbial fuel cells; energy fuel for the future. Phys. Chem. Chem. Phys. 14, 94–98 (2012).

    Article  Google Scholar 

  86. Kelly, P. T. & He, Z. Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour. Technol. 153, 351–360 (2014).

    Article  Google Scholar 

  87. Heijne, A. T. et al. Copper recovery combined with electricity production in a microbial fuel cell. Environ. Sci. Technol. 44, 4376–4381 (2010).

    Article  ADS  Google Scholar 

  88. Yang, K. et al. Bioelectrochemical degradation of monoaromatic compounds: current advances and challenges. J. Hazard. Mater. 398, 122892 (2020).

    Article  Google Scholar 

  89. Vijay, A., Khandelwal, A., Chhabra, M. & Vincent, T. Microbial fuel cell for simultaneous removal of uranium (VI) and nitrate. Chem. Eng. J. 388, 124157 (2020).

    Article  Google Scholar 

  90. Elzinga, M. et al. Microbial reduction of organosulfur compounds at cathodes in bioelectrochemical systems. Environ. Sci. Ecotechnol. 1, 100009 (2020).

    Article  Google Scholar 

  91. Sulonen, M. L. K., Kokko, M. E., Lakaniemi, A. M. & Puhakka, J. A. Electricity generation from tetrathionate in microbial fuel cells by acidophiles. J. Hazard. Mater. 284, 182–189 (2015).

    Article  Google Scholar 

  92. Wang, H., Heil, D., Ren, Z. J. & Xu, P. Removal and fate of trace organic compounds in microbial fuel cells. Chemosphere 125, 94–101 (2015).

    Article  ADS  Google Scholar 

  93. Wang, H., Luo, H., Fallgren, P. H., Jin, S. & Ren, Z. J. Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol. Adv. 33, 317–334 (2015).

    Article  Google Scholar 

  94. Leicester, D. D., Settle, S., McCann, C. M. & Heidrich, E. S. Investigating variability in microbial fuel cells. Appl. Environ. Microbiol. 89, e0218122 (2023).

    Article  Google Scholar 

  95. Hansen, S. H. et al. Machine-assisted cultivation and analysis of biofilms. Sci. Rep. 9, 8933 (2019).

    Article  ADS  Google Scholar 

  96. Sportelli, M. C., Kranz, C., Mizaikoff, B. & Cioffi, N. Recent advances on the spectroscopic characterization of microbial biofilms: a critical review. Anal. Chim. Acta 1195, 339433 (2022).

    Article  Google Scholar 

  97. Molenaar, S. D. et al. In situ biofilm quantification in bioelectrochemical systems by using optical coherence tomography. ChemSusChem 11, 2171–2178 (2018).

    Article  Google Scholar 

  98. Pereira, J. et al. The effect of intermittent anode potential regimes on the morphology and extracellular matrix composition of electro-active bacteria. Biofilm 4, 100064 (2022).

    Article  Google Scholar 

  99. Guo, K. et al. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ. Sci. Technol. 47, 7563–7570 (2013).

    Article  ADS  Google Scholar 

  100. Pereira, J. et al. Starvation combined with constant anode potential triggers intracellular electron storage in electro-active biofilms. Water Res. 242, 120278 (2023).

    Article  Google Scholar 

  101. Caizán-Juanarena, L. et al. 3D biofilm visualization and quantification on granular bioanodes with magnetic resonance imaging. Water Res. 167, 115059 (2019).

    Article  Google Scholar 

  102. Häuser, L. et al. In vivo characterization of electroactive biofilms inside porous electrodes with MR Imaging. RSC Adv. 12, 17784–17793 (2022).

    Article  ADS  Google Scholar 

  103. de Rink, R. et al. Continuous electron shuttling by sulfide oxidizing bacteria as a novel strategy to produce electric current. J. Hazard. Mater. 424, 127358 (2022).

    Article  Google Scholar 

  104. Winkelhorst, M., Cabau-Peinado, O., Straathof, A. J. J. & Jourdin, L. Biomass-specific rates as key performance indicators: a nitrogen balancing method for biofilm-based electrochemical conversion. Front. Bioeng. Biotechnol. 11, 1096086 (2023).

    Article  Google Scholar 

  105. Rowe, A. R. et al. Identification of a pathway for electron uptake in Shewanella oneidensis. Commun. Biol. 4, 957 (2021).

    Article  Google Scholar 

  106. Flemming, H. C. et al. The biofilm matrix: multitasking in a shared space. Nat. Rev. Microbiol. 21, 70–86 (2023).

    Article  Google Scholar 

  107. Seneviratne, C. J. et al. Multi-omics tools for studying microbial biofilms: current perspectives and future directions. Crit. Rev. Microbiol. 46, 759–778 (2020).

    Article  Google Scholar 

  108. Pereira, J., de Nooy, S., Sleutels, T. & ter Heijne, A. Opportunities for visual techniques to determine characteristics and limitations of electro-active biofilms. Biotechnol. Adv. 60, 108011 (2022).

    Article  Google Scholar 

  109. Picioreanu, C., Head, I. M., Katuri, K. P., van Loosdrecht, M. C. M. & Scott, K. A computational model for biofilm-based microbial fuel cells. Water Res. 41, 2921–2940 (2007).

    Article  Google Scholar 

  110. Marcus, A. K., Torres, C. I. & Rittmann, B. E. Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol. Bioeng. 98, 1171–1182 (2007).

    Article  Google Scholar 

  111. Dykstra, J. E., Biesheuvel, P. M., Bruning, H. & ter Heijne, A. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems. Phys. Rev. E 90, 013302 (2014).

    Article  ADS  Google Scholar 

  112. Korth, B., Rosa, L. F. M., Harnisch, F. & Picioreanu, C. A framework for modeling electroactive microbial biofilms performing direct electron transfer. Bioelectrochemistry 106, 194–206 (2015).

    Article  Google Scholar 

  113. Jiang, J. et al. Scale-up and techno-economic analysis of microbial electrolysis cells for hydrogen production from wastewater. Water Res. 241, 120139 (2023).

    Article  ADS  Google Scholar 

  114. Santoro, C. et al. How comparable are microbial electrochemical systems around the globe? An electrochemical and microbiological cross-laboratory study. ChemSusChem 14, 2313–2330 (2021). Unique ring study in different laboratories to study the reproducibility of experimental results.

    Article  Google Scholar 

  115. Shi, L. et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14, 651–662 (2016).

    Article  Google Scholar 

  116. Rosenbaum, M., Aulenta, F., Villano, M. & Angenent, L. T. Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour. Technol. 102, 324–333 (2011).

    Article  Google Scholar 

  117. Tremblay, P. L., Angenent, L. T. & Zhang, T. Extracellular electron uptake: among autotrophs and mediated by surfaces. Trends Biotechnol. 35, 360–371 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank R. Linssen for creating the initial artwork and J. Pereira for assistance in drafting an initial version of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Annemiek Ter Heijne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks John Greenman, Makarand Ghangrekar, Santosh Kumar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Chronoamperometry

An electrochemical method in which a potential is applied to the working electrode (versus the reference electrode), and the resulting current is measured as function of time.

Chronopotentiometry

An electrochemical method in which a current is applied between anode and cathode, and the resulting potential (of the anode or cathode versus the reference electrode) is measured as function of time.

Coulombic efficiency

The part of electrons from a converted substrate that ends up as electric charge (for anodes), or the part of electrons from electric charge that is converted to the (desired) product(s) (for cathodes).

Cyclic voltammetry

(CV). Electrochemical method in which the potential of the working electrode is changed (versus the reference electrode) from an initial value to an end value, and back to the initial value. Such a cycle is typically repeated several times. The resulting current is measured, and information can be gained on the formal potential of electron transfer processes.

Electroactive microorganisms

Microorganisms that can exchange electrons with an electrode. They can either donate electrons to an anode or accept electrons from a cathode.

Energy efficiency

Ratio between the energy harvested in the form of electricity and the energy supplied in the form of substrate (for fuel cell mode), or ratio between the energy in the desired product and the energy supplied in the form of electricity (for electrolysis cell mode).

Extracellular electron transfer

(EET). Electron transfer to solid surfaces that are located outside the microbial cell. EET typically occurs through extracellular charge carriers (for example, cytochromes and flavins) located on the outer cell membrane or via soluble compounds (such as redox shuttles) like phenazines or flavins.

Microbial electrochemical technologies

(METs). Technologies based on the interfacing of microbial and electrochemical conversions. Primary METs are based on the principle that microorganisms perform extracellular electron transfer for which they form biofilms at the anode or cathode.

Microbial electrolysis cell

A type of microbial electrochemical technology that involves coupling a bioanode, which converts organic or inorganic matter, with a thermodynamically unfavourable cathodic reaction, requiring electric power.

Microbial electrosynthesis

The synthesis of a desired product by a microbial electrochemical technology (MET). In a narrower sense, a type of MET in which the reaction of the cathode is the conversion of CO2 to organic products, for example formate or acetate, catalysed by microorganisms performing extracellular electron transfer.

Microbial fuel cell

A type of microbial electrochemical technology that involves coupling a bioanode, which converts organic or inorganic matter, with a thermodynamically favourable cathodic reaction, resulting in the harvesting of electric power.

Polarization curve

A graph in which the potential of the working electrode (versus the reference electrode) is shown as a function of the current. Information can be gained on the losses (overpotentials) that occur at the electrode and how these depend on the rate (current).

Voltage efficiency

Ratio between actual cell voltage and theoretical (equilibrium) cell voltage (for fuel-cell mode), or ratio between theoretical (equilibrium) cell voltage and applied cell voltage (for electrolysis cell mode).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ter Heijne, A., Harnisch, F. Microbial electrodes. Nat Rev Methods Primers 4, 60 (2024). https://doi.org/10.1038/s43586-024-00332-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00332-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research