Abstract
Tip-enhanced Raman scattering (TERS) is one of the few methods to access the molecular composition and structure of surfaces with extreme lateral and depth resolution, down to the nanometre scale and beyond. This Primer examines the underlying physical principles driving signal enhancement and lateral resolution of TERS, laying the foundation for both theoretical understanding and practical applications. Addressing critical factors such as reproducibility, averaging and general limitations, we delve into the nuances of TERS experiments. Various TERS modifications are introduced, highlighting diverse optical geometries and tip feedback schemes tailored to the specific experimental needs. State-of-the-art TERS studies are showcased to illustrate its versatility, encompassing structural analysis of biomolecules, nanoscale investigation of chemical reactivity and exploration of the intrinsic physical properties of 2D materials. These TERS applications serve as a comprehensive overview of current advancements in the field, encapsulating the breadth of TERS experiments.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3132 (2000).
Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000).
Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).
Domke, K. F., Zhang, D. & Pettinger, B. Toward Raman fingerprints of single dye molecules at atomically smooth Au(111). J. Am. Chem. Soc. 128, 14721–14727 (2006).
Neacsu, C. C., Dreyer, J., Behr, N. & Raschke, M. B. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys. Rev. B 73, 193406 (2006).
Zhang, W., Yeo, B. S., Schmid, T. & Zenobi, R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111, 1733–1738 (2007).
Richard-Lacroix, M., Zhang, Y., Dong, Z. & Deckert, V. Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception. Chem. Soc. Rev. 46, 3922–3944 (2017).
Hartschuh, A., Sánchez, E. J., Xie, X. S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).
Chen, C., Hayazawa, N. & Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5, 3312 (2014).
Anderson, N., Hartschuh, A. & Novotny, L. Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. Nano Lett. 7, 577–582 (2007).
Anderson, N., Hartschuh, A., Cronin, S. & Novotny, L. Nanoscale vibrational analysis of single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 2533–2537 (2005).
Liao, M. et al. Tip-enhanced Raman spectroscopic imaging of individual carbon nanotubes with subnanometer resolution. Nano Lett. 16, 4040–4046 (2016).
Yano, T.-A. et al. Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes. Nat. Commun. 4, 2592 (2013).
Schultz, J. F. & Jiang, N. Characterizations of two-dimensional materials with cryogenic ultrahigh vacuum near-field optical microscopy in the visible range. J. Vac. Sci. Technol. A 40, 40801 (2022). This review article discusses the technical challenges and advantages of cryogenic UHV TERS and STM-induced luminescence.
Ren, B., Picardi, G., Pettinger, B., Schuster, R. & Ertl, G. Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces. Angew. Chem. Int. Ed. 44, 139–142 (2005).
Wang, X. et al. Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips. Appl. Phys. Lett. 91, 101105 (2007).
Chiang, N. et al. Conformational contrast of surface-mediated molecular switches yields Ångstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopy. Nano Lett. 16, 7774–7778 (2016).
Braun, K. et al. Probing bias-induced electron density shifts in metal–molecule interfaces via tip-enhanced Raman scattering. J. Am. Chem. Soc. 143, 1816–1821 (2021).
Zhang, D., Domke, K. F. & Pettinger, B. Tip-enhanced Raman spectroscopic studies of the hydrogen bonding between adenine and thymine adsorbed on Au (111). ChemPhysChem 11, 1662–1665 (2010).
Wang, X. et al. Revealing intermolecular interaction and surface restructuring of an aromatic thiol assembling on Au(111) by tip-enhanced Raman spectroscopy. Anal. Chem. 88, 915–921 (2016).
Pandey, Y., Kumar, N., Goubert, G. & Zenobi, R. Nanoscale chemical imaging of supported lipid monolayers using tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 60, 19041–19046 (2021).
Jiang, N. et al. Nanoscale chemical imaging of a dynamic molecular phase boundary with ultrahigh vacuum tip-enhanced Raman spectroscopy. Nano Lett. 16, 3898–3904 (2016).
Kurouski, D., Deckert-Gaudig, T., Deckert, V. & Lednev, I. K. Structural characterization of insulin fibril surfaces using tip enhanced Raman spectroscopy (TERS). Biophys. J. 104, 49A (2014).
Deckert-Gaudig, T. & Deckert, V. High resolution spectroscopy reveals fibrillation inhibition pathways of insulin. Sci. Rep. 6, 39622 (2016).
Krasnoslobodtsev, A., Deckert-Gaudig, T., Zhang, Y., Deckert, V. & Lyubchenko, Y. L. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and tip-enhanced Raman scattering studies. Ultramicroscopy 165, 26–33 (2016).
Paulite, M. et al. Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments. ACS Nano 7, 911–920 (2013).
Lipiec, E., Perez-Guaita, D., Kaderli, J., Wood, B. R. & Zenobi, R. Direct nanospectroscopic verification of the amyloid aggregation pathway. Angew. Chem. Int. Ed. 57, 8519–8524 (2018).
Talaga, D. et al. Total internal reflection tip-enhanced Raman spectroscopy of tau fibrils. J. Phys. Chem. B 126, 5024–5032 (2022).
Bonhommeau, S., Talaga, D., Hunel, J., Cullin, C. & Lecomte, S. Tip-enhanced Raman spectroscopy to distinguish toxic oligomers from Aβ1–42 fibrils at the nanometer scale. Angew. Chem. Int. Ed. 56, 1771–1774 (2017).
D’Andrea, C. et al. Nanoscale discrimination between toxic and nontoxic protein misfolded oligomers with tip-enhanced Raman spectroscopy. Small 14, 1800890 (2018).
vandenAkker, C. et al. Nanoscale heterogeneity of the molecular structure of individual hIAPP amyloid fibrils revealed with tip-enhanced Raman spectroscopy. Small 11, 4131–4139 (2015).
Yeo, B.-S., Amstad, E., Schmid, T., Stadler, J. & Zenobi, R. Nanoscale probing of a polymer-blend thin film with tip-enhanced Raman spectroscopy. Small 5, 952–960 (2009).
Xue, L. et al. High-resolution chemical identification of polymer blend thin films using tip-enhanced Raman mapping. Macromolecules 44, 2852–2858 (2011).
Agapov, R. L., Scherger, J. D., Sokolov, A. P. & Foster, M. D. Identification of individual isotopes in a polymer blend using tip enhanced Raman spectroscopy. J. Raman Spectrosc. 46, 447–450 (2015).
Höppener, C., Elter, J. K., Schacher, F. H. & Deckert, V. Inside block copolymer micelles — tracing interfacial influences on crosslinking efficiency in nanoscale confined spaces. Small 19, 2206451 (2023).
Höppener, C., Schacher, F. H. & Deckert, V. Multimodal characterization of resin embedded and sliced polymer nanoparticles by means of tip-enhanced Raman spectroscopy and force-distance curve based atomic force microscopy. Small 112, 1907418 (2020).
van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7, 583–586 (2012).
Sun, M., Zhang, Z., Zheng, H. & Xu, H. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Sci. Rep. 2, 647 (2012).
Pfisterer, J. H. K., Baghernejad, M., Giuzio, G. & Domke, K. F. Reactivity mapping of nanoscale defect chemistry under electrochemical reaction conditions. Nat. Commun. 10, 5702 (2019).
Zhong, J.-H. et al. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat. Nanotechnol. 12, 132–136 (2017).
Shao, F. et al. In-situ nanospectroscopic imaging of plasmon-induced two-dimensional [4+4]-cycloaddition polymerization on Au(111). Nat. Commun. 12, 4557 (2021).
Mahapatra, S. et al. Localized surface plasmon controlled chemistry at and beyond the nanoscale. Chem. Phys. Rev. 4, 021301 (2023).
Trautmann, S. et al. A classical description of subnanometer resolution by atomic features in metallic structures. Nanoscale 9, 391–401 (2017).
Jakob, L. A. et al. Giant optomechanical spring effect in plasmonic nano- and picocavities probed by surface-enhanced Raman scattering. Nat. Commun. 14, 3291 (2023).
García de Abajo, F. J. & Howie, A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 65, 115418 (2002).
Hohenester, U. & Trügler, A. MNPBEM — a Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 183, 370–381 (2012).
Cvitkovic, A., Ocelic, N., Aizpurua, J., Guckenberger, R. & Hillenbrand, R. Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap. Phys. Rev. Lett. 97, 060801 (2006).
Barbry, M. et al. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. Nano Lett. 15, 3410–3419 (2015).
Schmidt, M. K., Esteban, R., González-Tudela, A., Giedke, G. & Aizpurua, J. Quantum mechanical description of Raman scattering from molecules in plasmonic cavities. ACS Nano 10, 6291–6298 (2016).
Baumberg, J. J. Picocavities: a primer. Nano Lett. 22, 5859–5865 (2022).
Benz, F. et al. Single-molecule optomechanics in “picocavities”. Science 354, 726–729 (2016).
Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).
Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–82 (2019).
Jiang, S. et al. Subnanometer-resolved chemical imaging via multivariate analysis of tip-enhanced Raman maps. Light Sci. Appl. 6, e17098 (2017).
Kong, F.-F. et al. Probing intramolecular vibronic coupling through vibronic-state imaging. Nat. Commun. 12, 1280 (2021).
Hao, E. & Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366 (2003).
Zou, S., Janel, N. & Schatz, G. C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120, 10871–10875 (2004).
Gieseking, R. L., Ratner, M. A. & Schatz, G. C. Semiempirical modeling of Ag nanoclusters: new parameters for optical property studies enable determination of double excitation contributions to plasmonic excitation. J. Phys. Chem. A 120, 4542–4549 (2016).
Ding, W., Hsu, L.-Y., Heaps, C. W. & Schatz, G. C. Plasmon-coupled resonance energy transfer II: exploring the peaks and dips in the electromagnetic coupling factor. J. Phys. Chem. C 122, 22650–22659 (2018).
Payton, J. L., Morton, S. M., Moore, J. E. & Jensen, L. A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy. J. Chem. Phys. 136, 214103 (2012).
Payton, J. L., Morton, S. M., Moore, J. E. & Jensen, L. A hybrid atomistic electrodynamics — quantum mechanical approach for simulating surface-enhanced Raman scattering. Acc. Chem. Res. 47, 88–99 (2014).
Hu, Z., Chulhai, D. V. & Jensen, L. Simulating surface-enhanced hyper-Raman scattering using atomistic electrodynamics-quantum mechanical models. J. Chem. Theory Comput. 12, 5968–5978 (2016).
Liu, P., Chulhai, D. V. & Jensen, L. Single-molecule imaging using atomistic near-field tip-enhanced Raman spectroscopy. ACS Nano 11, 5094–5102 (2017).
Chen, X., Liu, P., Hu, Z. & Jensen, L. High-resolution tip-enhanced Raman scattering probes sub-molecular density changes. Nat. Commun. 10, 2567 (2019). This research article introduces a theory adopting the concept of distributed polarizability density (namely, locally integrated Raman polarizability density (LIRPD)) to show that single-molecule TERS images can be explained by local sub-molecular density changes induced by extremely confined near-field interaction, and that these determine the obtainable TERS resolution and affect the Raman selection rules.
Schmidt, S. et al. Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy. Opt. Express 24, 4128–4142 (2016).
Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).
Latorre, F. et al. Spatial resolution of tip-enhanced Raman spectroscopy — DFT assessment of the chemical effect. Nanoscale 8, 10229–10239 (2016).
Rodriguez, R. D. et al. Chemical enhancement vs molecule–substrate geometry in plasmon-enhanced spectroscopy. ACS Photonics 8, 2243–2255 (2021).
Fiederling, K., Kupfer, S. & Gräfe, S. Are charged tips driving TERS-resolution? A full quantum chemical approach. J. Chem. Phys. 154, 034106 (2021).
Fiederling, K. et al. The chemical effect goes resonant — a full quantum mechanical approach on TERS. Nanoscale 12, 6346–6359 (2020). This research article presents a theoretical study of a tin(II) phthalocyanine molecule in the presence of a single silver atom utilizing a full quantum mechanical description to reveal unique non-resonant and resonant chemical tip–molecule interactions, and the research also demonstrates that these lead to alter TERS spectra and contribute to subnanometre TERS resolution.
Li, J., Li, X., Zhai, H.-J. & Wang, L.-S. Au20: a tetrahedral cluster. Science 299, 864–867 (2003).
Zhao, Jensen, L. & Schatz, G. C. Pyridine–Ag20 cluster: a model system for studying surface-enhanced Raman scattering. J. Am. Chem. Soc. 128, 2911–2919 (2006).
Duan, S. et al. Theoretical modeling of plasmon-enhanced Raman images of a single molecule with subnanometer resolution. J. Am. Chem. Soc. 137, 9515–9518 (2015).
Duan, S., Tian, G. & Luo, Y. Theory for modeling of high resolution resonant and nonresonant Raman images. J. Chem. Theory Comput. 12, 4986–4995 (2016).
Duan, S., Xie, Z., Tian, G. & Luo, Y. Effects of plasmon modes on resonant Raman images of a single molecule. J. Phys. Chem. Lett. 11, 407–411 (2020).
Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).
Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010).
Lin, Q. et al. Optical suppression of energy barriers in single molecule-metal binding. Sci. Adv. 8, eabp9285 (2022).
Griffiths, J. et al. Resolving sub-Angstrom ambient motion through reconstruction from vibrational spectra. Nat. Commun. 12, 6759 (2021).
Fiederling, K. et al. A full quantum mechanical approach assessing the chemical and electromagnetic effect in TERS. ACS Nano 17, 13137–13146 (2023).
Zhang, Y., Dong, Z.-C. & Aizpurua, J. Theoretical treatment of single-molecule scanning Raman picoscopy in strongly inhomogeneous near fields. J. Raman Spectrosc. 52, 296–309 (2021). This paper introduces a simplified calculation procedure to calculate inhomogeneous field-enhanced Raman spectra from a single molecule.
Giovannini, T. et al. Do we really need quantum mechanics to describe plasmonic properties of metal nanostructures? ACS Photonics 9, 3025–3034 (2022).
Bursi, L., Calzolari, A., Corni, S. & Molinari, E. Quantifying the plasmonic character of optical excitations in nanostructures. ACS Photonics 3, 520–525 (2016).
Ropers, C. et al. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett. 7, 2784–2788 (2007).
Berweger, S., Atkin, J. M., Olmon, R. L. & Raschke, M. Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J. Phys. Chem. Lett. 1, 3427–3432 (2010).
Umakoshi, T., Saito, Y. & Verma, P. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy. Nanoscale 8, 5634–5640 (2016).
Lee, D. Y. et al. Adaptive tip-enhanced nano-spectroscopy. Nat. Commun. 12, 3465 (2021).
Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).
Kazemi-Zanjani, N., Vedraine, S. & Lagugne-Labarthet, F. Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light. Opt. Express 21, 25271–25276 (2013).
Mueller, N. S., Juergensen, S., Höflich, K., Reich, S. & Kusch, P. Excitation-tunable tip-enhanced Raman spectroscopy. J. Phys. Chem. C 122, 28273–28279 (2018).
Glebov, A. L. et al. Volume Bragg gratings as ultra-narrow and multiband optical filters. in Proc. SPIE. 8428, Micro-Optics 2012 84280C (2012).
Rapaport, A. et al. Very low frequency Stokes and anti‐Stokes Raman spectra accessible with a single multichannel spectrograph and volume Bragg grating optical filters. AIP Conf. Proc. 1267, 808–809 (2010).
Yano, T.-A., Ichimura, T., Kuwahara, S., Verma, P. & Kawata, S. Subnanometric stabilization of plasmon-enhanced optical microscopy. Nanotechnology 23, 205503 (2012).
Yano, T.-A., Tsuchimoto, Y., Mochizuki, M., Hayashi, T. & Hara, M. Laser scanning-assisted tip-enhanced optical microscopy for robust optical nanospectroscopy. Appl. Spectrosc. 70, 1239–1243 (2016).
Kato, R., Moriyama, T., Umakoshi, T., Yano, T.-A. & Verma, P. Ultrastable tip-enhanced hyperspectral optical nanoimaging for defect analysis of large-sized WS2 layers. Sci. Adv. 8, eabo4021 (2022).
Hayazawa, N., Furusawa, K. & Kawata, S. Nanometric locking of the tight focus for optical microscopy and tip-enhanced microscopy. Nanotechnology 23, 465203 (2012).
Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).
Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982).
Cappella, B. & Dietler, G. Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1–104 (1999).
Karrai, K. & Tiemann, I. Interfacial shear force microscopy. Phys. Rev. B 62, 13174–13181 (2000).
Hansma, P. K. et al. Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64, 1738–1740 (1994).
Dufrêne, Y. F. et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 12, 295–307 (2017).
Xu, D., Liang, B., Xu, Y. & Liu, M. Recent advances in tip-enhanced Raman spectroscopy probe designs. Nano Res. 16, 5555–5571 (2023).
Pettinger, B., Picardi, G., Schuster, R. & Ertl, G. Surface enhanced Raman spectroscopy: towards single molecule spectroscopy. Electrochemistry 68, 942–949 (2000).
Yang, B., Kazuma, E., Yokota, Y. & Kim, Y. Fabrication of sharp gold tips by three-electrode electrochemical etching with high controllability and reproducibility. J. Phys. Chem. C 122, 16950–16955 (2018).
Taguchi, A., Yu, J., Verma, P. & Kawata, S. Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy. Nanoscale 7, 17424–17433 (2015). In this article, the authors theoretically and experimentally investigate the influence of multiple metal grains on the electromagnetic field enhancement.
Vasconcelos, T. L. et al. Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes. ACS Nano 9, 6297–6304 (2015).
Vasconcelos, T. L. et al. Plasmon-tunable tip pyramids: monopole nanoantennas for near-field scanning optical microscopy. Adv. Optical Mater. 6, 1800528 (2018).
Carnegie, C. et al. Room-temperature optical picocavities below 1 nm3 accessing single-atom geometries. J. Phys. Chem. Lett. 9, 7146–7151 (2018). This research article demonstrates the chemistry and dynamics of a single gold adatom, distinguishing atom dynamics in real time, to provide insights into the stability of picocavities under ambient conditions.
Huang, Y.-P. et al. Shell-isolated tip-enhanced Raman and fluorescence spectroscopy. Angew. Chem. Int. Ed. 57, 7523–7527 (2018).
Martín Sabanés, N., Driessen, L. M. A. & Domke, K. F. Versatile side-illumination geometry for tip-enhanced Raman spectroscopy at solid/liquid interfaces. Anal. Chem. 88, 7108–7114 (2016).
Yokota, Y. et al. Systematic assessment of benzenethiol self-assembled monolayers on Au(111) as a standard sample for electrochemical tip-enhanced Raman spectroscopy. J. Phys. Chem. C 123, 2953–2963 (2019).
Chen, X., Goubert, G., Jiang, S. & Van Duyne, R. P. Electrochemical STM tip-enhanced Raman spectroscopy study of electron transfer reactions of covalently tethered chromophores on Au(111). J. Phys. Chem. C 122, 11586–11590 (2018).
Kumar, N., Wondergem, C. S., Wain, A. J. & Weckhuysen, B. M. In situ nanoscale investigation of catalytic reactions in the liquid phase using zirconia-protected tip-enhanced Raman spectroscopy probes. J. Phys. Chem. Lett. 10, 1669–1675 (2019).
Zeng, Z.-C. et al. Electrochemical tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 11928–11931 (2015).
Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Phys. 10, 181–188 (2012).
Kurouski, D., Mattei, M. & Van Duyne, R. Probing redox reactions at the nanoscale with electrochemical tip-enhanced Raman spectroscopy. Nano Lett. 15, 7956–7962 (2015).
Zhang, Z., Deckert-Gaudig, T., Singh, P. & Deckert, V. Single molecule level plasmonic catalysis — a dilution study of p-nitrothiophenol on gold dimers. Chem. Commun. 51, 3069–3072 (2015).
Zhang, Z., Richard-Lacroix, M. & Deckert, V. Plasmon induced polymerization using a TERS approach: a platform for nanostructured 2D/1D material production. Faraday Discuss. 205, 213–226 (2017).
Szczerbiński, J., Metternich, J. B., Goubert, G. & Zenobi, R. How peptides dissociate in plasmonic hot spots. Small 16, 1905197 (2020).
Veres, M., Füle, M., Tóth, S., Koós, M. & Pócsik, I. Surface enhanced Raman scattering (SERS) investigation of amorphous carbon. Diam. Relat. Mater. 13, 1412–1415 (2004).
Yao, X. et al. Targeted suppression of peptide degradation in Ag-based surface-enhanced Raman spectra by depletion of hot carriers. Small 18, 2205080 (2022).
Meng, L., Yang, Z., Chen, J. & Sun, M. Effect of electric field gradient on sub-nanometer spatial resolution of tip-enhanced Raman spectroscopy. Sci. Rep. 5, 9240 (2015).
Sun, M., Zhang, Z., Chen, L., Sheng, S. & Xu, H. Plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy. Adv. Optical Mater. 2, 74–80 (2014).
Cao, Y. et al. Plasmonic gradient and plexcitonic effects in single-molecule tip-enhanced (resonance) Raman spectroscopy. J. Phys. Chem. C 127, 476–489 (2023).
Poliani, E. et al. Breakdown of far-field Raman selection rules by light–plasmon coupling demonstrated by tip-enhanced Raman scattering. J. Phys. Chem. Lett. 8, 5462–5471 (2017).
Deckert-Gaudig, T., Rauls, E. & Deckert, V. Aromatic amino acid monolayers sandwiched between gold and silver: a combined tip-enhanced Raman and theoretical approach. J. Phys. Chem. C 114, 7412–7420 (2010).
Kurouski, D., Postiglione, T., Deckert-Gaudig, T., Deckert, V. & Lednev, I. K. Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens. Analyst 138, 1665–1673 (2013).
Liu, S., Hammud, A., Wolf, M. & Kumagai, T. Atomic point contact Raman spectroscopy of a Si(111)-7 × 7 surface. Nano Lett. 21, 4057–4061 (2021).
Yang, B. et al. Chemical enhancement and quenching in single-molecule tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 62, e202218799 (2023).
Guo, S., Popp, J. & Bocklitz, T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning-based modeling. Nat. Protoc. 16, 5426–5459 (2021).
Gautam, R., Vanga, S., Ariese, F. & Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2, 8 (2015).
Su, W., Kumar, N., Krayev, A. & Chaigneau, M. In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale. Nat. Commun. 9, 2891 (2018). This work introduces multi-parameter microscopy to measure local electronic properties in situ by KPFM.
Deckert-Gaudig, T., Pichot, V., Spitzer, D. & Deckert, V. High-resolution Raman spectroscopy for the nanostructural characterization of explosive nanodiamond precursors. ChemPhysChem 18, 175–178 (2017).
Dou, T., Li, Z., Zhang, J., Evilevitch, A. & Kurouski, D. Nanoscale structural characterization of individual viral particles using atomic force microscopy infrared spectroscopy (AFM-IR) and tip-enhanced Raman spectroscopy (TERS). Anal. Chem. 92, 11297–11304 (2020).
Hermelink, A. et al. Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy. Analyst 142, 1342–1349 (2017).
Huang, S.-C. et al. Electrochemical tip-enhanced Raman spectroscopy: an in situ nanospectroscopy for electrochemistry. Annu. Rev. Phys. Chem. 72, 213–234 (2021). This research article provides a review on electrochemical TERS.
Yokota, Y., Hong, M., Hayazawa, N. & Kim, Y. Electrochemical tip-enhanced Raman spectroscopy for microscopic studies of electrochemical interfaces. Surf. Sci. Rep. 77, 100576 (2022).
Pfisterer, J. H. K. & Domke, K. F. Unfolding the versatile potential of EC-TERS for electrocatalysis. Curr. Opin. Electrochem. 8, 96–102 (2018).
Martín Sabanés, N., Ohto, T., Andrienko, D., Nagata, Y. & Domke, K. F. Electrochemical TERS elucidates potential-induced molecular reorientation of adenine/Au(111). Angew. Chem. Int. Ed. 56, 9796–9801 (2017).
Fiocco, A. et al. Electrochemical tip-enhanced Raman spectroscopy for the elucidation of complex electrochemical reactions. Anal. Chem. 96, 2791–2798 (2024).
Smithe, K. K. H. et al. Nanoscale heterogeneities in monolayer MoSe2 revealed by correlated scanning probe microscopy and tip-enhanced Raman spectroscopy. ACS Appl. Nano Mater. 1, 572–579 (2018).
Bonhommeau, S., Cooney, G. S. & Huang, Y. Nanoscale chemical characterization of biomolecules using tip-enhanced Raman spectroscopy. Chem. Soc. Rev. 51, 2416–2430 (2022). This review article focuses specifically on TERS applications related to biomatter, and it critically discusses challenges related to this field.
Talaga, D. et al. PIP2 phospholipid-induced aggregation of tau filaments probed by tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 57, 15738–15742 (2018).
Lipiec, E. et al. Nanoscale hyperspectral imaging of amyloid secondary structures in liquid. Angew. Chem. Int. Ed. 60, 4545–4550 (2021). This recent TERS study comprises the successful integration of liquid TERS for probing the secondary structure of amyloid fibrils in situ.
Wood, B. R. et al. Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte. Nano Lett. 11, 1868–1873 (2011).
Mrđenović, D., Ge, W., Kumar, N. & Zenobi, R. Nanoscale chemical imaging of human cell membranes using tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 61, e202210288 (2022).
Tabatabaei, M., Caetano, F. A., Pashee, F., Ferguson, S. S. G. & Lagugné-Labarthet, F. Tip-enhanced Raman spectroscopy of amyloid β at neuronal spines. Analyst 142, 4415–4421 (2017).
Stepanenko, T. et al. Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) in label-free characterization of erythrocyte membranes and extracellular vesicles at the nano-scale and molecular level. Analyst 149, 778–788 (2024).
Alexander, K. D. & Schultz, Z. D. Tip-enhanced Raman detection of antibody conjugated nanoparticles on cellular membranes. Anal. Chem. 84, 7408–7414 (2012).
Xiao, L., Wang, H. & Schultz, Z. D. Selective detection of RGD-integrin binding in cancer cells using tip enhanced Raman scattering microscopy. Anal. Chem. 88, 6547–6553 (2016).
Domke, K., Zhang, D. & Pettinger, B. Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au (111). J. Am. Chem. Soc. 129, 6708–6709 (2007).
Watanabe, H., Ishida, Y., Hayazawa, N., Inouye, Y. & Kawata, S. Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule. Phys. Rev. B 69, 155418 (2004).
Bailo, E. & Deckert, V. Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angew. Chem. Int. Ed. 47, 1658–1661 (2008).
Lin, X. et al. Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering. Preprint at https://doi.org/10.48550/arXiv.1604.06598 (2016).
Hennemann, L. E., Meixner, A. J. & Zhang, D. Surface- and tip-enhanced Raman spectroscopy of DNA. Spectroscopy 24, 119–124 (2010).
Treffer, R., Lin, X.-M., Bailo, E., Deckert-Gaudig, T. & Deckert, V. Distinction of nucleobases — a tip-enhanced Raman spectroscopy approach. Beilstein J. Nanotechnol. 2, 628–637 (2011).
Najjar, S. et al. Tip-enhanced Raman spectroscopy of combed double-stranded DNA bundles. J. Phys. Chem. C 118, 1174–1181 (2013).
Zhang, R. et al. Distinguishing individual DNA bases in a network by non-resonant tip-enhanced Raman scattering. Angew. Chem. Int. Ed. 56, 5561–5564 (2017).
He, Z. et al. Tip-enhanced Raman imaging of single-stranded DNA with single base resolution. J. Am. Chem. Soc. 141, 753–757 (2019). This TERS study proves subnanometre resolution under ambient conditions by direct nucleic acid sequencing of a phage ssDNA at a step size of 0.5 nm.
He, Z. et al. Resolving the sequence of RNA strands by tip-enhanced Raman spectroscopy. ACS Photonics 8, 424–430 (2021).
Deckert, V. et al. Laser spectroscopic technique for direct identification of a single virus I: FASTER CARS. Proc. Natl Acad. Sci. USA 117, 27820–27824 (2020).
Olschewski, K. et al. A manual and an automatic TERS based virus discrimination. Nanoscale 7, 4545–4552 (2015).
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).
Malard, L. M. et al. Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS. Phys. Chem. Chem. Phys. 23, 23428–23444 (2021).
Rahaman, M. et al. Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy. Nano Lett. 17, 6027–6033 (2017).
Vantasin, S. et al. Tip-enhanced Raman scattering of the local nanostructure of epitaxial graphene grown on 4H-SiC (000\(\bar{1}\)). J. Phys. Chem. C 118, 25809–25815 (2014).
Su, W., Kumar, N., Mignuzzi, S., Crain, J. & Roy, D. Nanoscale mapping of excitonic processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy. Nanoscale 8, 10564–10569 (2016).
Kato, R., Umakoshi, T., Sam, R. T. & Verma, P. Probing nanoscale defects and wrinkles in MoS2 by tip-enhanced Raman spectroscopic imaging. Appl. Phys. Lett. 114, 073105 (2019).
Huang, T.-X. et al. Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nat. Commun. 10, 5544 (2019). This research article demonstrates how TERS is used to probe the unique electronic property of defects in MoS2.
Beams, R., Cançado, L. G., Jorio, A., Vamivakas, A. N. & Novotny, L. Tip-enhanced Raman mapping of local strain in graphene. Nanotechnology 26, 175702 (2015).
Cançado, L. G., Beams, R., Jorio, A. & Novotny, L. Theory of spatial coherence in near-field Raman scattering. Phys. Rev. X 4, 031054 (2014).
Publio, B. C. et al. Inclusion of the sample-tip interaction term in the theory of tip-enhanced Raman spectroscopy. Phys. Rev. B 105, 235414 (2022).
Beams, R., Cançado, L. G., Oh, S.-H., Jorio, A. & Novotny, L. Spatial coherence in near-field Raman scattering. Phys. Rev. Lett. 113, 186101 (2014).
Rabelo, C. et al. Linkage between micro- and nano-Raman spectroscopy of defects in graphene. Phys. Rev. Appl. 14, 024056 (2020).
Alencar, R. S. et al. Probing spatial phonon correlation length in post-transition metal monochalcogenide gas using tip-enhanced Raman spectroscopy. Nano Lett. 19, 7357–7364 (2019).
Nadas, R. B. et al. Spatially coherent tip-enhanced Raman spectroscopy measurements of electron–phonon interaction in a graphene device. Nano Lett. 23, 8827–8832 (2023).
Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004).
Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008).
Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021).
Gadelha, A. C., Vasconcelos, T. L., Cançado, L. G. & Jorio, A. Nano-optical imaging of in-plane homojunctions in graphene and MoS2 van der Waals heterostructures on talc and SiO2. J. Phys. Chem. Lett. 12, 7625–7631 (2021).
Lee, K. S. et al. MicrobioRaman: an open-access web repository for microbiological Raman spectroscopy data. Nat. Microbiol. 9, 1152–1156 (2024).
Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H. & Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).
Stanciu, C., Sackrow, M. & Meixner, A. J. High NA particle- and tip-enhanced nanoscale Raman spectroscopy with a parabolic-mirror microscope. J. Microsc. 229, 247–253 (2008).
Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).
Gramotnev, D. K. & Bozhevolnyi, S. I. Nanofocusing of electromagnetic radiation. Nat. Photonics 8, 13–22 (2014). This review article provides an overview on the physical principles, developments and applications of nanofocusing in plasmonic nanostructures.
Lindquist, N. C., Nagpal, P., Lesuffleur, A., Norris, D. J. & Oh, S.-H. Three-dimensional plasmonic nanofocusing. Nano Lett. 10, 1369–1373 (2010).
Taguchi, K., Umakoshi, T., Inoue, S. & Verma, P. Broadband plasmon nanofocusing: comprehensive study of broadband nanoscale light source. J. Phys. Chem. C 125, 6378–6386 (2021).
Hampson, K. M. et al. Adaptive optics for high-resolution imaging. Nat. Rev. Methods Primers 1, 68 (2021).
Umakoshi, T., Kawashima, K., Moriyama, T., Kato, R. & Verma, P. Tip-enhanced Raman spectroscopy with amplitude-controlled tapping-mode AFM. Sci. Rep. 12, 12776 (2022).
Bartolomeo, G. L., Zhang, Y., Kumar, N. & Zenobi, R. Molecular perturbation effects in AFM-based tip-enhanced Raman spectroscopy: contact versus tapping mode. Anal. Chem. 93, 15358–15364 (2021).
Acknowledgements
V.D. and C.H. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — CRC 1278 PolyTarget, project number 316213987 (project B04) and SFB 1375 (39881677, project C2). S.G. gratefully acknowledges funding from the European Research Council (ERC) under the European’s Horizon 2020 research and innovation programme — QUEM-CHEM (grant number 772676), ‘Time- and space-resolved ultrafast dynamics in molecular plasmonic hybrid systems’ and by the DFG (German Research Foundation) — SFB 1375 (39881677, project A4). A.J. acknowledges support from FAPEMIG (APQ-01860-2229868, RED0008123) and CNPq (307619/2023-0, APQ-04852-23, 421469/2023-4), Brazil. J.A. acknowledges support from grant PID2022-139579NB-I00 of the Spanish Ministry of Science and Innovation and grant number IT 1526-22 from the Department of Education of the Basque Government. C.H. and Z.Z. acknowledge support from the National Natural Science Foundation of China (numbers U22A6005 and 12304426) and the Natural Science Foundation of Shaanxi Province (numbers 2024JC-JCQN-07 and 22JSZ010).
Author information
Authors and Affiliations
Contributions
Introduction (C.H., S.G., S.K., J.A. and V.D.); Experimentation (C.H., H.C., Z.Z. and V.D.); Results (C.H. and V.D.); Applications (C.H., A.J., H.C., Z.Z. and V.D.); Reproducibility and data deposition (C.H. and V.D.); Limitations and optimizations (C.H. and V.D.); Outlook (C.H., J.A., H.C., S.G., A.J., S.K., Z.Z. and V.D.); overview of the Primer (C.H., J.A., H.C., S.G., A.J., S.K., Z.Z. and V.D.).
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Adaptive optics
-
A technical approach to improve the quality of an optical system by reducing the wavefront distortions (increasing the phase matching) imposed by diffractive optical elements, light scattering in thick samples and the variation in the index of refraction along the light path by using deformable mirrors or liquid crystal spatial light modulators.
- Boundary element methods
-
Methods to solve Maxwell’s equation, which relies on the discretization of the surface elements of a configuration, wherein the boundary conditions are applied to each finite element of the elements of the interface.
- Chemical effects
-
Stem from close-range and site-specific interactions between the surface-immobilized sample and the metallic nanoparticle and comprises non-resonant and resonant contributions and charge-transfer phenomena between the sample and the plasmonic nanoparticle.
- Coherence length
-
The distance an electromagnetic wave can travel in a material and keeps its coherence, or maintain its phase.
- Electromagnetic effect
-
Responsible for the locally confined and enhanced electric field and field gradients near the plasmonic particle.
- Finite-difference time-domain methods
-
Grid-based differential numerical methods that allow to solve Maxwell’s equations in an iterative scheme.
- Finite element methods
-
Numerical approaches that can solve partial differential equations by dividing the system into a certain number of smaller subsystems (finite elements).
- Force–volume AFM spectroscopy
-
An advanced imaging atomic force microscopy (AFM) mode enabling a quantification of certain nanomechanical properties (adhesion, stiffness, Young’s modulus, dissipation and viscoelasticity) of a sample by recording entire extend-and-retract force–distance curves for each image pixel.
- GPAW
-
A python implementation of the time-dependent density functional theory approach based on the projector augmented wave method.
- Kohn anomaly
-
An anomaly in the phonon dispersion relation of graphene and metals, which arises from electron–phonon interaction, leading to a failure of the Born–Oppenheimer approximation.
- Picocavity
-
Atomic-scale structure constituted by one or few metallic atoms protruding from the surface, which enables localization of light onto the atomic scale, often phrased as ‘atomic protrusion’.
- Polarizability tensor
-
Describes the induced dipole moment along one direction as a function of the local electric field in any given direction; according to the general selection rules in Raman spectroscopy, a vibration is Raman active only if the polarizability changes along the displacement vector of the specific vibrational normal mode.
- Rayleigh line
-
Corresponds to the peak in a spectrum that arises from elastic scattering of the incident light in a sample, that is, at a frequency or energy corresponding to the incident light.
- Spatial field confinement
-
The ability of a plasmonic nanostructure to convert free propagating radiation into localized energy, that is, the obtained spatial extension of the formed secondary electromagnetic filed at the tip apex.
- Strain solitons
-
Nonlinear quasi-stationary localized strain waves in solids that occur at boundaries of symmetry-broken stacking domains (in the case of graphene, AB and BA stacking domains).
- Synergistic TERS
-
A terminology to summarize comparative approaches pairing tip-enhanced Raman scattering (TERS) as a pivotal method with a secondary, ideally complementary analytical technique.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Höppener, C., Aizpurua, J., Chen, H. et al. Tip-enhanced Raman scattering. Nat Rev Methods Primers 4, 47 (2024). https://doi.org/10.1038/s43586-024-00323-5
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-024-00323-5