Abstract
Resonant inelastic X-ray scattering (RIXS) is a powerful technique that combines spectroscopy and inelastic scattering to probe the electronic structure of materials. RIXS is based on the interaction of X-rays with matter in which the dependence on energy, momentum and polarization is introduced. The RIXS spectra can be approximated as a combination of X-ray absorption and X-ray emission. A 2D RIXS plane can be measured as a function of excitation and emission energies. Using RIXS, collective excitations — such as magnons, phonons, plasmons and orbitons — can be probed in quantum materials, for example, cuprates, nickelates and iridates, with complex low-energy physics and exotic phenomena in energy and momentum space. In addition, RIXS with hard X-rays enables detailed experiments under operando conditions. Spectral broadening owing to short core hole lifetime can be reduced to produce X-ray absorption spectra with high resolution. This Primer gives an overview of RIXS experimentation, data analysis and applications, finishing with a look to the future, where new experimental stations at X-ray free electron lasers promise to revolutionize the understanding of femtosecond processes and non-linear interactions of X-rays with matter.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kunnus, K. et al. Anti-Stokes resonant X-ray Raman scattering for atom specific and excited state selective dynamics. New J. Phys. 18, 103011 (2016).
de Groot, F., Vankó, G. & Glatzel, P. The 1s X-ray absorption pre-edge structures in transition metal oxides. J. Phys. Condens. Matter 21, 104207 (2009).
de Groot, F. M. F. X-ray absorption and dichroism of transition metals and their compounds. J. Electron. Spectros. Relat. Phenom. 67, 529 (1994).
van den Brink, J. & van Veenendaal, M. Theory of indirect resonant inelastic X-ray scattering. J. Phys. Chem. Solids 66, 2145–2149 (2005).
van den Brink, J. & van Veenendaal, M. Correlation functions measured by indirect resonant inelastic X-ray scattering. Europhys. Lett. 73, 121–127 (2006).
Hunault, M. O. J. Y. et al. Direct observation of Cr3+ 3d states in ruby: toward experimental mechanistic evidence of metal chemistry. J. Phys. Chem. A 122, 4399–4413 (2018).
Ghiringhelli, G. et al. SAXES, a high resolution spectrometer for resonant X-ray emission in the 400–1,600 eV energy range. Rev. Sci. Instrum. 77, 113108 (2006). Improvements in resonant inelastic X-ray scattering instruments.
Brookes, N. B. et al. The beamline ID32 at the ESRF for soft X-ray high energy resolution resonant inelastic X-ray scattering and polarisation dependent X-ray absorption spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 903, 175–192 (2018).
Zhou, K. J. et al. 121: an advanced high-resolution resonant inelastic X-ray scattering beamline at diamond light source. J. Synchrotron Radiat. 29, 563–580 (2022).
Dvorak, J., Jarrige, I., Bisogni, V., Coburn, S. & Leonhardt, W. Towards 10 meV resolution: the design of an ultrahigh resolution soft X-ray RIXS spectrometer. Rev. Sci. Instrum. 87, 115109 (2016).
Singh, A. et al. Development of the soft X-ray AGM-AGS RIXS beamline at the Taiwan photon source. J. Synchrotron Radiat. 28, 977–986 (2021).
Braicovich, L. et al. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft X-ray scattering. Rev. Sci. Instrum. 85, 115104 (2014).
Sala, M. M. et al. A high-energy-resolution resonant inelastic X-ray scattering spectrometer at ID20 of the European Synchrotron Radiation Facility. J. Synchrotron Radiat. 25, 580–591 (2018).
Kramers, H. A. & Heisenberg, W. On the dispersal of radiation by atoms. Z. Fur Phys. 31, 681–708 (1925).
Kubo, R. Statistical-mechanical theory of irreversible processes. 1. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570–586 (1957).
Kubo, R., Yokota, M. & Nakajima, S. Statistical-mechanical theory of irreversible processes. 2. Response to thermal disturbance. J. Phys. Soc. Jpn. 12, 1203–1211 (1957).
de Groot, F. & Kotani, A. Core Level Spectroscopy of Solids. Core Level Spectroscopy of Solids (CRC Press, 2008).
Winfried, S. Electron Dynamics by Inelastic X-Ray Scattering (Oxford Univ. Press, 2007).
Schlappa, J. et al. Collective magnetic excitations in the spin ladder Sr14Cu24O41 measured using high-resolution resonant inelastic X-ray scattering. Phys. Rev. Lett. 103, 047401 (2009).
Braicovich, L. et al. Dispersion of magnetic excitations in the cuprate La2CuO4 and CaCuO2 compounds measured using resonant X-ray scattering. Phys. Rev. Lett. 102, 167401 (2009).
Le Tacon, M. et al. Intense paramagnon excitations in a large family of high-temperature superconductors. Nat. Phys. 7, 725–730 (2011).
Kim, J. et al. Magnetic excitation spectra of Sr2IrO4 probed by resonant inelastic X-ray scattering: establishing links to cuprate superconductors. Phys. Rev. Lett. 108, 177003 (2012). Hard X-ray resonant inelastic X-ray scattering experiment on iridates.
Zhou, K.-J. et al. Persistent high-energy spin excitations in iron-pnictide superconductors. Nat. Commun. 4, 1470 (2013).
Haverkort, M. W. Theory of resonant inelastic X-ray scattering by collective magnetic excitations. Phys. Rev. Lett. 105, 167404 (2010).
Glawion, S. et al. Two-spinon and orbital excitations of the spin-Peierls system. Phys. Rev. Lett. 107, 107402 (2011).
Schlappa, J. et al. Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3. Nature 485, 82–85 (2012). Low-energy excitations in cuprates (spinons and orbitons).
Benckiser, E. et al. Orbital superexchange and crystal field simultaneously at play in YVO3: resonant inelastic X-ray scattering at the V L edge and the O K edge. Phys. Rev. B 88, 205115 (2013).
Nomura, T. et al. Resonant inelastic X-ray scattering study of entangled spin-orbital excitations in superconducting PrFeAsO0.7. Phys. Rev. B 94, 035134 (2016).
Wang, R. P. et al. Excitonic dispersion of the intermediate spin state in LaCoO3 revealed by resonant inelastic X-ray scattering. Phys. Rev. B 98, 1–6 (2018).
Moser, S. et al. Electron–phonon coupling in the bulk of anatase TiO2 measured by resonant inelastic X-ray spectroscopy. Phys. Rev. Lett. 115, 096404 (2015).
Ament, L. J. P., van Veenendaal, M. & van den Brink, J. Determining the electron–phonon coupling strength from resonant inelastic X-ray scattering at transition metal L-edges. epl 95, 27008 (2011).
Bieniasz, K., Johnston, S. & Berciu, M. Theory of dispersive optical phonons in resonant inelastic X-ray scattering experiments. Phys. Rev. B 105, L180302 (2022).
Ueda, H. et al. Chiral phonons in quartz probed by X-rays. Nature 618, 946 (2023).
Chaix, L. et al. Dispersive charge density wave excitations in Bi2Sr2CaCu2O8+δ. Nat. Phys. 13, 952 (2017).
da Silva Neto, E. H. et al. Coupling between dynamic magnetic and charge-order correlations in the cuprate superconductor Nd2−xCexCuO4. Phys. Rev. B 98, 161114(R) (2018).
Boschini, F. et al. Dynamic electron correlations with charge order wavelength along all directions in the copper oxide plane. Nat. Commun. 12, 597 (2021).
Tam, C. C. et al. Charge density waves and Fermi surface reconstruction in the clean overdoped cuprate superconductor Tl2Ba2CuO6+δ. Nat. Commun. 13, 570 (2022).
Miao, H. et al. Charge density waves in cuprate superconductors beyond the critical doping. npj Quantum Mater. 6, 31 (2021).
Porter, Z. et al. Spin–orbit excitons and electronic configuration of the 5d4 insulator Sr3Ir2O7F2. Phys. Rev. B 106, 115140 (2022).
Das, L. et al. Spin–orbital excitations in Ca2RuO4 revealed by resonant inelastic X-ray scattering. Phys. Rev. X 8, 011048 (2018).
Hill, J. P. et al. Observation of a 500 meV collective mode in La2−xSrxCuO4 and Nd2CuO4 using resonant inelastic X-ray scattering. Phys. Rev. Lett. 100, 097001 (2008).
Nag, A. et al. Many-body physics of single and double spin-flip excitations in NiO. Phys. Rev. Lett. 124, 067202 (2020).
Li, J. et al. Single- and multimagnon dynamics in antiferromagnetic α-Fe2O3 thin films. Phys. Rev. X 13, 011012 (2023).
Elnaggar, H. et al. Magnetic excitations beyond the single- and double-magnons. Nat. Commun. 14, 2749 (2023).
Betto, D. et al. Multiple-magnon excitations shape the spin spectrum of cuprate parent compounds. Phys. Rev. B 103, 011012 (2021).
Savchenko, V. et al. Vibrational resonant inelastic X-ray scattering in liquid acetic acid: a ruler for molecular chain lengths. Sci. Rep. 11, 4098 (2021).
Pietzsch, A. et al. Cuts through the manifold of molecular H2O potential energy surfaces in liquid water at ambient conditions. Proc. Natl Acad. Sci. USA 119, e2118101119 (2022).
Gel’mukhanov, F. & Agren, H. Resonant X-ray Raman scattering. Phys. Rep. Rev. Sect. Phys. Lett. 312, 87–330 (1999).
Butorin, S. M. et al. Resonant X-ray fluorescence spectroscopy of correlated systems: a probe of charge-transfer excitations. Phys. Rev. Lett. 77, 574–577 (1996).
Luo, J., Trammell, G. T. & Hannon, J. P. Scattering operator for elastic and inelastic resonant X-ray-scattering. Phys. Rev. Lett. 71, 287–290 (1993).
Ament, L. J. P., Ghiringhelli, G., Moretti Sala, M., Braicovich, L. & van den Brink, J. Theoretical demonstration of how the dispersion of magnetic excitations in cuprate compounds can be determined using resonant inelastic X-ray scattering. Phys. Rev. Lett. 103, 117003 (2009).
Haverkort, M. W., Hollmann, N., Krug, I. P. & Tanaka, A. Symmetry analysis of magneto-optical effects: the case of X-ray diffraction and X-ray absorption at the transition metal L2,3 edge. Phys. Rev. B Condens. Matter Mater. Phys. 82, 094403 (2010).
Lu, Y. & Haverkort, M. W. Nonperturbative series expansion of Green’s functions: the anatomy of resonant inelastic X-ray scattering in the doped Hubbard model. Phys. Rev. Lett. 119, 256401 (2017).
Kang, M. et al. Resolving the nature of electronic excitations in resonant inelastic X-ray scattering. Phys. Rev. B 99, 045105 (2019).
Jia, C., Wohlfeld, K., Wang, Y., Moritz, B. & Devereaux, T. P. Using RIXS to uncover elementary charge and spin excitations. Phys. Rev. X 6, 021020 (2016).
Jiménez-Mier, J. et al. Dynamical behavior of X-ray absorption and scattering at the L edge of titanium compounds: experiment and theory. Phys. Rev. B 59, 2649–2658 (1999).
de Groot, F., Sawatzky, G. & Kuiper, P. Local spin-flip spectral distribution obtained by resonant X-ray Raman scattering. Phys. Rev. B Condens. Matter Mater. Phys. 57, 14584–14587 (1998). Prediction of magnetic excitations.
Lee, S., Zhai, H. & Chan, G. K.-L. An ab initio correction vector restricted active space approach to the L-edge XAS and 2p3d RIXS spectra of transition metal complexes. J. Chem. Theory Comput. 19, 7753–7763 (2023).
Werner, P., Johnston, S. & Eckstein, M. Nonequilibrium-DMFT based RIXS investigation of the two-orbital Hubbard model. epl 133, 57005 (2021).
Hariki, A., Winder, M., Uozumi, T. & Kunes, J. LDA plus DMFT approach to resonant inelastic X-ray scattering in correlated materials. Phys. Rev. B 101, 115130 (2020).
Haverkort, M. W. Quanty for core level spectroscopy — excitons, resonances and band excitations in time and frequency domain. J. Phys. Conf. Ser. 712, 12001 (2016).
Wang, S.-X. & Zhu, L.-F. Non-resonant inelastic X-ray scattering spectroscopy: a momentum probe to detect the electronic structures of atoms and molecules. Matter Radiat. Extrem. 5, 054201 (2020).
Schülke, W. Electronic excitations investigated by inelastic X-ray scattering spectroscopy. J. Phys. Condens. Matter 13, 7557–7591 (2001).
Krisch, M. & Sette, F. Inelastic X-ray scattering from phonons. in Light Scattering in Solids IX: Novel Materials and Techniques Vol. 108 (eds Cardona, M. & Merlin, R.) 317–369 (Springer, 2007).
Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007).
Pintschovius, L. Electron–phonon coupling effects explored by inelastic neutron scattering. Phys. Status Sol. B Basic Solid State Phys. 242, 30–50 (2005).
Rossatmignod, J. et al. Investigation of the spin dynamics in YBa2Cu3O6+x by inelastic neutron-scattering. Phys. B 169, 58–65 (1991).
Damascelli, A. Probing the electronic structure of complex systems by ARPES. Phys. Scr. T109, 61–74 (2004).
Cuk, T. et al. A review of electron–phonon coupling seen in the high-Tc superconductors by angle-resolved photoemission studies (ARPES). Phys. Status Sol. B Basic Solid State Phys. 242, 11–29 (2005).
Abanov, A. & Chubukov, A. V. A relation between the resonance neutron peak and ARPES data in cuprates. Phys. Rev. Lett. 83, 1652–1655 (1999).
Kotani, A. Resonant inelastic X-ray scattering in d and f electron systems. Eur. Phys. J. B 47, 3–27 (2005).
Hepting, M., Dean, M. P. M. & Lee, W. S. Soft X-ray spectroscopy of low-valence nickelates. Front. Phys. 9, 808683 (2021).
Cao, Y. et al. Ultrafast dynamics of spin and orbital correlations in quantum materials: an energy- and momentum-resolved perspective. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 377, 20170480 (2019).
Baker, M. L. et al. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites. Coord. Chem. Rev. 345, 182–208 (2017).
Monney, C., Patthey, L., Razzoli, E. & Schmitt, T. Static and time-resolved resonant inelastic X-ray scattering: recent results and future prospects. X-Ray Spectrom. 52, 216–225 (2023).
Ament, L. J. P., van Veenendaal, M., Devereaux Thomas, P., Hill, J. P. & van den Brink, J. Resonant inelastic X-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705 (2011).
Glatzel, P. & Bergmann, U. High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes — electronic and structural information. Coord. Chem. Rev. 249, 65–95 (2005).
Glatzel, P., de Groot, F. M. F. & Bergmann, U. Hard X-ray photon-in photon-out spectroscopy. Synchrotron Radiat. News 22, 12–16 (2009).
De Groot, F. High-resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev. 101, 1779–1808 (2001).
Gel’mukhanov, F. Theory of resonant inelastic X-ray scattering (RIXS) spectra. J. Electron. Spectros. Relat. Phenom. 156, XXI (2007).
Gel’mukhanov, F., Odelius, M., Polyutov, S. P., Foehlisch, A. & Kimberg, V. Dynamics of resonant X-ray and Auger scattering. Rev. Mod. Phys. 93, 035001 (2021).
Kotani, A. & Shin, S. Resonant inelastic X-ray scattering spectra for electrons in solids. Rev. Mod. Phys. 73, 203–246 (2001).
Huotari, S. et al. Improving the performance of high-resolution X-ray spectrometers with position-sensitive pixel detectors. J. Synchrotron Radiat. 12, 467–472 (2005).
Gretarsson, H. et al. IRIXS: a resonant inelastic X-ray scattering instrument dedicated to X-rays in the intermediate energy range. J. Synchrotron Radiat. 27, 538–544 (2020).
Bertinshaw, J. et al. IRIXS spectrograph: an ultra high-resolution spectrometer for tender RIXS. J. Synchrotron Radiat. 28, 1184–1192 (2021).
Kuiper, P. et al. Resonant X-ray Raman spectra of Cu dd excitations in Sr(2)CuO(2)Cl(2). Phys. Rev. Lett. 80, 5204–5207 (1998).
Chuang, Y. D. et al. High-resolution soft X-ray emission spectrograph at advanced light source. J. Phys. Chem. Solids 66, 2173–2178 (2005).
Wray, L. A., Yang, W. L., Eisaki, H., Hussain, Z. & Chuang, Y. D. Multiplet resonance lifetimes in resonant inelastic X-ray scattering involving shallow core levels. Phys. Rev. B 86, 195130 (2012).
Chiuzbaian, S. G. et al. Localized electronic excitations in NiO studied with resonant inelastic X-ray scattering at the Ni M threshold: evidence of spin flip. Phys. Rev. Lett. 95, 197402 (2005).
Bauer, K. et al. The meV XUV-RIXS facility at UE112-PGM1 of BESSY II. J. Synchrotron Radiat. 29, 908–915 (2022).
Ellis, D. S. et al. Electronic structure of doped lanthanum cuprates studied with resonant inelastic X-ray scattering. Phys. Rev. B 83, 075120 (2011).
Kim, Y.-J. et al. Observations on the resonant inelastic X-ray scattering cross section in copper oxide compounds. Phys. Rev. B 76, 155116 (2007).
Chabot-Couture, G. et al. Polarization dependence and symmetry analysis in indirect K-edge RIXS. Phys. Rev. B 82, 035113 (2010).
Kotani, A., Kvashnina, K. O., Butorin, S. M. & Glatzel, P. Spectator and participator processes in the resonant photon-in and photon-out spectra at the Ce L-3 edge of CeO2. Eur. Phys. J. B 85, 257 (2012).
Kas, J. J., Rehr, J. J., Soininen, J. A. & Glatzel, P. Real-space Green’s function approach to resonant inelastic X-ray scattering. Phys. Rev. B 83, 235114 (2011).
Bagger, A. et al. 1s2p resonant inelastic X-ray scattering combined dipole and quadrupole analysis method. J. Synchrotron Radiat. 24, 296–301 (2017).
Caliebe, W., Kao, C., Hastings, J., Taguchi, M. & Kotani, A. Resonant inelastic X-ray scattering. Phys. Rev. B 58, 13452–13458 (1998).
Kurian, R., van Schooneveld, M. M., Zoltán, N., Vankó, G. & de Groot, F. M. F. Temperature-dependent 1s2p resonant inelastic X-ray scattering of CoO. J. Phys. Chem. C 117, 2976–2981 (2013).
Rubensson, J., Eisebitt, S., Nicodemus, M., Boske, T. & Eberhardt, W. Exchange-split Ca 3s-13d states in CaF2 observed in threshold excited core-to-core fluorescence. Phys. Rev. B 49, 1507–1510 (1994).
Rubensson, J. E., Eisebitt, S., Nicodemus, M., Boske, T. & Eberhardt, W. Electron correlation in CaF2 studied in threshold-excited soft-X-ray fluorescence. Phys. Rev. B 50, 9035–9045 (1994).
de Groot, F. 3s2p inelastic X-ray scattering. Phys. Rev. B Condens. Matter Mater. Phys. 53, 7099 (1996).
Kurian, R. et al. Intrinsic deviations in fluorescence yield detected X-ray absorption spectroscopy: the case of the transition metal L2,3 edges. J. Phys. Condens. Matter 24, 452201 (2012).
Hamalainen, K., Siddons, D. P., Hastings, J. B. & Berman, L. E. Elimination of the inner-shell lifetime broadening in X-ray-absorption spectroscopy. Phys. Rev. Lett. 67, 2850–2853 (1991). Removal of lifetime broadening in resonant inelastic X-ray scattering.
Carra, P., Fabrizio, M. & Thole, B. T. High resolution X-ray resonant Raman scattering. Phys. Rev. Lett. 74, 3700–3703 (1995).
Glatzel, P. et al. Reflections on hard X-ray photon-in/photon-out spectroscopy for electronic structure studies. J. Electron. Spectros. Relat. Phenom. 188, 17–25 (2013).
Kvashnina, K. O. & Butorin, S. M. High-energy resolution X-ray spectroscopy at actinide M4,5 and ligand K edges: what we know, what we want to know, and what we can know. Chem. Commun. 58, 327–342 (2022).
Kvashnina, K. O. et al. Chemical state of complex uranium oxides. Phys. Rev. Lett. 111, 253002 (2013). Resonant inelastic X-ray scattering application to actinides.
Blachucki, W. et al. High energy resolution off-resonant spectroscopy for X-ray absorption spectra free of self-absorption effects. Phys. Rev. Lett. 112, 173003 (2014).
Glatzel, P., Jacquamet, L., Bergmann, U., De Groot, F. M. F. & Cramer, S. P. Site-selective EXAFS in mixed-valence compounds using high-resolution fluorescence detection: a study of iron in Prussian blue. Inorg. Chem. 41, 3121–3127 (2002).
De Groot, F. M. F. et al. Local-spin-selective X-ray absorption and X-ray magnetic circular dichroism of MnP. Phys. Rev. B 51, 1045 (1995).
Hämäläinen, K. et al. Spin-dependent X-ray absorption of MnO and MnF2. Phys. Rev. B 46, 14274–14277 (1992).
Pirngruber, G. D. et al. On the presence of Fe(IV) in Fe-ZSM-5 and FeSrO3−x — unequivocal detection of the 3d(4) spin system by resonant inelastic X-ray scattering. J. Phys. Chem. B 110, 18104–18107 (2006).
Braicovich, L. et al. Magnetic circular dichroism in resonant Raman scattering in the perpendicular geometry at the L edge of 3d transition metal systems. Phys. Rev. Lett. 82, 1566–1569 (1999).
Sikora, M. et al. Strong K-edge magnetic circular dichroism observed in photon-in–photon-out spectroscopy. Phys. Rev. Lett. 105, 037202 (2010).
Miyawaki, J. et al. Dzyaloshinskii–Moriya interaction in alpha-Fe2O3 measured by magnetic circular dichroism in resonant inelastic soft X-ray scattering. Phys. Rev. B 96, 214420 (2017).
Zhang, W. et al. Unraveling the nature of spin excitations disentangled from charge contributions in a doped cuprate superconductor. npj Quantum Mater. 7, 123 (2022).
Sikora, M. et al. 1s2p resonant inelastic X-ray scattering-magnetic circular dichroism: a sensitive probe of 3d magnetic moments using hard X-ray photons. J. Appl. Phys. 111, 123 (2012).
Lafuerza, S. et al. New reflections on hard X-ray photon-in/photon-out spectroscopy. Nanoscale 12, 16270–16284 (2020).
Daffe, N. et al. Bad neighbour, good neighbour: how magnetic dipole interactions between soft and hard ferrimagnetic nanoparticles affect macroscopic magnetic properties in ferrofluids. Nanoscale 12, 11222–11231 (2020).
Elnaggar, H. et al. Possible absence of trimeron correlations above the Verwey temperature in Fe3O4. Phys. Rev. B 101, 085107 (2020).
Elnaggar, H. et al. Magnetic contrast at spin-flip excitations: an advanced X-ray spectroscopy tool to study magnetic-ordering. ACS Appl. Mater. Interfaces 11, 36213–36220 (2019).
Minola, M. et al. Collective nature of spin excitations in superconducting cuprates probed by resonant inelastic X-ray scattering. Phys. Rev. Lett. 114, 217003 (2015).
Fumagalli, R. et al. Polarization-resolved Cu L3-edge resonant inelastic X-ray scattering of orbital and spin excitations in NdBa2Cu3O7−δ. Phys. Rev. B 99, 134517 (2019).
Inami, T. Magnetic circular dichroism in X-ray emission from ferromagnets. Phys. Rev. Lett. 119, 137203 (2017).
Ghiringhelli, G. & Braicovich, L. Magnetic excitations of layered cuprates studied by RIXS at Cu L3 edge. J. Electron. Spectros. Relat. Phenom. 188, 26–31 (2013).
Ghiringhelli, G. et al. Low energy electronic excitations in the layered cuprates studied by copper L3 resonant inelastic X-ray scattering. Phys. Rev. Lett. 92, 117406 (2004).
Moretti Sala, M. et al. Energy and symmetry of dd excitations in undoped layered cuprates measured by Cu L3 resonant inelastic X-ray scattering. New J. Phys. 13, 043026 (2011).
Braicovich, L. et al. Magnetic excitations and phase separation in the underdoped La2−xSrxCuO4 superconductor measured by resonant inelastic X-ray scattering. Phys. Rev. Lett. 104, 077002 (2010). Resonant inelastic X-ray scattering experiment showing magnetic excitations.
Dean, M. P. M. et al. Persistence of magnetic excitations in La2−xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal. Nat. Mater. 12, 1019–1023 (2013).
Braicovich, L. et al. Momentum and polarization dependence of single-magnon spectral weight for Cu L3-edge resonant inelastic X-ray scattering from layered cuprates. Phys. Rev. B Condens. Matter Mater. Phys. 81, 174533 (2010).
Dean, M. P. M. Insights into the high temperature superconducting cuprates from resonant inelastic X-ray scattering. J. Magn. Magn. Mater. 376, 3–13 (2015).
Peng, Y. Y. et al. Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors. Nat. Phys. 13, 1201 (2017).
Wang, L. et al. Paramagnons and high-temperature superconductivity in a model family of cuprates. Nat. Commun. 13, 3163 (2022).
Schlappa, J. et al. Probing multi-spinon excitations outside of the two-spinon continuum in the antiferromagnetic spin chain cuprate Sr2CuO3. Nat. Commun. 9, 5394 (2018).
Bisogni, V. et al. Bimagnon studies in cuprates with resonant inelastic X-ray scattering at the O K edge. I. Assessment on La2CuO4 and comparison with the excitation at Cu L3 and Cu K edges. Phys. Rev. B 85, 214527 (2012).
Kumar, U. et al. Unraveling higher-order contributions to spin excitations probed using resonant inelastic X-ray scattering. Phys. Rev. B 106, L060406 (2022).
Martinelli, L. et al. Fractional spin excitations in the infinite-layer cuprate CaCuO2. Phys. Rev. X 12, 021041 (2022).
Comin, R. & Damascelli, A. Resonant X-ray scattering studies of charge order in cuprates. Annu. Rev. Condens. Matter Phys. 7, 369–405 (2016).
Arpaia, R. et al. Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high-Tc superconductor. Science 365, 906 (2019).
Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O6+x. Science 337, 821–825 (2012). Low-energy excitations in cuprates (charge fluctuations).
Arpaia, R. et al. Signature of quantum criticality in cuprates by charge density fluctuations. Nat. Commun. 14, 7198 (2023).
Lee, W. S. et al. Spectroscopic fingerprint of charge order melting driven by quantum fluctuations in a cuprate. Nat. Phys. 17, 53 (2021).
Li, J. M. et al. Multiorbital charge-density wave excitations and concomitant phonon anomalies in Bi2Sr2LaCuO6+δ. Proc. Natl Acad. Sci. USA 117, 16219–16225 (2020).
Singh, A. et al. Unconventional exciton evolution from the pseudogap to superconducting phases in cuprates. Nat. Commun. 13, 7906 (2022).
Hepting, M. et al. Three-dimensional collective charge excitations in electron-doped copper oxide superconductors. Nature 563, 374 (2018).
Nag, A. et al. Detection of acoustic plasmons in hole-doped lanthanum and bismuth cuprate superconductors using resonant inelastic X-ray scattering. Phys. Rev. Lett. 125, 257002 (2020).
Lin, J. et al. Doping evolution of the charge excitations and electron correlations in electron-doped superconducting La2−xCexCuO4. npj Quantum Mater. 5, 4 (2020).
Singh, A. et al. Acoustic plasmons and conducting carriers in hole-doped cuprate superconductors. Phys. Rev. B 105, 235105 (2022).
Hepting, M. et al. Evolution of plasmon excitations across the phase diagram of the cuprate superconductor La2−xSrxCuO4. Phys. Rev. B 107, 214516 (2023).
Hepting, M. et al. Gapped collective charge excitations and interlayer hopping in cuprate superconductors. Phys. Rev. Lett. 129, 047001 (2022).
Saitoh, E. et al. Observation of orbital waves as elementary excitations in a solid. Nature 410, 180–183 (2001).
Kim, C. et al. Observation of spin-charge separation in one-dimensional SrCuO2. Phys. Rev. Lett. 77, 4054–4057 (1996).
Martinelli, L. et al. Collective nature of orbital excitations in layered cuprates in the absence of apical oxygens. Phys. Rev. Lett. 132, 066004 (2024).
Ge, J.-F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 14, 285–289 (2015).
Yang, W. L. et al. Evidence for weak electronic correlations in iron pnictides. Phys. Rev. B 80, 014508 (2009).
Pelliciari, J. et al. Intralayer doping effects on the high-energy magnetic correlations in NaFeAs. Phys. Rev. B 93, 134515 (2016).
Pelliciari, J. et al. Magnetic moment evolution and spin freezing in doped BaFe2As2. Sci. Rep. 7, 8003 (2017).
Lu, X. et al. Spin-excitation anisotropy in the nematic state of detwinned FeSe. Nat. Phys. 18, 806 (2022).
Pelliciari, J. et al. Evolution of spin excitations from bulk to monolayer FeSe. Nat. Commun. 12, 3122 (2021).
Alonso, J. A., Martínez-Lope, M. J., Casais, M. T., Aranda, M. A. G. & Fernández-Díaz, M. T. Metal–insulator transitions, structural and microstructural evolution of RNiO3 (R = Sm, Eu, Gd, Dy, Ho, Y) perovskites: evidence for room-temperature charge disproportionation in monoclinic HoNiO3 and YNiO3. J. Am. Chem. Soc. 121, 4754–4762 (1999).
Cheong, S. W. et al. Charge-ordered states in (La,Sr)2NiO4 for hole concentrations n(h) = 1/3 and n(h) = 1/2. Phys. Rev. B 49, 7088–7091 (1994).
Freeman, P. G. et al. Spin dynamics of half-doped La3/2Sr1/2NiO4. Phys. Rev. B 71, 174412 (2005).
Li, D. et al. Superconducting dome in Nd1-xSrxNiO2 infinite layer films. Phys. Rev. Lett. 125, 027001 (2020).
Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624 (2019).
Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493 (2023).
Fabbris, G. et al. Doping dependence of collective spin and orbital excitations in the spin-1 quantum antiferromagnet La2−xSrxNiO4 observed by X rays. Phys. Rev. Lett. 118, 156402 (2017).
Bisogni, V. et al. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates. Nat. Commun. 7, 13017 (2016).
Lu, Y. et al. Site-selective probe of magnetic excitations in rare-earth nickelates using resonant inelastic X-ray scattering. Phys. Rev. X 8, 031014 (2018).
Hepting, M. et al. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 19, 381 (2020).
Lu, H. et al. Magnetic excitations in infinite-layer nickelates. Science 373, 213–216 (2021).
Rossi, M. et al. Universal orbital and magnetic structures in infinite-layer nickelates. Phys. Rev. B 109, 024512 (2024).
Lin, J. Q. et al. Strong superexchange in a d9−δ nickelate revealed by resonant inelastic X-ray scattering. Phys. Rev. Lett. 126, 087001 (2021).
Shen, Y. et al. Role of oxygen states in the low valence nickelate La4Ni3O8. Phys. Rev. X 12, 011055 (2022).
Shen, Y. et al. Electronic character of charge order in square-planar low-valence nickelates. Phys. Rev. X 13, 011021 (2023).
Tam, C. C. et al. Charge density waves in infinite-layer NdNiO2 nickelates. Nat. Mater. 21, 1116 (2022).
Krieger, G. et al. Charge and spin order dichotomy in NdNiO2 driven by the capping layer. Phys. Rev. Lett. 129, 027002 (2022).
Rossi, M. et al. A broken translational symmetry state in an infinite-layer nickelate. Nat. Phys. 18, 869 (2022).
Parzyck, C. T. et al. Absence of 3a0 charge density wave order in the infinite-layer nickelate NdNiO2. Nat. Mater. 23, 440 (2024).
Chen, X. et al. Electronic and magnetic excitations in La3Ni2O7. Preprint at https://arxiv.org/abs/2401.12657 (2024).
Nag, A. et al. Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet. Nat. Commun. 13, 2327 (2022).
Bernevig, B. A., Felser, C. & Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 603, 41–51 (2022).
Yin, J.-X., Lian, B. & Hasan, M. Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).
Nag, A. et al. Correlation driven near-flat band Stoner excitations in a Kagome magnet. Nat. Commun. 13, 7317 (2022).
Brookes, N. B. et al. Spin waves in metallic iron and nickel measured by soft X-ray resonant inelastic scattering. Phys. Rev. B 102, 064412 (2020).
Poelchen, G. et al. Long-lived spin waves in a metallic antiferromagnet. Nat. Commun. 14, 5422 (2023).
Pelliciari, J. et al. Tuning spin excitations in magnetic films by confinement. Nat. Mater. 20, 188 (2021).
von Arx, K. et al. Resonant inelastic X-ray scattering study of Ca3Ru2O7. Phys. Rev. B 102, 235104 (2020).
Lebert, B. W. et al. Resonant inelastic X-ray scattering study of α-RuCl3: a progress report. J. Phys. Condens. Matter 32, 144001 (2020).
Occhialini, C. A. et al. Local electronic structure of rutile RuO2. Phys. Rev. Res. 3, 033214 (2021).
Yang, Z. et al. Resonant inelastic X-ray scattering from electronic excitations in α-RuCl3 nanolayers. Phys. Rev. B 108, L041406 (2023).
Suzuki, H. et al. Spin waves and spin-state transitions in a ruthenate high-temperature antiferromagnet. Nat. Mater. 18, 563–567 (2019). Tender X-ray resonant inelastic X-ray scattering experiment on spin transitions.
Takahashi, H. et al. Nonmagnetic J = 0 state and spin–orbit excitations in K2RuCl6. Phys. Rev. Lett. 127, 227201 (2021).
Qamar, A. et al. Experimental and theoretical characterization of X-ray induced excitons, magnons, and dd transitions in MoO3 nanosheets. Phys. Rev. Mater. 6, 074003 (2022).
Biasin, E. et al. Revealing the bonding of solvated Ru complexes with valence-to-core resonant inelastic X-ray scattering. Chem. Sci. 12, 3713–3725 (2021).
Kim, J. et al. Excitonic quasiparticles in a spin–orbit Mott insulator. Nat. Commun. 5, 4453 (2014).
Paris, E. et al. Strain engineering of the charge and spin–orbital interactions in Sr2IrO4. Proc. Natl Acad. Sci. USA 117, 24764–24770 (2020).
Gretarsson, H. et al. Crystal-field splitting and correlation effect on the electronic structure of A(2)IrO(3). Phys. Rev. Lett. 110, 076402 (2013).
Kim, J. et al. Large spin-wave energy gap in the bilayer iridate Sr3Ir2O7: evidence for enhanced dipolar interactions near the Mott metal–insulator transition. Phys. Rev. Lett. 109, 157402 (2012).
Yuan, B. et al. Determination of Hund’s coupling in 5d oxides using resonant inelastic X-ray scattering. Phys. Rev. B 95, 235114 (2017).
Ament, L. J. P., Khaliullin, G. & van den Brink, J. Theory of resonant inelastic X-ray scattering in iridium oxide compounds: probing spin–orbit-entangled ground states and excitations. Phys. Rev. B 84, 020403 (2011).
Revelli, A. et al. Resonant inelastic x-ray incarnation of Young’s double-slit experiment. Sci. Adv. 5, 4020 (2019).
Lu, X. et al. Dispersive magnetic and electronic excitations in iridate perovskites probed by oxygen K-edge resonant inelastic X-ray scattering. Phys. Rev. B 97, 041102 (2018).
Sala, M. M. et al. Orbital occupancies and the putative jeff = 1/2 ground state in Ba2IrO4: a combined oxygen K-edge XAS and RIXS study. Phys. Rev. B 89, 121101(R) (2014).
Zimmermann, V. et al. Coherent propagation of spin–orbit excitons in a correlated metal. npj Quantum Mater. 8, 53 (2023).
van Veenendaal, M., Carra, P. & Thole, B. T. X-ray resonant Raman scattering in the rare earths. Phys. Rev. B 54, 16010–16023 (1996).
van Veenendaal, M. & Benoist, R. X-ray absorption and resonant inelastic X-ray scattering in the rare earths. Phys. Rev. B 58, 3741–3749 (1998).
Butorin, S. M. Resonant inelastic X-ray scattering as a probe of optical scale excitations in strongly electron-correlated systems: quasi-localized view. J. Electron. Spectros. Relat. Phenom. 110, 213–233 (2000).
Amorese, A. et al. Resonant inelastic X-ray scattering investigation of the crystal-field splitting of Sm3+ in SmB6. Phys. Rev. B 100, 241107 (2019).
Amorese, A. et al. Orbital selective coupling in CeRh3B2: coexistence of high Curie and high Kondo temperatures. Phys. Rev. B 107, 115164 (2023).
Zatsepin, D. A. et al. Strong anisotropy of resonant inelastic X-ray scattering from charge-transfer excitations in UO3. J. Phys. Condens. Matter 14, 2541–2546 (2002).
Butorin, S. M. & Shuh, D. K. Electronic structure of americium sesquioxide probed by resonant inelastic X-ray scattering. Phys. Rev. B 108, 195152 (2023).
Kvashnina, K. O. et al. Resonant inelastic X-ray scattering of curium oxide. Phys. Rev. B 75, 115107 (2007).
Kvashnina, K. O. et al. Trends in the valence band electronic structures of mixed uranium oxides. Chem. Commun. 54, 9757–9760 (2018).
Polly, R., Schacherl, B., Rothe, J. & Vitova, T. Relativistic multiconfigurational ab initio calculation of uranyl 3d4f resonant inelastic X-ray scattering. Inorg. Chem. 60, 18764–18776 (2021).
Vitova, T. et al. The role of the 5f valence orbitals of early actinides in chemical bonding. Nat. Commun. 8, 1–9 (2017).
Butorin, S. M. 3d-4f resonant inelastic X-ray scattering of actinide dioxides: crystal-field multiplet description. Inorg. Chem. 59, 16251–16264 (2020).
Kvashnina, K. O., Walker, H. C., Magnani, N., Lander, G. H. & Caciuffo, R. Resonant X-ray spectroscopy of uranium intermetallics at the M4,5 edges of uranium. Phys. Rev. B 95, 245103 (2017).
Marino, A. et al. Singlet magnetism in intermetallic UGa2 unveiled by inelastic X-ray scattering. Phys. Rev. B 108, 045142 (2023).
Lander, G. H. et al. Resonant inelastic X-ray spectroscopy on UO2 as a test case for actinide materials. J. Phys. Condens. Matter 33, 06LT01 (2021).
Piancastelli, M. N. et al. Hard X-ray spectroscopy and dynamics of isolated atoms and molecules: a review. Rep. Prog. Phys. 83, 016401 (2020).
Guillemin, R. et al. Angular and dynamical properties in resonant inelastic X-ray scattering: case study of chlorine-containing molecules. Phys. Rev. A 86, 039903 (2012).
Püttner, R. et al. Si 1s−1, 2s−1 and 2p−1 lifetime broadening of SiX4 (X = F, Cl, Br, CH3) molecules: SiF4 anomalous behaviour reassessed. Phys. Chem. Chem. Phys. 21, 8827–8836 (2019).
Marchenko, T. et al. Ultrafast nuclear dynamics in the doubly-core-ionized water molecule observed via Auger spectroscopy. Phys. Rev. A 98, 063403 (2018).
Travnikova, O. et al. Subfemtosecond control of molecular fragmentation by hard X-ray photons. Phys. Rev. Lett. 118, 213001 (2017).
Fohlisch, A. et al. Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005).
Piancastelli, M. N. et al. Core-hole-clock spectroscopies in the tender X-ray domain. J. Phys. B At. Mol. Opt. Phys. 47, 124031 (2014).
Marchenko, T. et al. Electron dynamics in the core-excited CS2 molecule revealed through resonant inelastic X-ray scattering spectroscopy. Phys. Rev. X 5, 031021 (2015).
Lundberg, M. et al. Metal-ligand covalency of iron complexes from high-resolution resonant inelastic X-ray scattering. J. Am. Chem. Soc. 135, 17121–17134 (2013).
Braun, A. et al. X-ray spectroscopic study of the electronic structure of a trigonal high-spin Fe(IV) = O complex modeling non-heme enzyme intermediates and their reactivity. J. Am. Chem. Soc. 145, 18977–18991 (2023).
Glatzel, P. et al. The electronic structure of Mn in oxides, coordination complexes, and the oxygen-evolving complex of photosystem II studied by resonant inelastic X-ray scattering. J. Am. Chem. Soc. 126, 9946–9959 (2004).
Kroll, T. et al. Effect of 3d/4p mixing on 1s2p resonant inelastic X-ray scattering: electronic structure of oxo-bridged iron dimers. J. Am. Chem. Soc. 143, 4569–4584 (2021).
Hall, E. R. et al. Valence-to-core-detected X-ray absorption spectroscopy: targeting ligand selectivity. J. Am. Chem. Soc. 136, 10076–10084 (2014).
Gallo, E. et al. Preference towards five‐coordination in Ti silicalite‐1 upon molecular adsorption. ChemPhysChem 14, 79–83 (2013).
Glatzel, P. et al. In situ characterization of the 5d density of states of Pt nanoparticles upon adsorption of CO. J. Am. Chem. Soc. 132, 2555–2557 (2010).
Kunnus, K. et al. Quantifying the steric effect on metal–ligand bonding in Fe carbene photosensitizers with Fe 2p3d resonant inelastic X-ray scattering. Inorg. Chem. 61, 1961–1972 (2022).
House, R. A. et al. Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes. Nat. Commun. 12, 2975 (2021).
House, R. A. et al. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O(2) trapped in the bulk. Nat. Energy 5, 777–785 (2020).
House, R. A. et al. Delocalized electron holes on oxygen in a battery cathode. Nat. Energy 8, 351–360 (2023).
House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502 (2020). Resonant inelastic X-ray scattering application to battery systems showing molecular oxygen.
Wernet, P. et al. Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)(5) in solution. Nature 520, 78–81 (2015). Time-resolved resonant inelastic X-ray scattering experiment.
Schreck, S. et al. Dynamics of the OH group and the electronic structure of liquid alcohols. Struct. Dyn. 1, 054901 (2014).
Jay, R. M. et al. Tracking C–H activation with orbital resolution. Science 380, 955–960 (2023).
Wang, R.-P. et al. Saturation and self-absorption effects in the angle-dependent 2p3d resonant inelastic X-ray scattering spectra of Co 3+. J. Synchrotron Radiat. 27, 1–9 (2020).
Titus, C. J. et al. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array. J. Chem. Phys. 147, 214201 (2017).
Lee, S. J. et al. Soft X-ray spectroscopy with transition-edge sensors at Stanford Synchrotron Radiation Lightsource beamline 10-1. Rev. Sci. Instrum. 90, 113101 (2019).
Vig, S. et al. Measurement of the dynamic charge response of materials using low-energy, momentum-resolved electron energy-loss spectroscopy (M-EELS). SciPost Phys. 3, 026 (2017).
Higley, D. J. et al. Stimulated resonant inelastic X-ray scattering in a solid. Commun. Phys. 5, 83 (2022).
Kroll, T. et al. Observation of seeded Mn Kβ stimulated X-ray emission using two-color X-ray free-electron laser pulses. Phys. Rev. Lett. 125, 037404 (2020).
Bahrdt, J. et al. First observation of photons carrying orbital angular momentum in undulator radiation. Phys. Rev. Lett. 111, 034801 (2013).
van Veenendaal, M. & McNulty, I. Prediction of strong dichroism induced by X rays carrying orbital momentum. Phys. Rev. Lett. 98, 157401 (2007).
Elnaggar, H. et al. Noncollinear ordering of the orbital magnetic moments in magnetite. Phys. Rev. Lett. 123, 207201 (2019).
Li, Z. X., Wang, Z. Y., Cao, Y. S. & Yan, P. Generation of twisted magnons via spin-to-orbital angular momentum conversion. Phys. Rev. B 105, 174433 (2022).
Zhou, K. J., Matsuyama, S. & Strocov, V. N. hv(2)-concept breaks the photon-count limit of RIXS instrumentation. J. Synchrotron Radiat. 27, 1235–1239 (2020).
Kokkonen, E. et al. Upgrade of the SPECIES beamline at the MAX IV laboratory. J. Synchrotron Radiat. 28, 588–601 (2021).
Chiuzbaian, S. G. et al. Design and performance of AERHA, a high acceptance high resolution soft X-ray spectrometer. Rev. Sci. Instrum. 85, 043108 (2014).
Boots, M., Muir, D. & Moewes, A. Optimizing and characterizing grating efficiency for a soft X-ray emission spectrometer. J. Synchrotron Radiat. 20, 272–285 (2013).
Miyawaki, J. et al. A compact permanent-magnet system for measuring magnetic circular dichroism in resonant inelastic soft X-ray scattering. J. Synchrotron Radiat. 24, 449–455 (2017).
Nowak, S. H. et al. A versatile Johansson-type tender X-ray emission spectrometer. Rev. Sci. Instrum. 91, 033101 (2020).
Rovezzi, M. et al. TEXS: in-vacuum tender X-ray emission spectrometer with 11 Johansson crystal analyzers. J. Synchrotron Radiat. 27, 813–826 (2020).
Glatzel, P. et al. The five-analyzer point-to-point scanning crystal spectrometer at ESRF ID26. J. Synchrotron Radiat. 28, 362–ID371 (2021).
Ablett, J. M. et al. The GALAXIES inelastic hard X-ray scattering end-station at Synchrotron SOLEIL. J. Synchrotron Radiat. 26, 263–271 (2019).
Weinhardt, L. et al. X-SPEC: a 70 eV to 15 keV undulator beamline for X-ray and electron spectroscopies. J. Synchrotron Radiat. 28, 609–617 (2021).
Szlachetko, J. et al. In situ hard X-ray quick RIXS to probe dynamic changes in the electronic structure of functional materials. J. Electron. Spectros. Relat. Phenom. 188, 161–165 (2013).
Cai, Y. Q. et al. Optical design and performance of the Taiwan inelastic X‐ray scattering beamline (BL12XU) at SPRING‐8. AIP Conf. Proc. 705, 340–343 (2004).
Alonso-Mori, R. et al. A multi-crystal wavelength dispersive X-ray spectrometer. Rev. Sci. Instrum. 83, 073114 (2012).
Shvyd’ko, Y. V. et al. MERIX — next generation medium energy resolution inelastic X-ray scattering instrument at the APS. J. Electron. Spectros. Relat. Phenom. 188, 140–149 (2013).
Glatzel, P. et al. Electronic structural changes of Mn in the oxygen-evolving complex of photosystem II during the catalytic cycle. Inorg. Chem. 52, 5642–5644 (2013).
Author information
Authors and Affiliations
Contributions
Introduction (F.M.F.d.G., M.W.H., H.E., A.J., K.-J.Z. and P.G.); Experimentation (F.M.F.d.G., H.E., A.J., K.-J.Z. and P.G.); Results (F.M.F.d.G., M.W.H., H.E., A.J., K.-J.Z. and P.G.); Applications (F.M.F.d.G., M.W.H., H.E., A.J., K.-J.Z. and P.G.); Reproducibility and data deposition (F.M.F.d.G., H.E., A.J., K.-J.Z. and P.G.); Limitations and optimizations (F.M.F.d.G., M.W.H., H.E., A.J., K.-J.Z. and P.G.); Outlook (F.M.F.d.G., M.W.H., H.E., A.J., K.-J.Z. and P.G.); overview of the Primer (all authors).
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks Myron Huzan, who co-reviewed with Michael Baker; Shiyu Fan, who co-reviewed with Jonathan Pelliciari; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
6-2a: https://www-ssrl.slac.stanford.edu/content/beam-lines/bl6-2a
15-2: https://www-ssrl.slac.stanford.edu/content/beam-lines/bl15-2
20-ID: https://www.aps.anl.gov/Spectroscopy/Beamlines/20-ID
41A: https://tpsbl.nsrrc.org.tw/bd_page.aspx?lang=en&port=41A&pid=1044
ADRESS: https://www.psi.ch/en/sls/adress
AMBER: https://als.lbl.gov/beamlines/6-0-1/
Beamline 8.0.1: https://als.lbl.gov/beamlines/8-0-1/
BL11XU: http://www.spring8.or.jp/wkg/BL11XU/instrument/lang-en
BL12XU: https://www.spring8.or.jp/wkg/BL12XU/instrument/lang-en/
BM20-ROBL: https://www.esrf.fr/UsersAndScience/Experiments/CRG/BM20
BM30-FAME: https://www.esrf.fr/home/UsersAndScience/Experiments/CRG/BM30.html
ChemRIXS qRIXS: https://lcls.slac.stanford.edu/instruments/neh-2-2
ESRF data policy: https://www.esrf.fr/datapolicy
FURKA: https://www.psi.ch/en/swissfel/furka
GALAXIES: https://www.synchrotron-soleil.fr/en/beamlines/galaxies
hRIXS: https://www.xfel.eu/facility/instruments/scs/index_eng.html
I20: https://www.diamond.ac.uk/Instruments/Spectroscopy/I20.html
I21: https://www.diamond.ac.uk/Instruments/Magnetic-Materials/I21.html
ID20: https://www.esrf.fr/home/UsersAndScience/Experiments/EMD/ID20.html
ID26: https://www.esrf.fr/id26
ID32: https://www.esrf.fr/ID32
IPÊ: https://lnls.cnpem.br/grupos/ipe-en/
IRIXS: https://photon-science.desy.de/facilities/petra_iii/beamlines/p01_dynamics/
MARS: https://www.synchrotron-soleil.fr/en/beamlines/mars
QERLIN: https://als.lbl.gov/beamlines/6-0-2/
REIXS: https://reixs.lightsource.ca/
SEXTANTS: https://www.synchrotron-soleil.fr/en/beamlines/sextants
SIX: https://www.bnl.gov/nsls2/beamlines/beamline.php?r=2-ID
SPECIES: https://www.maxiv.lu.se/beamlines-accelerators/beamlines/species/
SUPERXAS: https://www.psi.ch/en/sls/superxas
U41-PEAXIS: https://www.wayforlight.eu/beamline/26510
VERITAS: https://www.maxiv.lu.se/beamlines-accelerators/beamlines/veritas/
Supplementary information
Glossary
- Brillouin zone
-
Primitive cell in reciprocal space that captures all unique wave vectors.
- Core RIXS
-
Resonant inelastic X-ray scattering (RIXS) involving the decay from a shallow core state to a deeper core state.
- Direct RIXS
-
Decay of another electron after initial X-ray excitation.
- Electron energy loss spectroscopy
-
(EELS). Experimental technique that measures the inelastic scattering of electrons.
- Free electron lasers
-
Linear accelerators coupled to a long undulator yielding coherent X-ray pulses on femtosecond timescales.
- High-energy resolution fluorescence detection
-
(HERFD). Detection of the X-ray emission with an ~100–500 meV fluorescence detector giving, in a first approximation, an X-ray absorption spectroscopy spectrum in which the lifetime broadening of the deep core hole is replaced by the lifetime broadening of a shallow core hole.
- Indirect RIXS
-
Excitation and decay of the same electron with an electronic reorganization in the intermediate state.
- Inelastic neutron scattering
-
(INS). Experimental technique that measures the inelastic scattering of neutrons.
- Inelastic X-ray scattering
-
(IXS). The experimental technique that measures the inelastic scattering of X-rays away from a core resonance, also known as X-ray Raman scattering or non-resonant inelastic X-ray scattering.
- Magnons
-
Collective excitation of the spin structure in a solid.
- Orbitons
-
Collective excitation of the orbital configuration (dd excitation) in a solid.
- Phonons
-
Collective excitation of vibration energy in a solid.
- Plasmon
-
Collective charge excitation in a solid.
- Resonant inelastic X-ray scattering
-
(RIXS). The experimental technique that measures the inelastic scattering of X-rays over the energy range of an X-ray absorption spectrum.
- Spinons
-
Collective excitation of a spin-1/2 quasiparticle.
- Valence RIXS
-
Resonant inelastic X-ray scattering (RIXS) involving the decay from a valence state to a core state.
- X-ray absorption spectroscopy
-
The experimental technique based on the excitation of a core electron by the absorption of X-ray, measured as a function of energy.
- X-ray emission spectroscopy
-
The experimental technique based on the emission of an X-ray owing to the decay of an electron to fill a core hole.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
de Groot, F.M.F., Haverkort, M.W., Elnaggar, H. et al. Resonant inelastic X-ray scattering. Nat Rev Methods Primers 4, 45 (2024). https://doi.org/10.1038/s43586-024-00322-6
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-024-00322-6