Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Femtosecond stimulated Raman spectroscopy

Abstract

First demonstrated in 1994, femtosecond stimulated Raman scattering (FSRS) has gained popularity since the early 2000s as an ultrafast pump–probe vibrational spectroscopy technique with the potential to circumvent the time and energy limitations imposed by the Heisenberg uncertainty principle. This Primer explores whether, why, when and how the temporal precision and frequency resolution of traditional time-resolved spontaneous Raman spectroscopy can be surpassed by its coherent counterpart (FSRS), while still adhering to the uncertainty principle. We delve into the fundamental concepts behind FSRS and its most common experimental implementations, focusing on instrumentation details, measurement techniques, data analysis and modelling. This includes discussions on synthesizing the Raman pump beam, artificial intelligence (AI)-assisted baseline removal methods and analytical expressions for reproducing experimental data and extracting key parameters such as relaxation times and out-of-equilibrium temperature profiles. Recent applications of FSRS from physics, chemistry and biology are showcased, demonstrating how this approach has facilitated cross-disciplinary studies. We also address the technical and conceptual limitations of FSRS to aid in designing optimal experiments based on specific goals. Finally, we explore future directions, including multidimensional extensions to address vibrational couplings and the use of quantum light to untangle temporal and spectral resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The impact of the finite temporal duration of the laser beam on the recorded spontaneous Raman spectrum of fructose without photoexcitation.
Fig. 2: Illustration of a FSRS setup.
Fig. 3: Role of the temporal delay between the Raman and probe pulses.
Fig. 4: Pictorial representation of the FSRS data analysis.
Fig. 5: Comparison of different algorithms for baseline subtraction applied to the FSRS data of cytochrome c, recorded 700 fs after a resonant actinic excitation.
Fig. 6: Role of the resonance condition on the FSRS lineshapes.
Fig. 7: FSRS response in the presence of ultrafast dynamics.
Fig. 8: FSRS response in the presence of population dynamics.

Similar content being viewed by others

References

  1. Smith, E. & Dent, G. Modern Raman Spectroscopy (Wiley, 2019).

  2. Long, D. A. The Raman Effect (Wiley, 2002).

  3. Kruglik, S. G. et al. Subpicosecond oxygen trapping in the heme pocket of the oxygen sensor FixL observed by time-resolved resonance Raman spectroscopy. Proc. Natl Acad. Sci. USA 104, 7408–7413 (2007).

    Article  ADS  Google Scholar 

  4. Yoshizawa, M., Hattori, Y. & Kobayashi, T. Femtosecond time-resolved resonance Raman gain spectroscopy in polydiacetylene. Phys. Rev. B 49, 13259–13262 (1994). To our knowledge, the first demonstration of femtosecond stimulated Raman scattering (FSRS) with 300-fs temporal precision.

    Article  ADS  Google Scholar 

  5. Yoshizawa, M. & Kurosawa, M. Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering. Phys. Rev. A 61, 013808 (1999).

    Article  ADS  Google Scholar 

  6. Kukura, P., McCamant, D. W., Davis, P. H. & Mathies, R. A. Vibrational structure of the S2 (1Bu) excited state of diphenyloctatetraene observed by femtosecond stimulated Raman spectroscopy. Chem. Phys. Lett. 382, 81–86 (2003).

    Article  ADS  Google Scholar 

  7. Kukura, P., McCamant, D. W., Yoon, S., Wandschneider, D. B. & Mathies, R. A. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science 310, 1006–1009 (2005).

    Article  ADS  Google Scholar 

  8. Dietze, D. R. & Mathies, R. A. Femtosecond stimulated Raman spectroscopy. ChemPhysChem 17, 1224–1251 (2016).

    Article  Google Scholar 

  9. Prince, R. C., Frontiera, R. R. & Potma, E. O. Stimulated Raman scattering: from bulk to nano. Chem. Rev. 117, 5070–5094 (2017).

    Article  Google Scholar 

  10. Fang, C. & Tang, L. Mapping structural dynamics of proteins with femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 71, 239–265 (2020).

    Article  ADS  Google Scholar 

  11. Lynch, P. G., Das, A., Alam, S., Rich, C. C. & Frontiera, R. R. Mastering femtosecond stimulated Raman spectroscopy: a practical guide. ACS Phys. Chem. Au 4, 1–18 (2024).

    Article  Google Scholar 

  12. Batignani, G. et al. Electronic resonances in broadband stimulated Raman spectroscopy. Sci. Rep. 6, 18445 (2016).

    Article  ADS  Google Scholar 

  13. Oscar, B. G., Chen, C., Liu, W., Zhu, L. & Fang, C. Dynamic Raman line shapes on an evolving excited-state landscape: insights from tunable femtosecond stimulated Raman spectroscopy. J. Phys. Chem. A 121, 5428–5441 (2017).

    Article  Google Scholar 

  14. Batignani, G. et al. Genuine dynamics vs cross phase modulation artifacts in femtosecond stimulated Raman spectroscopy. ACS Photon. 6, 492–500 (2019).

    Article  Google Scholar 

  15. Agrawal, G. Nonlinear Fiber Optics (Academic Press, 2013).

  16. Silva, W. R., Keller, E. L. & Frontiera, R. R. Determination of resonance Raman cross-sections for use in biological SERS sensing with femtosecond stimulated Raman spectroscopy. Anal. Chem. 86, 7782–7787 (2014).

    Article  Google Scholar 

  17. Takaya, T. & Iwata, K. Relaxation mechanism of β-carotene from S2 (1Bu+) state to S1 (2Ag) state: femtosecond time-resolved near-IR absorption and stimulated resonance Raman studies in 900–1550 nm region. J. Phys. Chem. A 118, 4071–4078 (2014).

    Article  Google Scholar 

  18. Tang, L. et al. Unraveling ultrafast photoinduced proton transfer dynamics in a fluorescent protein biosensor for Ca2+ imaging. Chem. A Eur. J. 21, 6481–6490 (2015).

    Article  Google Scholar 

  19. Liu, W., Han, F., Smith, C. & Fang, C. Ultrafast conformational dynamics of pyranine during excited state proton transfer in aqueous solution revealed by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 116, 10535–10550 (2012).

    Article  Google Scholar 

  20. McCamant, D. W., Kukura, P., Yoon, S. & Mathies, R. A. Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods. Rev. Sci. Instrum. 75, 4971–4980 (2004). This article presents a pioneering description of a basic FSRS setup.

    Article  ADS  Google Scholar 

  21. Kloz, M., Weißenborn, J., Polívka, T., Frank, H. A. & Kennis, J. T. M. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S* state. Phys. Chem. Chem. Phys. 18, 14619–14628 (2016).

    Article  Google Scholar 

  22. Pu, R. et al. Investigation of ultrafast configurational photoisomerization of bilirubin using femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 14, 809–816 (2023).

    Article  Google Scholar 

  23. Quincy, T. J., Barclay, M. S., Caricato, M. & Elles, C. G. Probing dynamics in higher-lying electronic states with resonance-enhanced femtosecond stimulated Raman spectroscopy. J. Phys. Chem. A 122, 8308–8319 (2018).

    Article  Google Scholar 

  24. Batignani, G. et al. Visualizing excited-state dynamics of a diaryl thiophene: femtosecond stimulated Raman scattering as a probe of conjugated molecules. J. Phys. Chem. Lett. 7, 2981–2988 (2016).

    Article  Google Scholar 

  25. Würthwein, T., Lüpken, N. M., Irwin, N. & Fallnich, C. Mitigating cross-phase modulation artifacts in femtosecond stimulated Raman scattering. J. Raman Spectrosc. 51, 2265–2271 (2020).

    Article  ADS  Google Scholar 

  26. Zhang, W. et al. Direct tracking excited-state intramolecular charge redistribution of acceptor–donor–acceptor molecule by means of femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 125, 4456–4464 (2021).

    Article  Google Scholar 

  27. Jen, M., Lee, S., Lee, G., Lee, D. & Pang, Y. Intramolecular charge transfer of curcumin and solvation dynamics of DMSO probed by time-resolved Raman spectroscopy. Int. J. Mol. Sci. 23, 1727 (2022).

    Article  Google Scholar 

  28. Krueger, T. D., Tang, L. & Fang, C. Delineating ultrafast structural dynamics of a green-red fluorescent protein for calcium sensing. Biosensors 13, 218 (2023).

    Article  Google Scholar 

  29. Molesky, B. P., Guo, Z. & Moran, A. M. Femtosecond stimulated Raman spectroscopy by six-wave mixing. J. Chem. Phys. 142, 212405 (2015).

    Article  ADS  Google Scholar 

  30. Kovalenko, S. A., Dobryakov, A. L. & Ernsting, N. P. An efficient setup for femtosecond stimulated Raman spectroscopy. Rev. Sci. Instrum. 82, 063102 (2011).

    Article  ADS  Google Scholar 

  31. Kuramochi, H., Fujisawa, T., Takeuchi, S. & Tahara, T. Broadband stimulated Raman spectroscopy in the deep ultraviolet region. Chem. Phys. Lett. 683, 543–546 (2017). This article describes FSRS with a tunable ultraviolet pump.

    Article  ADS  Google Scholar 

  32. Hall, C. R. et al. Femtosecond stimulated Raman study of the photoactive flavoprotein AppABLUF. Chem. Phys. Lett. 683, 365–369 (2017).

    Article  ADS  Google Scholar 

  33. Barak, A. et al. Solvent polarity governs ultrafast structural dynamics: a case study of 4-dimethylamino-4′-carbomethoxydiphenylacetylene. J. Phys. Chem. C 127, 5855–5865 (2023).

    Article  Google Scholar 

  34. Ferrante, C., Pontecorvo, E., Cerullo, G., Vos, M. H. & Scopigno, T. Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin. Nat. Chem. 8, 1137–1143 (2016).

    Article  Google Scholar 

  35. Ruchira Silva, W. & Frontiera, R. R. Excited state structural evolution during charge-transfer reactions in betaine-30. Phys. Chem. Chem. Phys. 18, 20290–20297 (2016).

    Article  Google Scholar 

  36. Manzoni, C. & Cerullo, G. Design criteria for ultrafast optical parametric amplifiers. J. Opt. 18, 103501 (2016).

    Article  ADS  Google Scholar 

  37. Kärtner, F. X. et al. Design and fabrication of double-chirped mirrors. Opt. Lett. 22, 831 (1997).

    Article  ADS  Google Scholar 

  38. Rullière, C. (ed.) Femtosecond Laser Pulses (Springer, 2005).

  39. Pastorczak, M., Nejbauer, M. & Radzewicz, C. Femtosecond infrared pump-stimulated Raman probe spectroscopy: the first application of the method to studies of vibrational relaxation pathways in the liquid HDO/D2O system. Phys. Chem. Chem. Phys. 21, 16895–16904 (2019). This article describes the use of FSRS with an infrared actinic pump.

    Article  Google Scholar 

  40. Henstridge, M., Först, M., Rowe, E., Fechner, M. & Cavalleri, A. Nonlocal nonlinear phononics. Nat. Phys. 18, 457–461 (2022). This article describes the probing phonon polariton via FSRS upon terahertz actinic pump excitation.

    Article  Google Scholar 

  41. Polli, D., Brida, D., Mukamel, S., Lanzani, G. & Cerullo, G. Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses. Phys. Rev. A 82, 053809 (2010).

    Article  ADS  Google Scholar 

  42. Hart, S. M., Silva, W. R. & Frontiera, R. R. Femtosecond stimulated Raman evidence for charge-transfer character in pentacene singlet fission. Chem. Sci. 9, 1242–1250 (2018).

    Article  Google Scholar 

  43. Jen, M., Lee, S., Jeon, K., Hussain, S. & Pang, Y. Ultrafast intramolecular proton transfer of alizarin investigated by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 121, 4129–4136 (2017).

    Article  Google Scholar 

  44. Pižl, M. et al. Time-resolved femtosecond stimulated Raman spectra and DFT anharmonic vibrational analysis of an electronically excited rhenium photosensitizer. J. Phys. Chem. A 124, 1253–1265 (2020).

    Article  Google Scholar 

  45. Hontani, Y. et al. Molecular origin of photoprotection in cyanobacteria probed by watermarked femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 9, 1788–1792 (2018).

    Article  Google Scholar 

  46. Shenje, L., Qu, Y., Popik, V. & Ullrich, S. Femtosecond photodecarbonylation of photo-ODIBO studied by stimulated Raman spectroscopy and density functional theory. Phys. Chem. Chem. Phys. 23, 25637–25648 (2021).

    Article  Google Scholar 

  47. Pontecorvo, E. et al. Femtosecond stimulated Raman spectrometer in the 320–520 nm range. Opt. Express 19, 1107–1112 (2011). To our knowledge, this article is the first demonstration of a tunable Raman pump FSRS with a second harmonic generation spectral compression approach.

    Article  ADS  Google Scholar 

  48. Pontecorvo, E., Ferrante, C., Elles, C. G. & Scopigno, T. Spectrally tailored narrowband pulses for femtosecond stimulated Raman spectroscopy in the range 330–750 nm. Opt. Express 21, 6866–6872 (2013).

    Article  ADS  Google Scholar 

  49. Takaya, T. & Iwata, K. Development of a femtosecond time-resolved near-IR multiplex stimulated Raman spectrometer in resonance with transitions in the 900–1550 nm region. Analyst 141, 4283–4292 (2016).

    Article  ADS  Google Scholar 

  50. Addison, K. et al. Photophysics of the red-form Kaede chromophore. Chem. Sci. 14, 3763–3775 (2023).

    Article  Google Scholar 

  51. Kuramochi, H., Takeuchi, S., Kamikubo, H., Kataoka, M. & Tahara, T. Skeletal structure of the chromophore of photoactive yellow protein in the excited state investigated by ultraviolet femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 125, 6154–6161 (2021).

    Article  Google Scholar 

  52. Roy, P., Al-Kahtani, F., Cammidge, A. N. & Meech, S. R. Solvent tuning excited state structural dynamics in a novel bianthryl. J. Phys. Chem. Lett. 14, 253–259 (2023).

    Article  Google Scholar 

  53. Zhao, Z., Pu, R., Wang, Z., Jiang, J. & Liu, W. Identification of ultraviolet photoinduced presolvated electrons in water as the reducing agent in the photoreduction of graphene oxide. J. Phys. Chem. C 127, 3516–3522 (2022).

    Article  Google Scholar 

  54. Wei, J. et al. Tracking ultrafast structural dynamics in a dual-emission anti-Kasha-active fluorophore using femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 12, 4466–4473 (2021).

    Article  Google Scholar 

  55. Laimgruber, S., Schachenmayr, H., Schmidt, B., Zinth, W. & Gilch, P. A femtosecond stimulated Raman spectrograph for the near ultraviolet. Appl. Phys. B 85, 557–564 (2006). To our knowledge, this article is the first demonstration of FSRS with a fixed-wavelength ultraviolet Raman pump.

    Article  ADS  Google Scholar 

  56. Zhu, L., Liu, W. & Fang, C. A versatile femtosecond stimulated Raman spectroscopy setup with tunable pulses in the visible to near infrared. Appl. Phys. Lett. 105, 041106 (2014).

    Article  ADS  Google Scholar 

  57. Bera, K., Douglas, C. J. & Frontiera, R. R. Femtosecond stimulated Raman spectroscopy-guided library mining leads to efficient singlet fission in rubrene derivatives. Chem. Sci. 12, 13825–13835 (2021).

    Article  Google Scholar 

  58. Barclay, M. S., Caricato, M. & Elles, C. G. Femtosecond stimulated Raman scattering from triplet electronic states: experimental and theoretical study of resonance enhancements. J. Phys. Chem. A 123, 7720–7732 (2019).

    Article  Google Scholar 

  59. Han, F., Liu, W. & Fang, C. Excited-state proton transfer of photoexcited pyranine in water observed by femtosecond stimulated Raman spectroscopy. Chem. Phys. 422, 204–219 (2013).

    Article  Google Scholar 

  60. Marangoni, M. et al. Synthesis of picosecond pulses by spectral compression and shaping of femtosecond pulses in engineered quadratic nonlinear media. Opt. Lett. 34, 241–243 (2009).

    Article  ADS  Google Scholar 

  61. Marangoni, M. A. et al. Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals. Opt. Express 15, 8884 (2007).

    Article  ADS  Google Scholar 

  62. Hoffman, D. P., Valley, D., Ellis, S. R., Creelman, M. & Mathies, R. A. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy. Opt. Express 21, 21685 (2013).

    Article  ADS  Google Scholar 

  63. Lessing, H. E. & Von Jena, A. Separation of rotational diffusion and level kinetics in transient absorption spectroscopy. Chem. Phys. Lett. 42, 213–217 (1976).

    Article  ADS  Google Scholar 

  64. Yoon, S. et al. Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump–probe time delay. J. Chem. Phys. 122, 024505 (2005).

    Article  ADS  Google Scholar 

  65. Batignani, G., Fumero, G., Mai, E., Martinati, M. & Scopigno, T. Stimulated Raman lineshapes in the large light–matter interaction limit. Opt. Mater. X 13, 100134 (2022).

    Google Scholar 

  66. Potma, E. O. & Mukamel, S. Theory of coherent Raman scattering. In Coherent Raman Scattering Microscopy (eds Cheng, J.-X. & Xie, X. S.) (CRC Press, 2012).

  67. Marx, B., Czerwinski, L., Light, R., Somekh, M. & Gilch, P. Multichannel detectors for femtosecond stimulated Raman microscopy — ideal and real ones. J. Raman Spectrosc. 45, 521–527 (2014).

    Article  ADS  Google Scholar 

  68. Polli, D., Kumar, V., Valensise, C. M., Marangoni, M. & Cerullo, G. Broadband coherent Raman scattering microscopy. Laser Photon Rev. 12, 1800020 (2018).

    Article  ADS  Google Scholar 

  69. Sciortino, G. et al. Four-channel differential lock-in amplifiers with autobalancing network for stimulated Raman spectroscopy. IEEE J. Solid State Circuits 56, 1859–1870 (2021).

    Article  ADS  Google Scholar 

  70. Diaz, S. A. & McCamant, D. W. Diffuse reflectance-based femtosecond stimulated Raman spectroscopy of opaque suspensions. Anal. Chem. 95, 15856–15860 (2023).

    Article  Google Scholar 

  71. Dasgupta, J., Frontiera, R. R., Taylor, K. C., Lagarias, J. C. & Mathies, R. A. Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy. Proc. Natl Acad. Sci. USA 106, 1784–1789 (2009).

    Article  ADS  Google Scholar 

  72. Tauber, M. J., Mathies, R. A., Chen, X. & Bradforth, S. E. Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy. Rev. Sci. Instrum. 74, 4958–4960 (2003).

    Article  ADS  Google Scholar 

  73. Anderson, K. E. H., Sewall, S. L., Cooney, R. R. & Kambhampati, P. Noise analysis and noise reduction methods in kilohertz pump–probe experiments. Rev. Sci. Instrum. 78, 073101 (2007).

    Article  ADS  Google Scholar 

  74. Audier, X., Heuke, S., Volz, P., Rimke, I. & Rigneault, H. Noise in stimulated Raman scattering measurement: from basics to practice. APL Photon. 5, 011101 (2020).

    Article  ADS  Google Scholar 

  75. Robben, K. C. & Cheatum, C. M. Edge-pixel referencing suppresses correlated baseline noise in heterodyned spectroscopies. J. Chem. Phys. 152, 094201 (2020).

    Article  ADS  Google Scholar 

  76. Gautam, R., Vanga, S., Ariese, F. & Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2, 8 (2015).

    Article  Google Scholar 

  77. Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627 (1964).

    Article  ADS  Google Scholar 

  78. Zhao, J., Lui, H., McLean, D. I. & Zeng, H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 61, 1225–1232 (2007).

    Article  ADS  Google Scholar 

  79. Wahab, M. F. & O’Haver, T. C. Wavelet transforms in separation science for denoising and peak overlap detection. J. Sep. Sci. 43, 1998–2010 (2020).

    Article  Google Scholar 

  80. Eilers, P. H. C. A perfect smoother. Anal. Chem. 75, 3631–3636 (2003).

    Article  Google Scholar 

  81. Gebrekidan, M. T., Knipfer, C. & Braeuer, A. S. Refinement of spectra using a deep neural network: fully automated removal of noise and background. J. Raman Spectrosc. 52, 723–736 (2021).

    Article  ADS  Google Scholar 

  82. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  Google Scholar 

  83. Grumstrup, E. M. et al. Frequency modulated femtosecond stimulated Raman spectroscopy of ultrafast energy transfer in a donor–acceptor copolymer. J. Phys. Chem. B 117, 8245–8255 (2013).

    Article  Google Scholar 

  84. Kloz, M., van Grondelle, R. & Kennis, J. T. M. Wavelength-modulated femtosecond stimulated Raman spectroscopy — approach towards automatic data processing. Phys. Chem. Chem. Phys. 13, 18123 (2011).

    Article  Google Scholar 

  85. Bera, K., Kwang, S. Y., Cassabaum, A. A., Rich, C. C. & Frontiera, R. R. Facile background discrimination in femtosecond stimulated Raman spectroscopy using a dual-frequency Raman pump technique. J. Phys. Chem. A 123, 7932–7939 (2019).

    Article  Google Scholar 

  86. Valensise, C. M. et al. Removing non-resonant background from CARS spectra via deep learning. APL Photon. 5, 061305 (2020).

    Article  ADS  Google Scholar 

  87. Wahl, J., Sjödahl, M. & Ramser, K. Single-step preprocessing of Raman spectra using convolutional neural networks. Appl. Spectrosc. 74, 427–438 (2020).

    Article  ADS  Google Scholar 

  88. Barton, S., Alakkari, S., O’Dwyer, K., Ward, T. & Hennelly, B. Convolution network with custom loss function for the denoising of low SNR Raman spectra. Sensors 21, 4623 (2021).

    Article  ADS  Google Scholar 

  89. Abdolghader, P. et al. Unsupervised hyperspectral stimulated Raman microscopy image enhancement: denoising and segmentation via one-shot deep learning. Opt. Express 29, 34205 (2021).

    Article  ADS  Google Scholar 

  90. Luo, R., Popp, J. & Bocklitz, T. Deep learning for Raman spectroscopy: a review. Analytica 3, 287–301 (2022).

    Article  Google Scholar 

  91. Fumero, G. et al. Retrieving genuine nonlinear Raman responses in ultrafast spectroscopy via deep learning. Preprint at https://arxiv.org/abs/2309.16933 (2023).

  92. Batignani, G. et al. Probing ultrafast photo-induced dynamics of the exchange energy in a Heisenberg antiferromagnet. Nat. Photon. 9, 506–510 (2015). This article presents the measurement of sub-100-fs dynamics in a solid-state sample with high-resolution FSRS.

    Article  ADS  Google Scholar 

  93. Hall, C. R. et al. Ultrafast dynamics in light-driven molecular rotary motors probed by femtosecond stimulated Raman spectroscopy. J. Am. Chem. Soc. 139, 7408–7414 (2017).

    Article  Google Scholar 

  94. Wang, Z. et al. Mapping the complete photocycle that powers a large Stokes shift red fluorescent protein. Angew. Chem. Int. Ed. 62, e202212209 (2023).

    Article  Google Scholar 

  95. Ferrante, C. et al. Resonant broadband stimulated Raman scattering in myoglobin. J. Raman Spectrosc. 49, 913–920 (2018).

    Article  ADS  Google Scholar 

  96. Umapathy, S., Mallick, B. & Lakshmanna, A. Mode-dependent dispersion in Raman line shapes: observation and implications from ultrafast Raman loss spectroscopy. J. Chem. Phys. 133, 024505 (2010).

    Article  ADS  Google Scholar 

  97. Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1999).

  98. Weigel, A. et al. Femtosecond stimulated Raman spectroscopy of flavin after optical excitation. J. Phys. Chem. B 115, 3656–3680 (2011).

    Article  Google Scholar 

  99. Batignani, G., Ferrante, C. & Scopigno, T. Accessing excited state molecular vibrations by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 11, 7805–7813 (2020).

    Article  Google Scholar 

  100. Chen, C. et al. Photoinduced proton transfer of GFP-inspired fluorescent superphotoacids: principles and design. J. Phys. Chem. B 123, 3804–3821 (2019).

    Article  Google Scholar 

  101. Chen, C. et al. Unveiling structural motions of a highly fluorescent superphotoacid by locking and fluorinating the GFP chromophore in solution. J. Phys. Chem. Lett. 8, 5921–5928 (2017).

    Article  Google Scholar 

  102. Champion, P. M. Following the flow of energy in biomolecules. Science 310, 980–982 (2005).

    Article  Google Scholar 

  103. McCamant, D. W. Re-evaluation of rhodopsin’s relaxation kinetics determined from femtosecond stimulated Raman lineshapes. J. Phys. Chem. B 115, 9299–9305 (2011).

    Article  Google Scholar 

  104. Mukamel, S. & Biggs, J. D. Communication: comment on the effective temporal and spectral resolution of impulsive stimulated Raman signals. J. Chem. Phys. 134, 161101 (2011). Key discussion of FSRS resolution and the Heisenberg principle.

    Article  ADS  Google Scholar 

  105. Fingerhut, B. P., Dorfman, K. E. & Mukamel, S. Probing the conical intersection dynamics of the RNA base uracil by UV-pump stimulated-Raman-probe signals; ab initio simulations. J. Chem. Theory Comput. 10, 1172–1188 (2014).

    Article  Google Scholar 

  106. Ferrante, C. et al. Ultrafast dynamics and vibrational relaxation in six-coordinate heme proteins revealed by femtosecond stimulated Raman spectroscopy. J. Am. Chem. Soc. 142, 2285–2292 (2020).

    Article  Google Scholar 

  107. Sandoval, J. S. & McCamant, D. W. The best models of Bodipy’s electronic excited state: comparing predictions from various DFT functionals with measurements from femtosecond stimulated Raman spectroscopy. J. Phys. Chem. A 127, 8238–8251 (2023).

    Article  Google Scholar 

  108. Kayal, S., Roy, K. & Umapathy, S. Femtosecond coherent nuclear dynamics of excited tetraphenylethylene: ultrafast transient absorption and ultrafast Raman loss spectroscopic studies. J. Chem. Phys. 148, 024301 (2018).

    Article  ADS  Google Scholar 

  109. Barclay, M. S., Quincy, T. J., Williams-Young, D. B., Caricato, M. & Elles, C. G. Accurate assignments of excited-state resonance Raman spectra: a benchmark study combining experiment and theory. J. Phys. Chem. A 121, 7937–7946 (2017).

    Article  Google Scholar 

  110. Zhou, J., Yu, W. & Bragg, A. E. Structural relaxation of photoexcited quaterthiophenes probed with vibrational specificity. J. Phys. Chem. Lett. 6, 3496–3502 (2015).

    Article  Google Scholar 

  111. Burns, K. H., Quincy, T. J. & Elles, C. G. Excited-state resonance Raman spectroscopy probes the sequential two-photon excitation mechanism of a photochromic molecular switch. J. Chem. Phys. 157, 234302 (2022).

    Article  ADS  Google Scholar 

  112. Tahara, S., Kuramochi, H., Takeuchi, S. & Tahara, T. Protein dynamics preceding photoisomerization of the retinal chromophore in bacteriorhodopsin revealed by deep-UV femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 10, 5422–5427 (2019).

    Article  Google Scholar 

  113. Roy, P., Browne, W. R., Feringa, B. L. & Meech, S. R. Ultrafast motion in a third generation photomolecular motor. Nat. Commun. 14, 1253 (2023).

    Article  ADS  Google Scholar 

  114. Wang, Z., Jiang, J., Huang, Y. & Liu, W. Tracking twisted intramolecular charge transfer and isomerization dynamics in 9-(2,2-dicyanovinyl) julolidine using femtosecond stimulated Raman spectroscopy. Chin. J. Chem. Phys. 36, 397–403 (2023).

    Article  Google Scholar 

  115. Weigel, A. & Ernsting, N. P. Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 114, 7879–7893 (2010).

    Article  Google Scholar 

  116. Shim, S., Dasgupta, J. & Mathies, R. A. Femtosecond time-resolved stimulated Raman reveals the birth of bacteriorhodopsin’s J and K intermediates. J. Am. Chem. Soc. 131, 7592–7597 (2009).

    Article  Google Scholar 

  117. McCamant, D. W., Kukura, P. & Mathies, R. A. Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin. J. Phys. Chem. B 109, 10449–10457 (2005).

    Article  Google Scholar 

  118. Hontani, Y. et al. Spectroscopic and computational observation of glutamine tautomerization in the blue light sensing using flavin domain photoreaction. J. Am. Chem. Soc. 145, 1040–1052 (2023).

    Article  Google Scholar 

  119. Lee, J., Challa, J. R. & McCamant, D. W. Ultraviolet light makes dGMP floppy: femtosecond stimulated Raman spectroscopy of 2′-deoxyguanosine 5′-monophosphate. J. Phys. Chem. B 121, 4722–4732 (2017).

    Article  Google Scholar 

  120. Kumar, P. et al. Excited-state proton transfer dynamics in LSSmOrange studied by time-resolved impulsive stimulated Raman spectroscopy. J. Phys. Chem. Lett. 12, 7466–7473 (2021).

    Article  Google Scholar 

  121. Solaris, J., Krueger, T. D., Chen, C. & Fang, C. Photogrammetry of ultrafast excited-state intramolecular proton transfer pathways in the fungal pigment draconin red. Molecules 28, 3506 (2023).

    Article  Google Scholar 

  122. Fang, C., Frontiera, R. R., Tran, R. & Mathies, R. A. Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature 462, 200–204 (2009). To our knowledge, this article presents the first FSRS application to track nuclear motion underlying proton transfer.

    Article  ADS  Google Scholar 

  123. Verma, P. et al. Excited-state symmetry breaking in quadrupolar pull–push–pull molecules: dicyanovinyl vs. cyanophenyl acceptors. Phys. Chem. Chem. Phys. 25, 22689–22699 (2023).

    Article  Google Scholar 

  124. Lee, S., Jen, M., Jang, T., Lee, G. & Pang, Y. Twisted intramolecular charge transfer of nitroaromatic push–pull chromophores. Sci. Rep. 12, 6557 (2022).

    Article  ADS  Google Scholar 

  125. Karmakar, S. et al. Transient Raman snapshots of the twisted intramolecular charge transfer state in a stilbazolium dye. J. Phys. Chem. Lett. 11, 4842–4848 (2020).

    Article  Google Scholar 

  126. Roy, P. et al. Ultrafast bridge planarization in donor-π-acceptor copolymers drives intramolecular charge transfer. Nat. Commun. 8, 1716 (2017).

    Article  ADS  Google Scholar 

  127. Lockard, J. V., Butler Ricks, A., Co, D. T. & Wasielewski, M. R. Interrogating the intramolecular charge-transfer state of a julolidine−anthracene donor−acceptor molecule with femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 1, 215–218 (2010).

    Article  Google Scholar 

  128. Kuramochi, H., Takeuchi, S. & Tahara, T. Ultrafast structural evolution of photoactive yellow protein chromophore revealed by ultraviolet resonance femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 3, 2025–2029 (2012).

    Article  Google Scholar 

  129. Creelman, M., Kumauchi, M., Hoff, W. D. & Mathies, R. A. Chromophore dynamics in the PYP photocycle from femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 118, 659–667 (2014).

    Article  Google Scholar 

  130. Batignani, G. et al. Temperature dependence of Coherent versus spontaneous Raman Scattering. Preprint at https://arxiv.org/abs/2405.00521 (2024).

  131. Harbola, U., Umapathy, S. & Mukamel, S. Loss and gain signals in broadband stimulated-Raman spectra: theoretical analysis. Phys. Rev. A 88, 11801 (2013).

    Article  ADS  Google Scholar 

  132. Chen, C. et al. Structural characterization of fluorescent proteins using tunable femtosecond stimulated Raman spectroscopy. Int. J. Mol. Sci. 24, 11991 (2023).

    Article  Google Scholar 

  133. Shim, S., Stuart, C. M. & Mathies, R. A. Resonance Raman cross‐sections and vibronic analysis of rhodamine 6G from broadband stimulated Raman spectroscopy. ChemPhysChem 9, 697–699 (2008).

    Article  Google Scholar 

  134. Batignani, G., Mai, E., Fumero, G., Mukamel, S. & Scopigno, T. Absolute excited state molecular geometries revealed by resonance Raman signals. Nat. Commun. 13, 7770 (2022).

    Article  ADS  Google Scholar 

  135. Liu, W. et al. Tracking ultrafast vibrational cooling during excited-state proton transfer reaction with anti-Stokes and Stokes femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 8, 997–1003 (2017).

    Article  Google Scholar 

  136. Nakamura, R., Hamada, N., Abe, K. & Yoshizawa, M. Ultrafast hydrogen-bonding dynamics in the electronic excited state of photoactive yellow protein revealed by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 116, 14768–14775 (2012).

    Article  Google Scholar 

  137. Mehlenbacher, R. D., Lyons, B., Wilson, K. C., Du, Y. & McCamant, D. W. Theoretical analysis of anharmonic coupling and cascading Raman signals observed with femtosecond stimulated Raman spectroscopy. J. Chem. Phys. 131, 244512 (2009).

    Article  ADS  Google Scholar 

  138. Kukura, P., McCamant, D. W. & Mathies, R. A. Femtosecond time-resolved stimulated Raman spectroscopy of the S2 (1Bu+) excited state of β-carotene. J. Phys. Chem. A 108, 5921–5925 (2004).

    Article  Google Scholar 

  139. Yoon, S., Kukura, P., Stuart, C. M. & Mathies, R. A. Direct observation of the ultrafast intersystem crossing in tris(2,2′-bipyridine)ruthenium(II) using femtosecond stimulated Raman spectroscopy. Mol. Phys. 104, 1275–1282 (2006).

    Article  ADS  Google Scholar 

  140. Krueger, T. D. et al. Ultrafast triplet state formation in a methylated fungi-derived pigment: toward rational molecular design for sustainable optoelectronics. J. Phys. Chem. C 125, 17565–17572 (2021).

    Article  Google Scholar 

  141. Farrow, G. A. et al. On the intersystem crossing rate in a platinum(ii) donor–bridge–acceptor triad. Phys. Chem. Chem. Phys. 23, 21652–21663 (2021).

    Article  Google Scholar 

  142. Ellis, S. R., Hoffman, D. P., Park, M. & Mathies, R. A. Difference bands in time-resolved femtosecond stimulated Raman spectra of photoexcited intermolecular electron transfer from chloronaphthalene to tetracyanoethylene. J. Phys. Chem. A 122, 3594–3605 (2018).

    Article  Google Scholar 

  143. Young, R. M. et al. Ultrafast conformational dynamics of electron transfer in ExBox4+perylene. J. Phys. Chem. A 117, 12438–12448 (2013).

    Article  ADS  Google Scholar 

  144. Frontiera, R. R., Dasgupta, J. & Mathies, R. A. Probing interfacial electron transfer in coumarin 343 sensitized TiO2 nanoparticles with femtosecond stimulated Raman. J. Am. Chem. Soc. 131, 15630–15632 (2009).

    Article  Google Scholar 

  145. Batignani, G. et al. Modeling the ultrafast response of two-magnon Raman excitations in antiferromagnets on the femtosecond timescale. Ann. Phys. 531, 1900439 (2019).

    Article  Google Scholar 

  146. Provencher, F. et al. Direct observation of ultrafast long-range charge separation at polymer–fullerene heterojunctions. Nat. Commun. 5, 4288 (2014).

    Article  ADS  Google Scholar 

  147. Bera, K., Douglas, C. J. & Frontiera, R. R. Femtosecond Raman microscopy reveals structural dynamics leading to triplet separation in rubrene singlet fission. J. Phys. Chem. Lett. 8, 5929–5934 (2017).

    Article  Google Scholar 

  148. Fumero, G., Batignani, G., Dorfman, K. E., Mukamel, S. & Scopigno, T. On the resolution limit of femtosecond stimulated Raman spectroscopy: modelling fifth-order signals with overlapping pulses. ChemPhysChem 16, 3438–3443 (2015).

    Article  Google Scholar 

  149. Lafuente, B., Downs, R. T., Yang, H. & Stone, N. in Highlights in Mineralogical Crystallography (eds Armbruster, T. & Danisi, R. M.) (De Gruyter, 2015).

  150. Bell, I. M., Clark, R. J. H. & Gibbs, P. J. Raman Spectroscopic Library of Natural and Synthetic Pigments. Christopher Ingold Laboratories/University College London https://www.chem.ucl.ac.uk/resources/raman/ (1998).

  151. Fremout, W. & Saverwyns, S. Identification of synthetic organic pigments: the role of a comprehensive digital Raman spectral library. J. Raman Spectrosc. 43, 1536–1544 (2012).

    Article  ADS  Google Scholar 

  152. Dietze, D. FSRS tools 1.1. documentation. GitHub http://ddietze.github.io/FSRStools/ (2014).

  153. Dietze, D. & Ellis, S. pyFSRS. GitHub https://github.com/ddietze/pyFSRS (2019).

  154. Agrawal, G. P., Baldeck, P. L. & Alfano, R. R. Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers. Phys. Rev. A 40, 5063–5072 (1989).

    Article  ADS  Google Scholar 

  155. Lim, S., Chon, B., Rhee, H. & Cho, M. Spectral modulation of stimulated Raman scattering signal: beyond weak Raman pump limit. J. Raman Spectrosc. 49, 607–620 (2018).

    Article  ADS  Google Scholar 

  156. Kuramochi, H., Takeuchi, S. & Tahara, T. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: apparatus and applications. Rev. Sci. Instrum. 87, 43107 (2016).

    Article  Google Scholar 

  157. Liebel, M., Schnedermann, C., Wende, T. & Kukura, P. Principles and applications of broadband impulsive vibrational spectroscopy. J. Phys. Chem. A 119, 9506–9517 (2015).

    Article  Google Scholar 

  158. Fumero, G. et al. Two-dimensional impulsively stimulated resonant Raman spectroscopy of molecular excited states. Phys. Rev. X 10, 11051 (2020).

    Google Scholar 

  159. Batignani, G. et al. Excited-state energy surfaces in molecules revealed by impulsive stimulated Raman excitation profiles. J. Phys. Chem. Lett. 12, 9239–9247 (2021).

    Article  Google Scholar 

  160. Monacelli, L. et al. Manipulating impulsive stimulated Raman spectroscopy with a chirped probe pulse. J. Phys. Chem. Lett. 8, 966–974 (2017).

    Article  Google Scholar 

  161. Dorfman, K. E., Schlawin, F. & Mukamel, S. Stimulated Raman spectroscopy with entangled light: enhanced resolution and pathway selection. J. Phys. Chem. Lett. 5, 2843–2849 (2014).

    Article  Google Scholar 

  162. Mukamel, S. Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu. Rev. Phys. Chem. 51, 691–729 (2000).

    Article  ADS  Google Scholar 

  163. Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Rev. Phys. Chem. 64, 101–127 (2013).

    Article  ADS  Google Scholar 

  164. Molesky, B. P., Guo, Z., Cheshire, T. P. & Moran, A. M. Perspective: two-dimensional resonance Raman spectroscopy. J. Chem. Phys. 145, 180901 (2016).

    Article  ADS  Google Scholar 

  165. Kuramochi, H., Takeuchi, S., Kamikubo, H., Kataoka, M. & Tahara, T. Fifth-order time-domain Raman spectroscopy of photoactive yellow protein for visualizing vibrational coupling in its excited state. Sci. Adv. 5, eaau4490 (2023).

    Article  ADS  Google Scholar 

  166. Han, X. X., Rodriguez, R. S., Haynes, C. L., Ozaki, Y. & Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 1, 87 (2022).

    Article  Google Scholar 

  167. Stiles, P. L., Dieringer, J. A., Shah, N. C. & Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    Article  Google Scholar 

  168. Frontiera, R. R., Henry, A.-I., Gruenke, N. L. & Van Duyne, R. P. Surface-enhanced femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 2, 1199–1203 (2011). This article is an early demonstration of surface-enhanced FSRS.

    Article  Google Scholar 

  169. Mandal, A., Erramilli, S. & Ziegler, L. D. Origin of dispersive line shapes in plasmonically enhanced femtosecond stimulated Raman spectra. J. Phys. Chem. C 120, 20998–21006 (2016).

    Article  Google Scholar 

  170. Zong, C. & Cheng, J. X. Origin of dispersive line shapes in plasmon-enhanced stimulated Raman scattering microscopy. Nanophotonics 10, 617–625 (2020).

    Article  Google Scholar 

  171. Ashner, M. N. & Tisdale, W. A. High repetition-rate femtosecond stimulated Raman spectroscopy with fast acquisition. Opt. Express 26, 18331 (2018).

    Article  ADS  Google Scholar 

  172. Buchanan, L. E. et al. Surface-enhanced femtosecond stimulated Raman spectroscopy at 1 MHz repetition rates. J. Phys. Chem. Lett. 7, 4629–4634 (2016).

    Article  Google Scholar 

  173. Czerwinski, L., Nixdorf, J., Di Florio, G. & Gilch, P. Broadband stimulated Raman microscopy with 01 ms pixel acquisition time. Opt. Lett. 41, 3021–3024 (2016).

    Article  ADS  Google Scholar 

  174. Ploetz, E., Marx, B., Klein, T., Huber, R. & Gilch, P. A 75 MHz light source for femtosecond stimulated Raman microscopy. Opt. Express 17, 18612 (2009).

    Article  ADS  Google Scholar 

  175. Silberberg, Y. Quantum coherent control for nonlinear spectroscopy and microscopy. Annu. Rev. Phys. Chem. 60, 277–292 (2009).

    Article  ADS  Google Scholar 

  176. Sinjab, F., Liao, Z. & Notingher, I. Applications of spatial light modulators in Raman spectroscopy. Appl. Spectrosc. 73, 727–746 (2019).

    Article  ADS  Google Scholar 

  177. Frostig, H., Katz, O., Natan, A. & Silberberg, Y. Single-pulse stimulated Raman scattering spectroscopy. Opt. Lett. 36, 1248 (2011).

    Article  ADS  Google Scholar 

  178. Glenn, R. & Dantus, M. Single broadband phase-shaped pulse stimulated Raman spectroscopy for standoff trace explosive detection. J. Phys. Chem. Lett. 7, 117–125 (2016).

    Article  Google Scholar 

  179. Stamm, J. A. & Dantus, M. A comparison of strategies for state‐selective coherent Raman excitation. J. Raman Spectrosc. 52, 2029–2037 (2021).

    Article  ADS  Google Scholar 

  180. Frostig, H., Bayer, T., Dudovich, N., Eldar, Y. C. & Silberberg, Y. Single-beam spectrally controlled two-dimensional Raman spectroscopy. Nat. Photon. 9, 339–343 (2015).

    Article  ADS  Google Scholar 

  181. Dantus, M. & Lozovoy, V. V. Experimental coherent laser control of physicochemical processes. Chem. Rev. 104, 1813–1860 (2004).

    Article  Google Scholar 

  182. Tollerud, J. O. et al. Femtosecond covariance spectroscopy. Proc. Natl Acad. Sci. USA 116, 5383–5386 (2019).

    Article  ADS  Google Scholar 

  183. Al Osipov, V., Asban, S. & Mukamel, S. Time and frequency resolved transient-absorption and stimulated-Raman signals of stochastic light. J. Chem. Phys. 151, 044113 (2019).

    Article  ADS  Google Scholar 

  184. Frasinski, L. J. Covariance mapping techniques. J. Phys. B 49, 152004 (2016).

    Article  ADS  Google Scholar 

  185. Rohringer, N. X-ray Raman scattering: a building block for nonlinear spectroscopy. Phil. Trans. R. Soc. 377, 20170471 (2019).

    Article  ADS  Google Scholar 

  186. Kimberg, V. & Rohringer, N. Stochastic stimulated electronic X-ray Raman spectroscopy. Struct. Dyn. 3, 034101 (2016).

    Article  Google Scholar 

  187. Tanaka, S. & Mukamel, S. Coherent X-ray Raman spectroscopy: a nonlinear local probe for electronic excitations. Phys. Rev. Lett. 89, 043001 (2002).

    Article  ADS  Google Scholar 

  188. Weninger, C. et al. Stimulated electronic X-ray Raman scattering. Phys. Rev. Lett. 111, 233902 (2013).

    Article  ADS  Google Scholar 

  189. Chergui, M., Beye, M., Mukamel, S., Svetina, C. & Masciovecchio, C. Progress and prospects in nonlinear extreme-ultraviolet and X-ray optics and spectroscopy. Nat. Rev. Phys. 5, 578–596 (2023).

    Article  Google Scholar 

  190. Hu, S., Morris, I. K., Singh, J. P., Smith, K. M. & Spiro, T. G. Complete assignment of cytochrome c resonance Raman spectra via enzymic reconstitution with isotopically labeled hemes. J. Am. Chem. Soc. 115, 12446–12458 (1993).

    Article  Google Scholar 

  191. Dorfman, K. E., Fingerhut, B. P. & Mukamel, S. Time-resolved broadband Raman spectroscopies: a unified six-wave-mixing representation. J. Chem. Phys. 139, 124113 (2013).

    Article  ADS  Google Scholar 

  192. Marx, C. A., Harbola, U. & Mukamel, S. Nonlinear optical spectroscopy of single, few, and many molecules: nonequilibrium Green’s function QED approach. Phys. Rev. A 77, 022110 (2008).

    Article  ADS  Google Scholar 

  193. Sun, Z., Lu, J., Zhang, D. H. & Lee, S.-Y. Quantum theory of (femtosecond) time-resolved stimulated Raman scattering. J. Chem. Phys. 128, 144114 (2008).

    Article  ADS  Google Scholar 

  194. Batignani, G., Fumero, G., Mukamel, S. & Scopigno, T. Energy flow between spectral components in 2D broadband stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 17, 10454–10461 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to G. Cerullo, P. Kukura, S. Mukamel and M. H. Vos for several inspiring discussions. They acknowledge early contributions by E. Pontecorvo to the planning and development of their first FSRS prototype. G.B. acknowledges funding from the PRIN 2022 Project (Dynamat) (grant number 2022PR7CCY).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (T.S., G.B., C.F., G.F. and M.M.); Experimentation (T.S., G.B., C.F., G.F. and M.M.); Results (T.S., G.B., C.F., G.F. and M.M.); Applications (T.S., G.B., C.F., G.F. and M.M.); Reproducibility and data deposition (T.S., G.B., C.F., G.F. and M.M.); Limitations and optimizations (T.S., G.B., C.F., G.F. and M.M.); Outlook (T.S., G.B., C.F., G.F. and M.M.); overview of the Primer (T.S.).

Corresponding author

Correspondence to Tullio Scopigno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Chong Fang, David McCamant and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Chirp

A signal in which various frequencies arrive at different time delays. In optical pulses, chirp commonly stems from the chromatic dispersion caused by transmitting optics, leading to red-shifted spectral components arriving earlier (positive chirp) or later (negative chirp) than the blue-shifted ones.

Hot bands

Raman transitions occurring from vibrationally excited levels (n > 0) to the subsequent higher state (n + 1), typically resulting in a red-shifted line with respect to the fundamental transition (from n = 0 to n = 1).

Impulsive stimulated Raman scattering

The stimulated Raman scattering time-domain analogue, in which a full scan of the temporal delay between two ultrashort pulses is required to record a single Raman spectrum in the time domain. The addition of an actinic pump turns impulsive stimulated Raman into a time-resolved technique capable of probing excited-state dynamics, similarly to femtosecond stimulated Raman scattering.

Kerr effect

A nonlinear optical effect that occurs when the refractive index of a material changes, typically in a quadratic manner, in response to an applied electric field. Such a modification can affect the propagation of pulses and their spectral profiles.

Optical heterodyne detection

Amplification of a desired, weak, optical signal (ES) by its mixing with a strong field (EL), leading to the measured intensity \(I={{\rm{| }}{E}_{{\rm{L}}}{\rm{| }}}^{2}+{{\rm{| }}{E}_{{\rm{S}}}{\rm{| }}}^{2}+{E}_{{\rm{L}}}{E}_{{\rm{S}}}^{* }+{E}_{{\rm{S}}}{E}_{{\rm{L}}}^{* }\).

Raman spectrum

The intensity of the light scattered by the sample at wavelengths shorter or longer than the laser wavelength (λL).

Raman shift

The energy difference with respect to the laser energy expressed in wavenumbers, evaluated as \(\Delta \widetilde{{\rm{\nu }}}\) (in units of cm–1) = 107 × (\({\lambda }_{{\rm{L}}}^{-1}\)λ−1) (where wavelength is in units of nm).

Temporal envelope

The profile of the pulse’s intensity as a function of time. It describes how the intensity of the pulse varies over time, characterizing the peak intensity, the duration and any modulations or variations in intensity within that duration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batignani, G., Ferrante, C., Fumero, G. et al. Femtosecond stimulated Raman spectroscopy. Nat Rev Methods Primers 4, 34 (2024). https://doi.org/10.1038/s43586-024-00314-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00314-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing