Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Nanozymes for nanohealthcare

Abstract

Nanozymes, nanomaterial-based artificial enzymes, exhibit potential for emulating the catalytic functions inherent in enzymes. Nanozymes have advantages such as low cost, facile synthesis, high stability and adjustable activities. As a promising approach for healthcare, nanozymes have sparked considerable interest, and have been chosen as one of the 2022 Top Ten Emerging Technologies in Chemistry by the International Union of Pure and Applied Chemistry (IUPAC). This Primer provides theranostic insights from the nanozyme toolbox, encompassing the design of nanoparticles, evaluation of activities and applications. We focus on rational strategies to enhance nanozyme activities, emphasizing standardized evaluations across different activities, and outline specific details for their practical applications. The selection of candidates for diagnosis, as well as those for in vivo theranostic applications, is carefully considered based on appropriateness. We also acknowledge current challenges and limitations, presenting future perspectives and positioning nanozymes as an alternative and effective choice in theranostics. This Primer aims to contribute to the understanding and advancement of nanozyme applications in healthcare, offering a comprehensive guide for researchers in this dynamic field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of nanozymes for nanohealthcare.
Fig. 2: Rational design and surface engineering of nanozymes.
Fig. 3: Experimental flow of nanozyme-based diagnostics and anti-oxidant nanozymes for inflammatory bowel disease.
Fig. 4: Characterization of nanozymes for nanohealthcare.
Fig. 5: Nanozyme-based diagnosis and representative applications.
Fig. 6: Nanozyme-based therapeutics demonstrate versatile applications across various diseases.

Similar content being viewed by others

References

  1. Dulchavsky, M. et al. Directed evolution unlocks oxygen reactivity for a nicotine-degrading flavoenzyme. Nat. Chem. Biol. 19, 1406–1414 (2023).

    Article  Google Scholar 

  2. Pisal, D. S., Kosloski, M. P. & Balu-Iyer, S. V. Delivery of therapeutic proteins. J. Pharm. Sci. 99, 2557–2575 (2010).

    Article  Google Scholar 

  3. Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).

    Article  Google Scholar 

  4. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug. Discov. 4, 145–160 (2005).

    Article  Google Scholar 

  5. Thorek, D. L. J., Chen, A., Czupryna, J. & Tsourkas, A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng. 34, 23–38 (2006).

    Article  Google Scholar 

  6. Sperling, R. A., Rivera Gil, P., Zhang, F., Zanella, M. & Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 37, 1896–1908 (2008).

    Article  Google Scholar 

  7. Dugan, L. L., Gabrielsen, J. K., Yu, S. P., Lin, T. S. & Choi, D. W. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol. Dis. 3, 129–135 (1996).

    Article  Google Scholar 

  8. Pasquato, L., Rancan, F., Scrimin, P., Mancin, F. & Frigeri, C. N-Methylimidazole-functionalized gold nanoparticles as catalysts for cleavage of a carboxylic acid ester. Chem. Commun. 2000, 2253–2254 (2000).

    Article  Google Scholar 

  9. Comotti, M., Della Pina, C., Matarrese, R. & Rossi, M. The catalytic activity of “naked” gold particles. Angew. Chem. Int. Ed. 43, 5812–5815 (2004).

    Article  Google Scholar 

  10. Chen, J. P., Patil, S., Seal, S. & McGinnis, J. F. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol. 1, 142–150 (2006).

    Article  ADS  Google Scholar 

  11. Dugan, L. L. et al. Carboxyfullerenes as neuroprotective agents. Proc. Natl Acad. Sci. USA 94, 9434–9439 (1997). This paper presents C60 derivatives as neuroprotective drugs that exhibit anti-oxidant ability in biological systems.

    Article  ADS  Google Scholar 

  12. Wei, H. & Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013). This review (and the cited articles within) describes development of nanozymes and gives a definition for nanozymes.

    Article  Google Scholar 

  13. Wu, J. J. X. et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004–1076 (2019).

    Article  Google Scholar 

  14. Wei, H. et al. Nanozymes: a clear definition with fuzzy edges. Nano Today 40, 101269 (2021). This opinion provides an insightful viewpoint, elucidates crucial issues and encourages more profound contemplation for nanozyme development.

    Article  Google Scholar 

  15. Huang, Y. Y., Ren, J. S. & Qu, X. G. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019).

    Article  Google Scholar 

  16. Gao, L. Z. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007). This paper presents the intrinsic peroxidase-mimic activity of Fe3O4 and starts a trend in nanozyme research.

    Article  ADS  Google Scholar 

  17. Xi, Z. et al. Strain effect in palladium nanostructures as nanozymes. Nano Lett. 20, 272–277 (2020).

    Article  ADS  Google Scholar 

  18. Wu, H. A. et al. Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species. ACS Nano 13, 14013–14023 (2019).

    Article  Google Scholar 

  19. Liu, Y. F. et al. Light-responsive metal–organic framework as an oxidase mimic for cellular glutathione detection. Anal. Chem. 91, 8170–8175 (2019).

    Article  Google Scholar 

  20. Tian, L. et al. Planar intercalated copper (II) complex molecule as small molecule enzyme mimic combined with Fe3O4 nanozyme for bienzyme synergistic catalysis applied to the microRNA biosensor. Biosens. Bioelectron. 110, 110–117 (2018).

    Article  Google Scholar 

  21. Cheng, H. J. et al. Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal. Chem. 88, 5489–5497 (2016).

    Article  Google Scholar 

  22. Lin, A. Q. et al. Self-cascade uricase/catalase mimics alleviate acute gout. Nano Lett. 22, 508–516 (2022).

    Article  ADS  Google Scholar 

  23. Wang, Q. et al. A valence-engineered self-cascading antioxidant nanozyme for the therapy of inflammatory bowel disease. Angew. Chem. Int. Ed. 61, e202201101 (2022).

    Article  ADS  Google Scholar 

  24. Wang, Z. R., Zhang, R. F., Yan, X. Y. & Fan, K. L. Structure and activity of nanozymes: inspirations for design of nanozymes. Mater. Today 41, 81–119 (2020).

    Article  Google Scholar 

  25. Liu, B. W. & Liu, J. W. Surface modification of nanozymes. Nano Res. 10, 1125–1148 (2017).

    Article  Google Scholar 

  26. Loynachan, C. N. et al. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 14, 883–890 (2019). This paper presents a renal clearable ultra-small nanozyme for in vivo tumour monitoring.

    Article  ADS  Google Scholar 

  27. Jiang, B. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 13, 1506–1520 (2018). This protocol demonstrates a standard workflow for measuring and defining the catalytic activity units and kinetics for peroxidase-like nanozymes.

    Article  Google Scholar 

  28. Jiang, D. W. et al. Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. 48, 3683–3704 (2019).

    Article  Google Scholar 

  29. Lin, A. et al. A dopamine-enabled universal assay for catalase and catalase-like nanozymes. Anal. Chem. 94, 10636–10642 (2022).

    Article  Google Scholar 

  30. Liu, Y. F. et al. In vitro measurement of superoxide dismutase-like nanozyme activity: a comparative study. Analyst 146, 1872–1879 (2021).

    Article  ADS  Google Scholar 

  31. Murphy, M. P. et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 4, 651–662 (2022).

    Article  Google Scholar 

  32. Apak, R. et al. Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species (IUPAC Technical Report). Pure Appl. Chem. 94, 87–144 (2022).

    Article  Google Scholar 

  33. Fan, H. Z. et al. Surface ligand engineering ruthenium nanozyme superior to horseradish peroxidase for enhanced immunoassay. Adv. Mater. 36, 2300387 (2024).

    Article  Google Scholar 

  34. Duan, D. M. et al. Nanozyme-strip for rapid local diagnosis of Ebola. Biosens. Bioelectron. 74, 134–141 (2015).

    Article  Google Scholar 

  35. Liu, D. et al. Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen. Biosens. Bioelectron. 173, 112817 (2021).

    Article  Google Scholar 

  36. Zhou, D. T. et al. Orally administered platinum nanomarkers for urinary monitoring of inflammatory bowel disease. ACS Nano 16, 18503–18514 (2022).

    Article  Google Scholar 

  37. Zhang, Y. et al. Biomimetic design of mitochondria-targeted hybrid nanozymes as superoxide scavengers. Adv. Mater. 33, 2006570 (2021).

    Article  Google Scholar 

  38. Fu, S. Y. et al. ROS-targeted depression therapy via BSA-incubated ceria nanoclusters. Nano Lett. 22, 4519–4527 (2022).

    Article  ADS  Google Scholar 

  39. Lin, A. Q., Liu, S. J. & Wei, H. Nanozymes for biomedical applications in orthopaedics. Particuology 76, 32–45 (2023).

    Article  Google Scholar 

  40. Wang, X. Y., Hu, Y. H. & Wei, H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg. Chem. Front. 3, 41–60 (2016).

    Article  ADS  Google Scholar 

  41. Shamsabadi, A., Haghighi, T., Carvalho, S., Frenette, L. C. & Stevens, M. M. The nanozyme revolution: enhancing the performance of medical biosensing platforms. Adv. Mater. 36, 2300184 (2024).

    Article  Google Scholar 

  42. Wang, H., Wan, K. W. & Shi, X. H. Recent advances in nanozyme research. Adv. Mater. 31, 1805368 (2019).

    Article  Google Scholar 

  43. Ghosh, S., Roy, P., Karmodak, N., Jemmis, E. D. & Mugesh, G. Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angew. Chem. Int. Ed. 57, 4510–4515 (2018).

    Article  Google Scholar 

  44. Chen, M. et al. Facet engineering of nanoceria for enzyme-mimetic catalysis. ACS Appl. Mater. Interfaces 14, 21989–21995 (2022).

    Article  Google Scholar 

  45. Jain, A., Shin, Y. & Persson, K. A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 1–13 (2016).

    Article  Google Scholar 

  46. Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    Article  Google Scholar 

  47. Norskov, J. K., Abild-Pedersen, F., Studt, F. & Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl Acad. Sci. USA 108, 937–943 (2011).

    Article  ADS  Google Scholar 

  48. Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009). This review describes computational approaches for the discovery and development of catalysts.

    Article  Google Scholar 

  49. Wang, X. Y. et al. eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nat. Commun. 10, 704 (2019).

    Article  ADS  Google Scholar 

  50. Wang, Q. et al. eg occupancy as a predictive descriptor for spinel oxide nanozymes. Nano Lett. 22, 10003–10009 (2022).

    Article  ADS  Google Scholar 

  51. Shen, X. M., Wang, Z. Z., Gao, X. J. J. & Gao, X. F. Reaction mechanisms and kinetics of nanozymes: insights from theory and computation. Adv. Mater. 36, 2211151 (2024).

    Article  Google Scholar 

  52. Wang, Z. Z. et al. Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat. Commun. 12, 6866 (2021).

    Article  ADS  Google Scholar 

  53. Li, S. R. et al. Data-informed discovery of hydrolytic nanozymes. Nat. Commun. 13, 827 (2022).

    Article  ADS  Google Scholar 

  54. Wei, Y. H. et al. Prediction and design of nanozymes using explainable machine learning. Adv. Mater. 34, 2201736 (2022). This paper presents an attempt for nanozyme design by machine learning.

    Article  Google Scholar 

  55. Zhuang, J. et al. Machine-learning-assisted nanozyme design: lessons from materials and engineered enzymes. Adv. Mater. 36, 2210848 (2024).

    Article  Google Scholar 

  56. Huang, P., Wang, C. R., Deng, H. Z., Zhou, Y. F. & Chen, X. Y. Surface engineering of nanoparticles toward cancer theranostics. Acc. Chem. Res. 56, 1766–1779 (2023).

    Article  Google Scholar 

  57. Zandieh, M. & Liu, J. W. Surface science of nanozymes and defining a nanozyme unit. Langmuir 38, 3617–3622 (2022).

    Article  Google Scholar 

  58. Tang, G., He, J., Liu, J., Yan, X. & Fan, K. Nanozyme for tumor therapy: surface modification matters. Exploration 1, 75–89 (2021).

    Article  Google Scholar 

  59. Singh, S. et al. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 32, 6745–6753 (2011).

    Article  Google Scholar 

  60. Xu, C., Liu, Z., Wu, L., Ren, J. & Qu, X. Nucleoside triphosphates as promoters to enhance nanoceria enzyme‐like activity and for single‐nucleotide polymorphism typing. Adv. Funct. Mater. 24, 1624–1630 (2013).

    Article  Google Scholar 

  61. Asati, A., Santra, S., Kaittanis, C., Nath, S. & Perez, J. M. Oxidase‐like activity of polymer‐coated cerium oxide nanoparticles. Angew. Chem. Int. Ed. 48, 2308–2312 (2009).

    Article  Google Scholar 

  62. Liu, B. & Liu, J. Accelerating peroxidase mimicking nanozymes using DNA. Nanoscale 7, 13831–13835 (2015).

    Article  ADS  Google Scholar 

  63. He, S.-B. et al. A heparinase sensor based on a ternary system of Hg2+–heparin–osmium nanoparticles. Anal. Chem. 92, 1635–1642 (2020).

    Article  Google Scholar 

  64. Li, R. et al. Zwitterionic sulfhydryl sulfobetaine stabilized platinum nanoparticles for enhanced dopamine detection and antitumor ability. ACS Appl. Mater. Interfaces 14, 55201–55216 (2022).

    Article  Google Scholar 

  65. Ouyang, Y. et al. Aptamer-modified Cu2+-functionalized C-dots: versatile means to improve nanozyme activities—“aptananozymes”. J. Am. Chem. Soc. 143, 11510–11519 (2021).

    Article  Google Scholar 

  66. Wu, X., Chen, T., Chen, Y. & Yang, G. Modified Ti3C2 nanosheets as peroxidase mimetics for use in colorimetric detection and immunoassays. J. Mater. Chem. B 8, 2650–2659 (2020).

    Article  Google Scholar 

  67. Zhao, L. et al. The DNA controllable peroxidase mimetic activity of MoS2 nanosheets for constructing a robust colorimetric biosensor. Nanoscale 12, 19420–19428 (2020).

    Article  Google Scholar 

  68. Zhao, Y. et al. Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: inhibiting product adsorption and increasing oxygen vacancies. Nanoscale 11, 17841–17850 (2019).

    Article  Google Scholar 

  69. Liu, B., Huang, Z. & Liu, J. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F detection. Nanoscale 8, 13562–13567 (2016).

    Article  ADS  Google Scholar 

  70. Fan, K. et al. Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem. Commun. 53, 424–427 (2017).

    Article  Google Scholar 

  71. Zhou, Y. et al. Mesoporous encapsulated chiral nanogold for use in enantioselective reactions. Angew. Chem. Int. Ed. 57, 16791–16795 (2018).

    Article  Google Scholar 

  72. Zhang, Z., Zhang, X., Liu, B. & Liu, J. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 139, 5412–5419 (2017). This paper presents a strategy to improve specificity of nanozymes by molecular imprinting.

    Article  Google Scholar 

  73. Jiang, B., Fang, L., Wu, K. M., Yan, X. Y. & Fan, K. L. Ferritins as natural and artificial nanozymes for theranostics. Theranostics 10, 687–706 (2020).

    Article  Google Scholar 

  74. Fan, K. et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 7, 459–464 (2012). This paper presents a nanozyme-based visualization approach for tumour tissues.

    Article  ADS  Google Scholar 

  75. Xu, J. Q. et al. Design of diselenide-bridged hyaluronic acid nano-antioxidant for efficient ROS scavenging to relieve colitis. ACS Nano 16, 13037–13048 (2022).

    Article  Google Scholar 

  76. Cheng, C. Q. et al. Multifunctional nanozyme hydrogel with mucosal healing activity for single-dose ulcerative colitis therapy. Bioconjug. Chem. 33, 248–259 (2022).

    Article  Google Scholar 

  77. Wu, H. Y., Jia, P. P., Zou, Y. & Jiang, J. Cascade targeting tumor mitochondria with CuS nanoparticles for enhanced photothermal therapy in the second near-infrared window. Biomater. Sci. 9, 5209–5217 (2021).

    Article  Google Scholar 

  78. Li, S. R., Zhang, Y. H., Wang, Q., Lin, A. Q. & Wei, H. Nanozyme-enabled analytical chemistry. Anal. Chem. 94, 312–323 (2022).

    Article  Google Scholar 

  79. Chenthamara, D. et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 23, 20 (2019).

    Article  Google Scholar 

  80. Tabish, T. A., Crabtree, M. J., Townley, H. E., Winyard, P. G. & Lygate, C. A. Nitric oxide releasing nanomaterials for cardiovascular applications. J. Am. Coll. Cardiol. Basic. Trans. Sci. 23, 2579–2601 (2023).

    Google Scholar 

  81. Zhu, B. J. et al. Introducing nanozymes: new horizons in periodontal and dental implant care. ChemBioChem 24, e202200636 (2023).

    Article  Google Scholar 

  82. Peng, F. F., Zhang, Y. & Gu, N. Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles. Chin. Chem. Lett. 19, 730–733 (2008).

    Article  Google Scholar 

  83. Singh, N., Savanur, M. A., Srivastava, S., D’Silva, P. & Mugesh, G. A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem. Int. Ed. 56, 14267–14271 (2017).

    Article  Google Scholar 

  84. Zhao, S. et al. An orally administered CeO2@montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy. Adv. Funct. Mater. 30, 2004692 (2020).

    Article  Google Scholar 

  85. Ding, S. et al. Effect of phosphorus modulation in iron single-atom catalysts for peroxidase mimicking. Adv. Mater. 36, 2209633 (2024).

    Article  Google Scholar 

  86. Ai, Y. et al. Ultra-small high-entropy alloy nanoparticles: efficient nanozyme for enhancing tumor photothermal therapy. Adv. Mater. 35, 2302335 (2023).

    Article  Google Scholar 

  87. Gao, L. et al. Standard vocabulary for nanozyme. China Terminol. 22, 21–24 (2020).

    Google Scholar 

  88. Zandieh, M. & Liu, J. Nanozyme catalytic turnover and self-limited reactions. ACS Nano 15, 15645–15655 (2021).

    Article  Google Scholar 

  89. Ji, S. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 4, 407–417 (2021).

    Article  Google Scholar 

  90. Gabrielli, L., Prins, L. J., Rastrelli, F., Mancin, F. & Scrimin, P. Hydrolytic nanozymes. Eur. J. Org. Chem. 2020, 5044–5055 (2020).

    Article  Google Scholar 

  91. Zhu, Z. et al. Translating molecular recognition into a pressure signal to enable rapid, sensitive, and portable biomedical analysis. Angew. Chem. Int. Ed. 54, 10448–10453 (2015).

    Article  Google Scholar 

  92. Villamena, F. A. & Zweier, J. L. Detection of reactive oxygen and nitrogen species by EPR spin trapping. Antioxid. Redox Sign. 6, 619–629 (2004).

    Article  Google Scholar 

  93. Zhang, W. et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 138, 5860–5865 (2016). This paper presents a systematic study of the enzymic activities of Prussian blue.

    Article  Google Scholar 

  94. Komkova, M. A., Ibragimova, O. A., Karyakina, E. E. & Karyakin, A. A. Catalytic pathway of nanozyme “artificial peroxidase” with 100-fold greater bimolecular rate constants compared to those of the enzyme. J. Phys. Chem. Lett. 12, 171–176 (2021).

    Article  Google Scholar 

  95. Wu, G. et al. Critical comparison of the superoxide dismutase-like activity of carbon antioxidant nanozymes by direct superoxide consumption kinetic measurements. ACS Nano 13, 11203–11213 (2019).

    Article  Google Scholar 

  96. Bull, C., Niederhoffer, E. C., Yoshida, T. & Fee, J. A. Kinetic studies of superoxide dismutases: properties of the manganese-containing protein from Thermus thermophilus. J. Am. Chem. Soc. 113, 4069–4076 (1991).

    Article  Google Scholar 

  97. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009). This review describes the basics of the nano–bio interface.

    Article  ADS  Google Scholar 

  98. Cao, F. F. et al. Artificial-enzymes-armed probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nat. Nanotechnol. 18, 617–627 (2023).

    Article  ADS  Google Scholar 

  99. Ma, M. M. et al. Self-protecting biomimetic nanozyme for selective and synergistic clearance of peripheral amyloid-β in an Alzheimer’s disease model. J. Am. Chem. Soc. 142, 21702–21711 (2020).

    Article  Google Scholar 

  100. Jana, D. et al. Ultrasmall alloy nanozyme for ultrasound- and near-infrared light-promoted tumor ablation. ACS Nano 15, 7774–7782 (2021).

    Article  Google Scholar 

  101. Liu, W. L. et al. Integrated cascade nanozymes with antisenescence activities for atherosclerosis therapy. Angew. Chem. Int. Ed. 62, e202304465 (2023).

    Article  ADS  Google Scholar 

  102. Liao, K. H., Lin, Y. S., Macosko, C. W. & Haynes, C. L. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Interfaces 3, 2607–2615 (2011).

    Article  Google Scholar 

  103. Guan, Y. J. et al. Ceria/POMs hybrid nanoparticles as a mimicking metallopeptidase for treatment of neurotoxicity of amyloid-β peptide. Biomaterials 98, 92–102 (2016).

    Article  Google Scholar 

  104. Xu, B. L. et al. Immunomodulation-enhanced nanozyme-based tumor catalytic therapy. Adv. Mater. 32, 2003563 (2020).

    Article  Google Scholar 

  105. Fan, Y. H. et al. Immobilization of nano Cu-MOFs with polydopamine coating for adaptable gasotransmitter generation and copper ion delivery on cardiovascular stents. Biomaterials 204, 36–45 (2019).

    Article  Google Scholar 

  106. Zhang, X. Y. et al. A metal–organic-framework incorporated vascular graft for sustained nitric oxide generation and long-term vascular patency. Chem. Eng. J. 421, 129577 (2021).

    Article  ADS  Google Scholar 

  107. Yang, Z. L. et al. Bioclickable and mussel adhesive peptide mimics for engineering vascular stent surfaces. Proc. Natl Acad. Sci. USA 117, 16127–16137 (2020).

    Article  ADS  Google Scholar 

  108. Myers, J. A., Curtis, B. S. & Curtis, W. R. Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophys. 6, 4 (2013).

    Article  Google Scholar 

  109. Chen, Z. W., Wang, Z. Z., Ren, J. S. & Qu, X. G. Enzyme mimicry for combating bacteria and biofilms. Acc. Chem. Res. 51, 789–799 (2018).

    Article  Google Scholar 

  110. Liu, Q. Y. et al. Nanozyme-cosmetic contact lenses for ocular surface disease prevention. Adv. Mater. 35, 2305555 (2023).

    Article  Google Scholar 

  111. Feng, L. S. et al. Enhancement of nanozyme permeation by endovascular interventional treatment to prevent vascular restenosis via macrophage polarization modulation. Adv. Funct. Mater. 30, 2006581 (2020).

    Article  Google Scholar 

  112. Liang, M. M. & Yan, X. Y. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52, 2190–2200 (2019).

    Article  Google Scholar 

  113. Wei, G. et al. A probiotic nanozyme hydrogel regulates vaginal microenvironment for Candida vaginitis therapy. Sci. Adv. 9, eadg094 (2023).

    Article  Google Scholar 

  114. Liu, Y. F. et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 6, eabb2695 (2020).

    Article  ADS  Google Scholar 

  115. Jiang, D. W. et al. Nanomedicines for renal management: from imaging to treatment. Acc. Chem. Res. 53, 1869–1880 (2020).

    Article  Google Scholar 

  116. Xu, Q. et al. Hypoxia-responsive platinum supernanoparticles for urinary microfluidic monitoring of tumors. Angew. Chem. Int. Ed. 61, e202114239 (2022).

    Article  ADS  Google Scholar 

  117. Wei, H. & Wang, E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 80, 2250–2254 (2008). This paper presents a classical approach for glucose detection using nanozymes.

    Article  Google Scholar 

  118. Lee, H., Shin, W., Kim, H. J. & Kim, J. Turn-on fluorescence sensing of oxygen with dendrimer-encapsulated platinum nanoparticles as tunable oxidase mimics for spatially resolved measurement of oxygen gradient in a human gut-on-a-chip. Anal. Chem. 93, 16123–16132 (2021).

    Article  Google Scholar 

  119. Hu, Y. H. et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11, 5558–5566 (2017).

    Article  Google Scholar 

  120. Wang, X. Y., Qin, L., Zhou, M., Lou, Z. P. & Wei, H. Nanozyme sensor arrays for detecting versatile analytes from small molecules to proteins and cells. Anal. Chem. 90, 11696–11702 (2018).

    Article  Google Scholar 

  121. Kim, M. I., Park, K. S. & Park, H. G. Ultrafast colorimetric detection of nucleic acids based on the inhibition of the oxidase activity of cerium oxide nanoparticles. Chem. Commun. 50, 9577–9580 (2014).

    Article  Google Scholar 

  122. Li, W., Zhi, X., Yang, J. J., Zhang, J. L. & Fu, Y. Colorimetric detection of cysteine and homocysteine based on an oligonucleotide-stabilized Pd nanozyme. Anal. Methods 8, 5111–5116 (2016).

    Article  Google Scholar 

  123. Wang, X. Y. et al. Platinum–nickel nanoparticles with enhanced oxidase-like activity for total antioxidant capacity bioassay. Anal. Chem. 95, 5937–5945 (2023).

    Article  Google Scholar 

  124. Xu, Y. et al. The Fe–N–C nanozyme with both accelerated and inhibited biocatalytic activities capable of accessing drug–drug interactions. Angew. Chem. Int. Ed. 59, 14498–14503 (2020).

    Article  Google Scholar 

  125. Xu, Y. C. et al. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat. Biomed. Eng. 7, 1307–1320 (2023).

    Article  Google Scholar 

  126. Tao, X. Q., Wang, X., Liu, B. W. & Liu, J. W. Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosens. Bioelectron. 168, 112537 (2020).

    Article  Google Scholar 

  127. Dugan, L. L. et al. Carboxyfullerene neuroprotection postinjury in Parkinsonian nonhuman primates. Ann. Neurol. 76, 393–402 (2014).

    Article  Google Scholar 

  128. Kwon, H. J. et al. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson’s disease. Angew. Chem. Int. Ed. 57, 9408–9412 (2018).

    Article  Google Scholar 

  129. Ma, X. X. et al. Prussian blue nanozyme as a pyroptosis inhibitor alleviates neurodegeneration. Adv. Mater. 34, 2106723 (2022).

    Article  Google Scholar 

  130. Gao, N. et al. Polyoxometalate-based nanozyme: design of a multifunctional enzyme for multi-faceted treatment of Alzheimer’s disease. Nano Res. 9, 1079–1090 (2016).

    Article  Google Scholar 

  131. Du, Z., Li, M., Ren, J. S. & Qu, X. G. Current strategies for modulating Aβ aggregation with multifunctional agents. Acc. Chem. Res. 54, 2172–2184 (2021).

    Article  Google Scholar 

  132. Hou, W. D. et al. Excavating bioactivities of nanozyme to remodel microenvironment for protecting chondrocytes and delaying osteoarthritis. Bioact. Mater. 6, 2439–2451 (2021).

    Google Scholar 

  133. Chande, S. & Bergwitz, C. Role of phosphate sensing in bone and mineral metabolism. Nat. Rev. Endocrinol. 14, 637–655 (2018).

    Article  Google Scholar 

  134. Pinna, A. et al. Nanoceria provides antioxidant and osteogenic properties to mesoporous silica nanoparticles for osteoporosis treatment. Acta Biomater. 122, 365–376 (2021).

    Article  Google Scholar 

  135. Karakoti, A. S. et al. Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J. Mater. Chem. 20, 8912–8919 (2010).

    Article  Google Scholar 

  136. Zhang, Y. H., Liu, W. L., Wang, X. Y., Liu, Y. F. & Wei, H. Nanozyme-enabled treatment of cardio- and cerebrovascular diseases. Small 19, 2204809 (2023).

    Article  Google Scholar 

  137. Tian, R. Z. et al. Se-containing MOF coated dual-Fe-atom nanozymes with multi-enzyme cascade activities protect against cerebral ischemic reperfusion injury. Adv. Funct. Mater. 32, 2204025 (2022).

    Article  Google Scholar 

  138. Das, S. et al. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials 33, 7746–7755 (2012).

    Article  Google Scholar 

  139. Augustine, R. et al. Nanoceria can act as the cues for angiogenesis in tissue engineering scaffolds: toward next-generation in situ tissue engineering. ACS Biomater. Sci. Eng. 4, 4338–4353 (2018).

    Article  Google Scholar 

  140. Fedeli, S. et al. Nanomaterial-based bioorthogonal nanozymes for biological applications. Chem. Soc. Rev. 50, 13467–13480 (2021). This review describes nanozyme-based bio-orthogonal reactions for biological applications.

    Article  ADS  Google Scholar 

  141. Zhao, Q. et al. Copper-based SURMOFs for nitric oxide generation: hemocompatibility, vascular cell growth, and tissue response. ACS Appl. Mater. Interfaces 11, 7872–7883 (2019).

    Article  Google Scholar 

  142. Meng, X. Q. et al. High-performance self-cascade pyrite nanozymes for apoptosis–ferroptosis synergistic tumor therapy. ACS Nano 15, 5735–5751 (2021).

    Article  Google Scholar 

  143. Wang, D. D. et al. Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy. Angew. Chem. Int. Ed. 60, 3001–3007 (2021).

    Article  Google Scholar 

  144. Yu, Z. Z., Lou, R. X., Pan, W., Li, N. & Tang, B. Nanoenzymes in disease diagnosis and therapy. Chem. Commun. 56, 15513–15524 (2020).

    Article  Google Scholar 

  145. Gong, F. et al. Ultrasmall oxygen-deficient bimetallic oxide MnWOx nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Adv. Mater. 31, 1900730 (2019).

    Article  Google Scholar 

  146. Liang, Q. et al. A metal-free nanozyme-activated prodrug strategy for targeted tumor catalytic therapy. Nano Today 35, 100935 (2020).

    Article  Google Scholar 

  147. Zhang, X. Z. et al. Degradable ZnS-supported bioorthogonal nanozymes with enhanced catalytic activity for intracellular activation of therapeutics. J. Am. Chem. Soc. 144, 12893–12900 (2022).

    Article  Google Scholar 

  148. Huang, C. C. et al. Hydrogen-bonded organic framework-based bioorthogonal catalysis prevents drug metabolic inactivation. Nat. Catal. 6, 729–739 (2023).

    Article  Google Scholar 

  149. Wang, Z. et al. A bimetallic metal–organic framework encapsulated with DNAzyme for intracellular drug synthesis and self-sufficient gene therapy. Angew. Chem. Int. Ed. 60, 12431–12437 (2021).

    Article  Google Scholar 

  150. You, Y. W. et al. DNA-based platform for efficient and precisely targeted bioorthogonal catalysis in living systems. Nat. Commun. 13, 1459 (2022).

    Article  ADS  Google Scholar 

  151. Makabenta, J. M. V. et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 19, 23–36 (2021).

    Article  Google Scholar 

  152. Jin, L. L. et al. Microenvironment-activated nanozyme-armed bacteriophages efficiently combat bacterial infection. Adv. Mater. 35, 2301349 (2023).

    Article  Google Scholar 

  153. Lee, J. et al. Exploration of nanozymes in viral diagnosis and therapy. Exploration 2, 20210086 (2022).

    Article  Google Scholar 

  154. Oh, M. J. et al. Nanozyme-based robotics approach for targeting fungal infection. Adv. Mater. 36, 2300320 (2024).

    Article  Google Scholar 

  155. Gao, L. Z. et al. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 101, 272–284 (2016).

    Article  Google Scholar 

  156. Naha, P. C. et al. Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption. ACS Nano 13, 4960–4971 (2019). This work presents nanozyme-based therapeutics for dental infection.

    Article  Google Scholar 

  157. Pan, J. Z. et al. A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea. Nat. Commun. 13, 2117 (2022).

    Article  ADS  Google Scholar 

  158. Wei, G. et al. Nanozyme-enhanced probiotic spores regulate the intestinal microenvironment for targeted acute gastroenteritis therapy. Nano Lett. 24, 2289–2298 (2024).

    Article  Google Scholar 

  159. Fang, L. et al. Metastable iron sulfides Gram-dependently counteract resistant Gardnerella vaginalis for bacterial vaginosis treatment. Adv. Sci. 9, 2104341 (2022).

    Article  Google Scholar 

  160. Li, J. W. et al. Nanoprobiotics for remolding the pro-inflammatory microenvironment and microbiome in the treatment of colitis. Nano Lett. 23, 8593–8601 (2023).

    Article  ADS  Google Scholar 

  161. Guo, X. et al. Chiral nanoparticle-remodeled gut microbiota alleviates neurodegeneration via the gut–brain axis. Nat. Aging 3, 1415–1429 (2023).

    Article  Google Scholar 

  162. Wang, Y. T., Li, T. & Wei, H. Determination of the maximum velocity of a peroxidase-like nanozyme. Anal. Chem. 95, 10105–10109 (2023).

    Article  Google Scholar 

  163. Imming, P., Sinning, C. & Meyer, A. Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug. Discov. 5, 821–834 (2006).

    Article  Google Scholar 

  164. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (ST1571, Imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug. Discov. 1, 493–502 (2002).

    Article  Google Scholar 

  165. Jorgensen, W. L. The many roles of computation in drug discovery. Science 303, 1813–1818 (2004).

    Article  ADS  Google Scholar 

  166. Schneider, G. & Fechner, U. Computer-based design of drug-like molecules. Nat. Rev. Drug. Discov. 4, 649–663 (2005).

    Article  Google Scholar 

  167. Turner, N. J. Directed evolution drives the next generation of biocatalysts. Nat. Chem. Biol. 5, 567–573 (2009).

    Article  Google Scholar 

  168. Zhang, L., Wang, H. & Qu, X. G. Biosystem-inspired engineering of nanozymes for biomedical applications. Adv. Mater. 36, 2211147 (2024).

    Article  Google Scholar 

  169. Shi, J. J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).

    Article  Google Scholar 

  170. Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article  ADS  Google Scholar 

  171. Nguyen, L. N. M. et al. The exit of nanoparticles from solid tumours. Nat. Mater. 22, 1261–1272 (2023).

    Article  ADS  Google Scholar 

  172. Ren, J. Y. et al. Chemical and biophysical signatures of the protein corona in nanomedicine. J. Am. Chem. Soc. 144, 9184–9205 (2022).

    Article  Google Scholar 

  173. Xu, R. et al. Nanozyme-based strategies for efficient theranostics of brain diseases. Coordin. Chem. Rev. 501, 215519 (2024).

    Article  Google Scholar 

  174. Jiang, W. et al. Chiral metal–organic frameworks incorporating nanozymes as neuroinflammation inhibitors for managing Parkinson’s disease. Nat. Commun. 14, 8137 (2023).

    Article  ADS  Google Scholar 

  175. Cheng, W. et al. The domino effect in inhaled carbon black nanoparticles triggers blood–brain barrier disruption via altering circulatory inflammation. Nano Today 48, 101721 (2023).

    Article  Google Scholar 

  176. Lv, M. Z. et al. Manganese is critical for antitumor immune responses via cGAS–STING and improves the efficacy of clinical immunotherapy. Cell Res. 30, 966–979 (2020).

    Article  Google Scholar 

  177. Cao, M. J. et al. Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nat. Nanotechnol. 16, 708–716 (2021). This paper presents the bioavailability and biotransformation of nanomaterial (such as MoS2) and offers a guide for the biosafety study of nanozymes.

    Article  ADS  Google Scholar 

  178. Gao, J. C. et al. Intracerebral fate of organic and inorganic nanoparticles is dependent on microglial extracellular vesicle function. Nat. Nanotechnol. 19, 376–386 (2024).

    Article  Google Scholar 

  179. Zhang, R. F., Yan, X. Y. & Fan, K. L. Nanozymes inspired by natural enzymes. Acc. Mater. Res. 2, 534–547 (2021).

    Article  Google Scholar 

  180. Wu, J. J. X. & Wei, H. Efficient design strategies for nanozymes. Prog. Chem. 33, 42–51 (2021).

    ADS  Google Scholar 

  181. Wang, H. C. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).

    Article  ADS  Google Scholar 

  182. White, A. D. The future of chemistry is language. Nat. Rev. Chem. 7, 457–458 (2023).

    Article  Google Scholar 

  183. Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C. & Collins, J. J. Next-generation machine learning for biological networks. Cell 173, 1581–1592 (2018).

    Article  Google Scholar 

  184. Zheng, Z. et al. A GPT-4 reticular chemist for guiding MOF discovery. Angew. Chem. Int. Ed. 62, e202311983 (2023).

    Article  Google Scholar 

  185. Miller, S. L. A production of amino acids under possible primitive earth conditions. Science 117, 528–529 (1953).

    Article  ADS  Google Scholar 

  186. Huber, C. & Wächterschäuser, G. α-Hydroxy and α-amino acids under possible hadean, volcanic origin-of-life conditions. Science 314, 630–632 (2006).

    Article  ADS  Google Scholar 

  187. Muchowska, K. B., Varma, S. J. & Moran, J. Nonenzymatic metabolic reactions and life’s origins. Chem. Rev. 120, 7708–7744 (2020).

    Article  Google Scholar 

  188. Lane, N. & Martin, W. F. The origin of membrane bioenergetics. Cell 151, 1406–1416 (2012).

    Article  Google Scholar 

  189. Leung, C. M. et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2, 33 (2022).

    Article  Google Scholar 

  190. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    Article  ADS  Google Scholar 

  191. Koo, S. et al. Ceria–vesicle nanohybrid therapeutic for modulation of innate and adaptive immunity in a collagen-induced arthritis model. Nat. Nanotechnol. 18, 1502–1514 (2023).

    Article  ADS  Google Scholar 

  192. Martin-Alonso, C. et al. Priming agents transiently reduce the clearance of cell-free DNA to improve liquid biopsies. Science 383, eadf2341 (2024).

    Article  Google Scholar 

  193. Qin, L., Hu, Y. & Wei, H. in Nanozymology: Connecting Biology and Nanotechnology Ch. 4 (ed. Yan, X. Y.) 79–101 (Springer Nature, 2020).

  194. André, R. et al. V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 21, 501–509 (2011).

    Article  Google Scholar 

  195. Khan, N. A. & Jhung, S. H. Synthesis of metal–organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction. Coordin. Chem. Rev. 285, 11–23 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (22374071), the National Key R&D Program of China (2019YFA0709200 and 2021YFF1200700), Jiangsu Provincial Key R&D Program (BE2022836), the PAPD Program, State Key Laboratory of Analytical Chemistry for Life Science (5431ZZXM2306) and Fundamental Research Funds for the Central Universities (202200325, 021314380228 and 021314380195). The writing has been refined with the assistance of ChatGPT with GPT-4 from OpenAI.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (Y.Z. and H.W.); Experimentation (Y.Z., T.L. and X.W.); Results (Y.Z., T.L., Y.W. and H.W.); Applications (G.W., W.L., M.Z., Y.L. and H.W.); Reproducibility and data deposition (all authors); Limitations and optimizations (all authors); Outlook (all authors).

Corresponding author

Correspondence to Hui Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Xiaoyuan Chen, Kelong Fan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Nanozymes database: http://nanozymes.net

Glossary

Activity descriptors

Parameters that can govern the activity of a catalyst.

Catalase

An enzyme that can convert H2O2 into water and oxygen.

Enzyme replacement therapy

A medical intervention in which a deficient or malfunctioning enzyme is supplemented or replaced with a synthetic or modified form of the enzyme to restore physiological functions and alleviate the symptoms associated with enzyme deficiencies or genetic disorders.

Hydrolase

An enzyme that can catalyse the hydrolysis of various chemical bonds through the addition of water molecules.

Interference study

A study focusing on assessing the impact of interfering substances on the accuracy of analysis.

Oxidase

An enzyme that can catalyse the transfer of electrons from a donor molecule to molecular oxygen.

Peroxidase

An enzyme that can catalyse reduction of H2O2 and other organic peroxides using an electron donor.

Self-cascade reactions

A series of consecutive reactions where the product of one enzymatic step becomes the substrate for the subsequent step, resulting in an efficient and self-sustaining cascade of reactions.

Superoxide dismutase

An enzyme that can catalyse the dismutation of superoxide radicals (O2ˉ) into oxygen and H2O2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wei, G., Liu, W. et al. Nanozymes for nanohealthcare. Nat Rev Methods Primers 4, 36 (2024). https://doi.org/10.1038/s43586-024-00315-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00315-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing