Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Nanotechnology-based mRNA vaccines

Abstract

mRNA vaccines have emerged as a revolutionary tool to generate rapid and precise immune responses against infectious diseases and cancers. Compared with conventional vaccines such as inactivated viruses, viral vectors, protein subunits or DNA-based vaccines, mRNA vaccines stand out owing to multiple advantages, including simplicity of design, fast production, enhanced safety and high efficacy. Nevertheless, efficient and targeted delivery of mRNA molecules remains a significant challenge owing to their inherent instability and susceptibility to degradation. Nanotechnology offers innovative solutions to surmount these obstacles and amplify the potency of mRNA vaccines. This Primer aims to outline a modular approach to developing biomaterials and nanotechnology for mRNA vaccines, with a focus on particle design, formulation evaluation and therapeutic applications. We delve into the underlying mechanisms of nanoparticle-facilitated mRNA protection, cellular uptake, endosomal escape and immune stimulation. We underscore the critical parameters that impact the manufacturing and clinical implementation of nanomaterial-based mRNA vaccines. Finally, we present the current limitations and future perspectives in the advancement of nanotechnology-enhanced mRNA vaccines for broad applications in prophylactic and therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classification and mechanism of mRNA vaccines.
Fig. 2: Experimental workflow of nanotechnology-based mRNA vaccines.
Fig. 3: Characterization and toxicity of mRNA delivery nanoplatforms and mRNA vaccine.
Fig. 4: Structural characterization of COVID-19 mRNA vaccines and the mechanisms of mRNA vaccines against infectious diseases.
Fig. 5: The mechanisms of mRNA cancer vaccines.

Similar content being viewed by others

References

  1. Gebre, M. S. et al. Novel approaches for vaccine development. Cell 184, 1589–1603 (2021).

    Article  Google Scholar 

  2. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    Article  Google Scholar 

  3. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018). This article comprehensively details an overview of the immune mechanism and disease applications of mRNA vaccines.

    Article  Google Scholar 

  4. Arevalo, C. P. et al. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science 378, 899–904 (2022).

    Article  ADS  Google Scholar 

  5. Zhang, N. N. et al. A thermostable mRNA vaccine against COVID-19. Cell 182, 1271–1283 (2020).

    Article  Google Scholar 

  6. Guo, M. et al. A lipid-based LMP2–mRNA vaccine to treat nasopharyngeal carcinoma. Nano Res. 16, 5357–5367 (2023).

    Article  ADS  Google Scholar 

  7. Lorentzen, C. L., Haanen, J. B., Met, Ö. & Svane, I. M. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 23, e450–e458 (2022).

    Article  Google Scholar 

  8. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    Article  ADS  Google Scholar 

  9. Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020).

    Article  ADS  Google Scholar 

  10. Fang, E. et al. Advances in COVID-19 mRNA vaccine development. Signal Transduct. Target. Ther. 7, 94 (2022).

    Article  Google Scholar 

  11. Lin, C. C. et al. Terminal uridyltransferase 7 regulates TLR4-triggered inflammation by controlling Regnase-1 mRNA uridylation and degradation. Nat. Commun. 12, 3878 (2021).

    Article  ADS  Google Scholar 

  12. Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer–BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022). This study describes the potential mechanisms underlying the innate and adaptive immune responses elicited by BNT162b2.

    Article  Google Scholar 

  13. Psarras, A., Wittmann, M. & Vital, E. M. Emerging concepts of type I interferons in SLE pathogenesis and therapy. Nat. Rev. Rheumatol. 18, 575–590 (2022).

    Google Scholar 

  14. Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).

    Article  Google Scholar 

  15. Li, B., Luo, X. & Dong, Y. Effects of chemically modified messenger RNA on protein expression. Bioconjug. Chem. 27, 849–853 (2016).

    Article  Google Scholar 

  16. Liu, J. et al. Developmental mRNA m(5)C landscape and regulatory innovations of massive m(5)C modification of maternal mRNAs in animals. Nat. Commun. 13, 2484 (2022).

    Article  ADS  Google Scholar 

  17. Kormann, M. S. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 29, 154–157 (2011).

    Article  Google Scholar 

  18. Zeng, C. et al. Leveraging mRNA sequences and nanoparticles to deliver SARS-CoV-2 antigens in vivo. Adv. Mater. 32, e2004452 (2020). This article describes an mRNA engineering strategy to augment generation of SARS-CoV-2 antigen proteins.

    Article  Google Scholar 

  19. Huang, X. et al. The landscape of mRNA nanomedicine. Nat. Med. 28, 2273–2287 (2022). This article presents the latest advances and innovations in the growing field of mRNA nanomedicine.

    Article  Google Scholar 

  20. Spencer, A. J. et al. Heterologous vaccination regimens with self-amplifying RNA and adenoviral COVID vaccines induce robust immune responses in mice. Nat. Commun. 12, 2893 (2021).

    Article  ADS  Google Scholar 

  21. Rappaport, A. R. et al. Low-dose self-amplifying mRNA COVID-19 vaccine drives strong protective immunity in non-human primates against SARS-CoV-2 infection. Nat. Commun. 13, 3289 (2022).

    Article  ADS  Google Scholar 

  22. Cohen, J. First self-copying mRNA vaccine proves itself in pandemic trial. Science 376, 446 (2022).

    Article  ADS  Google Scholar 

  23. Szubert, A. J. et al. COVAC1 phase 2a expanded safety and immunogenicity study of a self-amplifying RNA vaccine against SARS-CoV-2. eClinicalMedicine 56, 101823 (2023).

    Article  Google Scholar 

  24. Leppek, K. et al. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat. Commun. 13, 1536 (2022).

    Article  ADS  Google Scholar 

  25. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021). This article outlines design principles of LNPs for mRNA delivery.

    Article  ADS  Google Scholar 

  26. Krienke, C. et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371, 145–153 (2021).

    Article  ADS  Google Scholar 

  27. McMahon, M. et al. Assessment of a quadrivalent nucleoside-modified mRNA vaccine that protects against group 2 influenza viruses. Proc. Natl Acad. Sci. USA 119, e2206333119 (2022). This article accesses a nucleoside-modified mRNALNP platform for influenza viruses.

    Article  Google Scholar 

  28. Muramatsu, H. et al. Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Mol. Ther. 30, 1941–1951 (2022).

    Article  Google Scholar 

  29. Huang, X. G. et al. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat. Nanotechnol. 17, 1027–1037 (2022). This article provides nanotechnology solutions for dealing with SARS-CoV-2 variants.

    Article  ADS  Google Scholar 

  30. Anderluzzi, G. et al. The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency. J. Control. Release 342, 388–399 (2022).

    Article  Google Scholar 

  31. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article  Google Scholar 

  32. Tenchov, R., Bird, R., Curtze, A. E. & Zhou, Q. Lipid nanoparticles — from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15, 16982–17015 (2021).

    Article  Google Scholar 

  33. Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2023).

    Article  ADS  Google Scholar 

  34. Han, X. et al. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12, 7233 (2021).

    Article  ADS  Google Scholar 

  35. Horejs, C. From lipids to lipid nanoparticles to mRNA vaccines. Nat. Rev. Mater. 6, 1075–1076 (2021).

    Article  ADS  Google Scholar 

  36. Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021). This investigation presents a membrane-destabilizing ionizable phospholipid with multiple tails, facilitating selective mRNA transport and precise CRISPR–Cas9 gene manipulation within specific organs.

    Article  ADS  Google Scholar 

  37. Xiao, Y. et al. Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy. Nat. Commun. 13, 758 (2022).

    Article  ADS  Google Scholar 

  38. Wang, X. et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protoc. 18, 265–291 (2023).

    Article  Google Scholar 

  39. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  Google Scholar 

  40. Xiao, Y. et al. Emerging mRNA technologies: delivery strategies and biomedical applications. Chem. Soc. Rev. 51, 3828–3845 (2022). This review introduces the nano-delivery platforms of mRNA technology and its implementations in the field of biomedicine.

    Article  Google Scholar 

  41. Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021). This review provides a comprehensive review on lipids or lipid-derived materials for RNA delivery.

    Article  Google Scholar 

  42. Miao, L. et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 11, 2424 (2020).

    Article  ADS  Google Scholar 

  43. Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    Article  ADS  Google Scholar 

  44. Koltover, I., Salditt, T., Rädler, J. O. & Safinya, C. R. An inverted hexagonal phase of cationic liposome–DNA complexes related to DNA release and delivery. Science 281, 78–81 (1998).

    Article  ADS  Google Scholar 

  45. Patel, S. et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020).

    Article  ADS  Google Scholar 

  46. Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article  Google Scholar 

  47. Maeki, M., Uno, S., Niwa, A., Okada, Y. & Tokeshi, M. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. J. Control. Release 344, 80–96 (2022).

    Article  Google Scholar 

  48. Jahn, A., Vreeland, W. N., Gaitan, M. & Locascio, L. E. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J. Am. Chem. Soc. 126, 2674–2675 (2004).

    Article  Google Scholar 

  49. Kulkarni, J. A. et al. Spontaneous, solvent-free entrapment of siRNA within lipid nanoparticles. Nanoscale 12, 23959–23966 (2020).

    Article  Google Scholar 

  50. Shah, S., Dhawan, V., Holm, R., Nagarsenker, M. S. & Perrie, Y. Liposomes: advancements and innovation in the manufacturing process. Adv. Drug Deliv. Rev. 154-155, 102–122 (2020).

    Article  Google Scholar 

  51. Yanez Arteta, M. et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl Acad. Sci. USA 115, E3351–e3360 (2018).

    Article  Google Scholar 

  52. Kulkarni, J. A. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021).

    Article  ADS  Google Scholar 

  53. Miao, L., Zhang, Y. & Huang, L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 20, 41 (2021).

    Article  Google Scholar 

  54. Ferhan, A. R. et al. Lipid nanoparticle technologies for nucleic acid delivery: a nanoarchitectonics perspective. Adv. Funct. Mater. 32, 2203669 (2022).

    Article  Google Scholar 

  55. Malone, R. W., Felgner, P. L. & Verma, I. M. Cationic liposome-mediated RNA transfection. Proc. Natl Acad. Sci. USA 86, 6077–6081 (1989).

    Article  ADS  Google Scholar 

  56. Reinhard, K. et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 367, 446–453 (2020).

    Article  ADS  Google Scholar 

  57. Sasaki, K., Sato, Y., Okuda, K., Iwakawa, K. & Harashima, H. mRNA-loaded lipid nanoparticles targeting dendritic cells for cancer immunotherapy. Pharmaceutics 14, 1572 (2022).

    Article  Google Scholar 

  58. Pollard, C. et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol. Ther. 21, 251–259 (2013).

    Article  Google Scholar 

  59. Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800 (1976).

    Article  ADS  Google Scholar 

  60. Zhang, D. et al. One-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer delivery systems for mRNA. J. Am. Chem. Soc. 143, 12315–12327 (2021).

    Article  Google Scholar 

  61. Abbasi, S. et al. Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain. J. Control. Release 332, 260–268 (2021).

    Article  Google Scholar 

  62. Siewert, C. et al. Investigation of charge ratio variation in mRNA — DEAE-dextran polyplex delivery systems. Biomaterials 192, 612–620 (2019).

    Article  Google Scholar 

  63. Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92, 7297–7301 (1995).

    Article  ADS  Google Scholar 

  64. Schulze, J. et al. Spray-dried nanoparticle-in-microparticle delivery systems (NiMDS) for gene delivery, comprising polyethylenimine (PEI)-based nanoparticles in a poly(vinyl alcohol) matrix. Small 14, e1701810 (2018).

    Article  Google Scholar 

  65. Liu, X. et al. Inhibition of hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by a mTOR siRNA-loaded cyclodextrin nanovector. Biomaterials 35, 4401–4416 (2014).

    Article  Google Scholar 

  66. Ke, X. et al. Surface-functionalized PEGylated nanoparticles deliver messenger RNA to pulmonary immune cells. ACS Appl. Mater. Interfaces 12, 35835–35844 (2020).

    Article  Google Scholar 

  67. Li, M. et al. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J. Control. Release 228, 9–19 (2016).

    Article  ADS  Google Scholar 

  68. Breunig, M. et al. Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J. Control. Release 130, 57–63 (2008).

    Article  Google Scholar 

  69. Schroeder, A. et al. Alkane-modified short polyethyleneimine for siRNA delivery. J. Control. Release 160, 172–176 (2012).

    Article  Google Scholar 

  70. Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    Article  ADS  Google Scholar 

  71. Zhang, D. et al. Targeted delivery of mRNA with one-component ionizable amphiphilic Janus dendrimers. J. Am. Chem. Soc. 143, 17975–17982 (2021).

    Article  Google Scholar 

  72. Lyu, Z. & Peng, L. Potent drugless dendrimers. Nat. Biomed. Eng. 1, 686–688 (2017).

    Article  Google Scholar 

  73. Zhang, D. et al. The unexpected importance of the primary structure of the hydrophobic part of one-component ionizable amphiphilic Janus dendrimers in targeted mRNA delivery activity. J. Am. Chem. Soc. 144, 4746–4753 (2022).

    Article  Google Scholar 

  74. Chahal, J. S. et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl Acad. Sci. USA 113, E4133–E4142 (2016).

    Article  Google Scholar 

  75. Zhang, D. et al. Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nat. Nanotechnol. 17, 777–787 (2022). This study presents a novel approach for utilizing NP systems to treat tumours through gene editing.

    Article  ADS  Google Scholar 

  76. Lu, Y. et al. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat. Biomed. Eng. 2, 318–325 (2018).

    Article  Google Scholar 

  77. Cabral, H., Miyata, K., Osada, K. & Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 118, 6844–6892 (2018).

    Article  Google Scholar 

  78. Prieve, M. G. et al. Targeted mRNA therapy for ornithine transcarbamylase deficiency. Mol. Ther. 26, 801–813 (2018).

    Article  Google Scholar 

  79. Ren, J. et al. Self-assembled polymeric micelle as a novel mRNA delivery carrier. J. Control. Release 338, 537–547 (2021).

    Article  Google Scholar 

  80. Koji, K. et al. Bundling of mRNA strands inside polyion complexes improves mRNA delivery efficiency in vitro and in vivo. Biomaterials 261, 120332 (2020).

    Article  Google Scholar 

  81. Miyazaki, T. et al. Polymeric nanocarriers with controlled chain flexibility boost mRNA delivery in vivo through enhanced structural fastening. Adv. Healthc. Mater. 9, e2000538 (2020).

    Article  Google Scholar 

  82. Yoshinaga, N. et al. Bridging mRNA and polycation using RNA oligonucleotide derivatives improves the robustness of polyplex micelles for efficient mRNA delivery. Adv. Healthc. Mater. 11, e2102016 (2022).

    Article  Google Scholar 

  83. Uchida, S. et al. Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety. Biomaterials 82, 221–228 (2016).

    Article  Google Scholar 

  84. Haabeth, O. A. et al. mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proc. Natl Acad. Sci. USA 115, E9153–E9161 (2018). This study describes a strategy to use charge-altering releasable transporters to deliver mRNA in vivo to treat tumours.

    Article  Google Scholar 

  85. McKinlay, C. J. et al. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl Acad. Sci. USA 114, E448–E456 (2017).

    Article  Google Scholar 

  86. McKinlay, C. J., Benner, N. L., Haabeth, O. A., Waymouth, R. M. & Wender, P. A. Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proc. Natl Acad. Sci. USA 115, E5859–E5866 (2018).

    Article  ADS  Google Scholar 

  87. Blakney, A. K. et al. Big is beautiful: enhanced saRNA delivery and immunogenicity by a higher molecular weight, bioreducible, cationic polymer. ACS Nano 14, 5711–5727 (2020).

    Article  Google Scholar 

  88. Jaiswal, M., Dudhe, R. & Sharma, P. K. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5, 123–127 (2015).

    Article  Google Scholar 

  89. Gupta, A., Eral, H. B., Hatton, T. A. & Doyle, P. S. Nanoemulsions: formation, properties and applications. Soft Matter 12, 2826–2841 (2016).

    Article  ADS  Google Scholar 

  90. Zhang, W. et al. Lipid carriers for mRNA delivery. Acta Pharmaceut. Sin. B https://doi.org/10.1016/j.apsb.2022.11.026 (2022).

    Article  Google Scholar 

  91. Tsai, T. F. Fluad®-MF59®-adjuvanted influenza vaccine in older adults. Infect. Chemother. 45, 159–174 (2013).

    Article  Google Scholar 

  92. Brito, L. A. et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol. Ther. 22, 2118–2129 (2014).

    Article  Google Scholar 

  93. Bogers, W. M. et al. Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion. J. Infect. Dis. 211, 947–955 (2014).

    Article  Google Scholar 

  94. Samsa, M. M. et al. Self-amplifying RNA vaccines for Venezuelan equine encephalitis virus induce robust protective immunogenicity in mice. Mol. Ther. 27, 850–865 (2019).

    Article  Google Scholar 

  95. Stokes, A. et al. Nonclinical safety assessment of repeated administration and biodistribution of a novel rabies self-amplifying mRNA vaccine in rats. Regul. Toxicol. Pharmacol. 113, 104648 (2020).

    Article  Google Scholar 

  96. Luisi, K. et al. Development of a potent Zika virus vaccine using self-amplifying messenger RNA. Sci. Adv. 6, eaba5068 (2020).

    Article  ADS  Google Scholar 

  97. Erasmus, J. H. et al. An alphavirus-derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Sci. Transl. Med. 12, eabc9396 (2020).

    Article  Google Scholar 

  98. Kanekiyo, M. et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499, 102–106 (2013).

    Article  ADS  Google Scholar 

  99. Song, N. et al. Ferritin: a multifunctional nanoplatform for biological detection, imaging diagnosis, and drug delivery. Acc. Chem. Res. 54, 3313–3325 (2021).

    Article  Google Scholar 

  100. Zhang, J. et al. Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery. Nat. Protoc. 16, 4878–4896 (2021).

    Article  Google Scholar 

  101. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022). This article describes the translational advancements of mRNA-based vaccines and immunotherapeutic modalities in clinical settings.

    Article  Google Scholar 

  102. Yadav, M., Atala, A. & Lu, B. Developing all-in-one virus-like particles for Cas9 mRNA/single guide RNA co-delivery and aptamer-containing lentiviral vectors for improved gene expression. Int. J. Biol. Macromol. 209, 1260–1270 (2022).

    Article  Google Scholar 

  103. Kallen, K. J. et al. A novel, disruptive vaccination technology: self-adjuvanted RNActive(®) vaccines. Hum. Vaccin. Immunother. 9, 2263–2276 (2013).

    Article  Google Scholar 

  104. Kübler, H. et al. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J. Immunother. Cancer 3, 26 (2015).

    Article  Google Scholar 

  105. Gebre, M. S. et al. Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature 601, 410–414 (2022). This report presents the findings of a study comparing the immunogenicity and protective efficacy of CVnCoV and CV2CoV.

    Article  ADS  Google Scholar 

  106. Geng, J. et al. Emerging landscape of cell-penetrating peptide-mediated nucleic acid delivery and their utility in imaging, gene-editing, and RNA-sequencing. J. Control. Release 341, 166–183 (2022).

    Article  Google Scholar 

  107. Udhayakumar, V. K. et al. Arginine-rich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide. Adv. Healthc. Mater. 6, 1601412 (2017).

    Article  Google Scholar 

  108. Coolen, A. L. et al. Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation. Biomaterials 195, 23–37 (2019).

    Article  Google Scholar 

  109. Oude Egberink, R. et al. Biomaterial-mediated protein expression induced by peptide–mRNA nanoparticles embedded in lyophilized collagen scaffolds. Pharmaceutics 14, 1619 (2022).

    Article  Google Scholar 

  110. Gurumurthy, C. B., Quadros, R. M. & Ohtsuka, M. Prototype mouse models for researching SEND-based mRNA delivery and gene therapy. Nat. Protoc. 17, 2129–2138 (2022).

    Article  Google Scholar 

  111. Mohsen, M. O., Zha, L., Cabral-Miranda, G. & Bachmann, M. F. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin. Immunol. 34, 123–132 (2017).

    Article  Google Scholar 

  112. Li, J. et al. Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer. Int. J. Cancer 134, 1683–1694 (2014).

    Article  Google Scholar 

  113. Zhitnyuk, Y. et al. Efficient mRNA delivery system utilizing chimeric VSVG-L7Ae virus-like particles. Biochem. Biophys. Res. Commun. 505, 1097–1102 (2018).

    Article  Google Scholar 

  114. Jain, A., Singh, S. K., Arya, S. K., Kundu, S. C. & Kapoor, S. Protein nanoparticles: promising platforms for drug delivery applications. ACS Biomater. Sci. Eng. 4, 3939–3961 (2018).

    Article  Google Scholar 

  115. Zhong, Y., Du, S. & Dong, Y. mRNA delivery in cancer immunotherapy. Acta Pharmaceut. Sin. B 13, 1348–1357 (2023).

    Article  Google Scholar 

  116. Xue, Y. et al. Recent advances in biomaterial-boosted adoptive cell therapy. Chem. Soc. Rev. 51, 1766–1794 (2022).

    Article  Google Scholar 

  117. Goddard, Z. R., Marín, M. J., Russell, D. A. & Searcey, M. Active targeting of gold nanoparticles as cancer therapeutics. Chem. Soc. Rev. 49, 8774–8789 (2020).

    Article  Google Scholar 

  118. Yeom, J. H. et al. Inhibition of Xenograft tumor growth by gold nanoparticle–DNA oligonucleotide conjugates-assisted delivery of BAX mRNA. PLoS ONE 8, e75369 (2013).

    Article  ADS  Google Scholar 

  119. Liu, Q. et al. Mesoporous silica-coated silver nanoparticles as ciprofloxacin/siRNA carriers for accelerated infected wound healing. J. Nanobiotechnol. 20, 386 (2022).

    Article  Google Scholar 

  120. Yuan, P. et al. Intracellular co-delivery of native antibody and siRNA for combination therapy by using biodegradable silica nanocapsules. Biomaterials 281, 121376 (2022).

    Article  Google Scholar 

  121. Torney, F., Trewyn, B. G., Lin, V. S. & Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 2, 295–300 (2007).

    Article  ADS  Google Scholar 

  122. Zhang, W., Liu, Y., Min Chin, J. & Phua, K. K. L. Sustained release of PKR inhibitor C16 from mesoporous silica nanoparticles significantly enhances mRNA translation and anti-tumor vaccination. Eur. J. Pharm. Biopharm. 163, 179–187 (2021).

    Article  Google Scholar 

  123. Liu, Y. et al. A novel graphene quantum dot-based mRNA delivery platform. ChemistryOpen 10, 666–671 (2021).

    Article  Google Scholar 

  124. Yang, Z. et al. Superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA targeted delivery in hepatocellular carcinoma therapy. Int. J. Nanomed. 13, 1851–1865 (2018).

    Article  Google Scholar 

  125. Zeng, C., Zhang, C., Walker, P. G. & Dong, Y. Formulation and delivery technologies for mRNA vaccines. Curr. Top. Microbiol. Immunol. 440, 71–110 (2022).

    Google Scholar 

  126. Renu, S. et al. Poly(I:C) augments inactivated influenza virus-chitosan nanovaccine induced cell mediated immune response in pigs vaccinated intranasally. Vet. Microbiol. 242, 108611 (2020).

    Article  Google Scholar 

  127. Roier, S. et al. Intranasal immunization with nontypeable Haemophilus influenzae outer membrane vesicles induces cross-protective immunity in mice. PLoS ONE 7, e42664 (2012).

    Article  ADS  Google Scholar 

  128. Pardi, N. et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control. Release 217, 345–351 (2015).

    Article  Google Scholar 

  129. Mangadlao, J. D. et al. Prostate-specific membrane antigen targeted gold nanoparticles for theranostics of prostate cancer. ACS Nano 12, 3714–3725 (2018).

    Article  Google Scholar 

  130. Marbella, L. E. et al. Description and role of bimetallic prenucleation species in the formation of small nanoparticle alloys. J. Am. Chem. Soc. 137, 15852–15858 (2015).

    Article  Google Scholar 

  131. Modena, M. M., Rühle, B., Burg, T. P. & Wuttke, S. Nanoparticle characterization: what to measure? Adv. Mater. 31, e1901556 (2019).

    Article  Google Scholar 

  132. Koolen, C. D. et al. High-throughput sizing, counting, and elemental analysis of anisotropic multimetallic nanoparticles with single-particle inductively coupled plasma mass spectrometry. ACS Nano 16, 11968–11978 (2022).

    Article  Google Scholar 

  133. Ward-O’Brien, B. et al. Quantum confined high-entropy lanthanide oxysulfide colloidal nanocrystals. Nano Lett. 22, 8045–8051 (2022).

    Article  ADS  Google Scholar 

  134. Frey, H., Beck, A., Huang, X., van Bokhoven, J. A. & Willinger, M. G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 376, 982–987 (2022).

    Article  ADS  Google Scholar 

  135. Daneshvar, M. & Hosseini, M. R. From the iron boring scraps to superparamagnetic nanoparticles through an aerobic biological route. J. Hazard. Mater. 357, 393–400 (2018).

    Article  Google Scholar 

  136. Canton, I. & Battaglia, G. Endocytosis at the nanoscale. Chem. Soc. Rev. 41, 2718–2739 (2012).

    Article  Google Scholar 

  137. Zhao, Z., Ukidve, A., Krishnan, V. & Mitragotri, S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv. Drug Deliv. Rev. 143, 3–21 (2019).

    Article  Google Scholar 

  138. Yu, M. et al. Temperature- and rigidity-mediated rapid transport of lipid nanovesicles in hydrogels. Proc. Natl Acad. Sci. USA 116, 5362–5369 (2019).

    Article  ADS  Google Scholar 

  139. Huang, X., Teng, X., Chen, D., Tang, F. & He, J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31, 438–448 (2010).

    Article  ADS  Google Scholar 

  140. Reifarth, M., Hoeppener, S. & Schubert, U. S. Uptake and intracellular fate of engineered nanoparticles in mammalian cells: capabilities and limitations of transmission electron microscopy-polymer-based nanoparticles. Adv. Mater. 30, 1703704 (2018).

    Article  Google Scholar 

  141. Quesada-González, D. et al. Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers. Biosens. Bioelectron. 141, 111407 (2019).

    Article  Google Scholar 

  142. Suresh, D., Suresh, A. & Kannan, R. Engineering biomolecular systems: controlling the self-assembly of gelatin to form ultra-small bioactive nanomaterials. Bioact. Mater. 18, 321–336 (2022).

    Article  Google Scholar 

  143. Swingle, K. L. et al. Amniotic fluid stabilized lipid nanoparticles for in utero intra-amniotic mRNA delivery. J. Control. Release 341, 616–633 (2022).

    Article  Google Scholar 

  144. Li, J. et al. Interfacial properties and micellization of triblock poly(ethylene glycol)-poly(ε-caprolactone)-polyethyleneimine copolymers. Acta Pharm. Sin. B 10, 1122–1133 (2020).

    Article  ADS  Google Scholar 

  145. Fischer, K. & Schmidt, M. Pitfalls and novel applications of particle sizing by dynamic light scattering. Biomaterials 98, 79–91 (2016).

    Article  Google Scholar 

  146. Sitar, S. et al. Pitfalls in size characterization of soft particles by dynamic light scattering online coupled to asymmetrical flow field-flow fractionation. Anal. Chem. 89, 11744–11752 (2017).

    Article  Google Scholar 

  147. Doane, T. L., Chuang, C. H., Hill, R. J. & Burda, C. Nanoparticle ζ-potentials. Acc. Chem. Res. 45, 317–326 (2012).

    Article  Google Scholar 

  148. Woo, H. K. et al. Characterization and modulation of surface charges to enhance extracellular vesicle isolation in plasma. Theranostics 12, 1988–1998 (2022).

    Article  Google Scholar 

  149. Roach, L. et al. Evaluating phospholipid-functionalized gold nanorods for in vivo applications. Small 17, e2006797 (2021).

    Article  Google Scholar 

  150. Soyluoglu, M., Kim, D., Zaker, Y. & Karanfil, T. Stability of oxygen nanobubbles under freshwater conditions. Water Res. 206, 117749 (2021).

    Article  Google Scholar 

  151. Shlar, I. et al. High-throughput screening of nanoparticle-stabilizing ligands: application to preparing antimicrobial curcumin nanoparticles by antisolvent precipitation. Nanomicro Lett. 7, 68–79 (2015).

    Google Scholar 

  152. Rajamohan, N. & Al Shibli, F. Synthesis and application of carbon substrate nano material from biomass for surface protection — effect of variables, electrochemical and isotherm studies. Chemosphere 292, 133479 (2022).

    Article  ADS  Google Scholar 

  153. Hu, B. et al. Engineering surface patterns on nanoparticles: new insights into nano–bio interactions. J. Mater. Chem. B 10, 2357–2383 (2022).

    Article  Google Scholar 

  154. Zhao, X. et al. Oxidative stress- and mitochondrial dysfunction-mediated cytotoxicity by silica nanoparticle in lung epithelial cells from metabolomic perspective. Chemosphere 275, 129969 (2021).

    Article  ADS  Google Scholar 

  155. Xia, T. et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2, 2121–2134 (2008).

    Article  Google Scholar 

  156. Liu, L. et al. Negative regulation of cationic nanoparticle-induced inflammatory toxicity through the increased production of prostaglandin E2 via mitochondrial DNA-activated Ly6C(+) monocytes. Theranostics 8, 3138–3152 (2018).

    Article  Google Scholar 

  157. Setyawati, M. I., Tay, C. Y. & Leong, D. T. Mechanistic investigation of the biological effects of SiO2, TiO2, and ZnO nanoparticles on intestinal cells. Small 11, 3458–3468 (2015).

    Article  Google Scholar 

  158. Park, J. D. et al. Lobar evenness of deposition/retention in rat lungs of inhaled silver nanoparticles: an approach for reducing animal use while maximizing endpoints. Part. Fibre Toxicol. 16, 2 (2019).

    Article  Google Scholar 

  159. Kim, H. P. et al. Even lobar deposition of poorly soluble gold nanoparticles (AuNPs) is similar to that of soluble silver nanoparticles (AgNPs). Part. Fibre Toxicol. 17, 54 (2020).

    Article  Google Scholar 

  160. Qi, Y. et al. Silica nanoparticles induce cardiac injury and dysfunction via ROS/Ca(2+)/CaMKII signaling. Sci. Total Environ. 837, 155733 (2022).

    Article  ADS  Google Scholar 

  161. Morimoto, Y., Horie, M., Kobayashi, N., Shinohara, N. & Shimada, M. Inhalation toxicity assessment of carbon-based nanoparticles. Acc. Chem. Res. 46, 770–781 (2013).

    Article  Google Scholar 

  162. Adamcakova-Dodd, A. et al. Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part. Fibre Toxicol. 11, 15 (2014).

    Article  Google Scholar 

  163. Andreozzi, P. et al. Novel core–shell polyamine phosphate nanoparticles self-assembled from PEGylated poly(allylamine hydrochloride) with low toxicity and increased in vivo circulation time. Small 17, e2102211 (2021).

    Article  Google Scholar 

  164. Yoshida, M., Roh, K. H. & Lahann, J. Short-term biocompatibility of biphasic nanocolloids with potential use as anisotropic imaging probes. Biomaterials 28, 2446–2456 (2007).

    Article  Google Scholar 

  165. Zhu, C. et al. Rational administration sequencing of immunochemotherapy elicits powerful anti-tumor effect. J. Control. Release 341, 769–781 (2022).

    Article  Google Scholar 

  166. Muddana, H. S., Morgan, T. T., Adair, J. H. & Butler, P. J. Photophysics of Cy3-encapsulated calcium phosphate nanoparticles. Nano Lett. 9, 1559–1566 (2009).

    Article  ADS  Google Scholar 

  167. Sobska, J. et al. Counterion-insulated near-infrared dyes in biodegradable polymer nanoparticles for in vivo imaging. Nanoscale Adv. 4, 39–48 (2021).

    Article  ADS  Google Scholar 

  168. Zhukova, V. et al. Fluorescently labeled PLGA nanoparticles for visualization in vitro and in vivo: the importance of dye properties. Pharmaceutics 13, 1145 (2021).

    Article  Google Scholar 

  169. Carrasco, M. J. et al. Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Commun. Biol. 4, 956 (2021).

    Article  Google Scholar 

  170. Goswami, R., O’Hagan, D. T., Adamo, R. & Baudner, B. C. Conjugation of mannans to enhance the potency of liposome nanoparticles for the delivery of RNA vaccines. Pharmaceutics 13, 240 (2021).

    Article  Google Scholar 

  171. Naderi Sohi, A. et al. Development of an mRNA-LNP vaccine against SARS-CoV-2: evaluation of immune response in mouse and rhesus macaque. Vaccines 9, 1007 (2021).

    Article  Google Scholar 

  172. Chen, Z. et al. A polyphenol-assisted IL-10 mRNA delivery system for ulcerative colitis. Acta Pharm. Sin. B 12, 3367–3382 (2022).

    Article  Google Scholar 

  173. Berk, A. J. & Sharp, P. A. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12, 721–732 (1977).

    Article  Google Scholar 

  174. Schüttpelz, M. et al. Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy. J. Am. Chem. Soc. 130, 9507–9513 (2008).

    Article  Google Scholar 

  175. Packer, M., Gyawali, D., Yerabolu, R., Schariter, J. & White, P. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat. Commun. 12, 6777 (2021). This article demonstrates the mechanism behind mRNA activity loss in LNP delivery owing to electrophilic impurities from ionizable cationic lipids.

    Article  ADS  Google Scholar 

  176. Kubista, M. et al. The real-time polymerase chain reaction. Mol. Aspects Med. 27, 95–125 (2006).

    Article  Google Scholar 

  177. Li, B. et al. An orthogonal array optimization of lipid-like nanoparticles for mRNA delivery in vivo. Nano Lett. 15, 8099–8107 (2015).

    Article  ADS  Google Scholar 

  178. Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

    Article  Google Scholar 

  179. Kong, N. et al. Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proc. Natl Acad. Sci. USA 119, e2112696119 (2022). This study reports a method for the delivery of KDM6A mRNA using mucosal NPs for the treatment of bladder cancer.

    Article  Google Scholar 

  180. Kong, N. et al. Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes p53-deficient cancers to mTOR inhibition. Sci. Transl. Med. 11, eaaw1565 (2019).

    Article  Google Scholar 

  181. Lin, Y. X. et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Sci. Transl. Med. 13, eaba9772 (2021).

    Article  Google Scholar 

  182. Cagigi, A. & Loré, K. Immune responses induced by mRNA vaccination in mice, monkeys and humans. Vaccines 9, 61 (2021).

    Article  Google Scholar 

  183. Deng, Y. Q. et al. Lipid nanoparticle-encapsulated mRNA antibody provides long-term protection against SARS-CoV-2 in mice and hamsters. Cell Res. 32, 375–382 (2022).

    Article  Google Scholar 

  184. Alameh, M. G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e7 (2021).

    Article  Google Scholar 

  185. Laczkó, D. et al. A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice. Immunity 53, 724–732.e7 (2020).

    Article  Google Scholar 

  186. Sawaki, D. et al. Visceral adipose tissue drives cardiac aging through modulation of fibroblast senescence by osteopontin production. Circulation 138, 809–822 (2018).

    Article  Google Scholar 

  187. Armstrong, H. K. et al. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients. Gastroenterology 164, 228–240 (2023).

    Article  Google Scholar 

  188. Islam, M. A. et al. Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials 266, 120431 (2021).

    Article  Google Scholar 

  189. Chen, G. L. et al. Safety and immunogenicity of the SARS-CoV-2 ARCoV mRNA vaccine in Chinese adults: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Microbe 3, e193–e202 (2022). This study reports a clinical trial on the safety and immunogenicity of the ARCoV mRNA vaccine.

    Article  Google Scholar 

  190. Mileto, D. et al. SARS-CoV-2 mRNA vaccine BNT162b2 triggers a consistent cross-variant humoral and cellular response. Emerg. Microbes Infect. 10, 2235–2243 (2021).

    Article  Google Scholar 

  191. Chen, Y. et al. Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses. Nat. Rev. Immunol. 23, 189–199 (2022).

    Article  Google Scholar 

  192. Chen, K. et al. mRNA vaccines against SARS-CoV-2 variants delivered by lipid nanoparticles based on novel ionizable lipids. Adv. Funct. Mater. 32, 2204692 (2022).

    Article  MathSciNet  Google Scholar 

  193. Sun, W. et al. The self-assembled nanoparticle-based trimeric RBD mRNA vaccine elicits robust and durable protective immunity against SARS-CoV-2 in mice. Signal Transduct. Target. Ther. 6, 340 (2021).

    Article  Google Scholar 

  194. Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020). To our knowledge, this study reports for the first time the metagenomic RNA sequence of SARS-CoV-2.

    Article  ADS  Google Scholar 

  195. Dickerman, B. A. et al. Comparative effectiveness of BNT162b2 and mRNA-1273 vaccines in U.S. veterans. N. Engl. J. Med. 386, 105–115 (2022).

    Article  Google Scholar 

  196. Verbeke, R., Lentacker, I., De Smedt, S. C. & Dewitte, H. The dawn of mRNA vaccines: the COVID-19 case. J. Control. Release 333, 511–520 (2021).

    Article  Google Scholar 

  197. Basha, G. et al. Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol. Ther. 19, 2186–2200 (2011).

    Article  Google Scholar 

  198. Sahay, G. et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31, 653–658 (2013).

    Article  Google Scholar 

  199. Reichmuth, A. M., Oberli, M. A., Jaklenec, A., Langer, R. & Blankschtein, D. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 7, 319–334 (2016).

    Article  Google Scholar 

  200. Risma, K. A. et al. Potential mechanisms of anaphylaxis to COVID-19 mRNA vaccines. J. Allergy Clin. Immunol. 147, 2075–2082 (2021).

    Article  Google Scholar 

  201. Banerji, A. et al. mRNA vaccines to prevent COVID-19 disease and reported allergic reactions: current evidence and suggested approach. J. Allergy Clin. Immunol. Pract. 9, 1423–1437 (2021).

    Article  Google Scholar 

  202. Cabanillas, B., Akdis, C. A. & Novak, N. Allergic reactions to the first COVID-19 vaccine: a potential role of polyethylene glycol? Allergy 76, 1617–1618 (2021).

    Article  Google Scholar 

  203. Li, J. et al. Safety and immunogenicity of the SARS-CoV-2 BNT162b1 mRNA vaccine in younger and older Chinese adults: a randomized, placebo-controlled, double-blind phase 1 study. Nat. Med. 27, 1062–1070 (2021).

    Article  Google Scholar 

  204. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  Google Scholar 

  205. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article  Google Scholar 

  206. Lin, D. Y. et al. Effectiveness of bivalent boosters against severe omicron infection. N. Engl. J. Med. 388, 764–766 (2023). This study reports the effectiveness of bivalent vaccines against Omicron infection.

    Article  Google Scholar 

  207. Ng, K. W. et al. SARS-CoV-2 S2-targeted vaccination elicits broadly neutralizing antibodies. Sci. Transl. Med. 14, eabn3715 (2022).

    Article  Google Scholar 

  208. Wang, Y. et al. Combating the SARS-CoV-2 Omicron (BA.1) and BA.2 with potent bispecific antibodies engineered from non-Omicron neutralizing antibodies. Cell Discov. 8, 104 (2022). This article presents a bispecific antibody-based strategy against SARS-CoV-2 variants.

    Article  Google Scholar 

  209. Zhang, L. et al. Engineered ACE2 decoy mitigates lung injury and death induced by SARS-CoV-2 variants. Nat. Chem. Biol. 18, 342–351 (2022).

    Article  Google Scholar 

  210. Awasthi, S. et al. Trivalent nucleoside-modified mRNA vaccine yields durable memory B cell protection against genital herpes in preclinical models. J. Clin. Invest. 131, e152310 (2021).

    Article  Google Scholar 

  211. Freyn, A. W. et al. A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice. Mol. Ther. 28, 1569–1584 (2020).

    Article  Google Scholar 

  212. Corey, L. et al. Two randomized trials of neutralizing antibodies to prevent HIV-1 acquisition. N. Engl. J. Med. 384, 1003–1014 (2021).

    Article  Google Scholar 

  213. Mallory, K. L. et al. Messenger RNA expressing PfCSP induces functional, protective immune responses against malaria in mice. npj Vaccines 6, 84 (2021).

    Article  Google Scholar 

  214. Aldrich, C. et al. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: a phase 1 trial. Vaccine 39, 1310–1318 (2021).

    Article  Google Scholar 

  215. Meyer, M. et al. Modified mRNA-based vaccines elicit robust immune responses and protect guinea pigs from Ebola virus disease. J. Infect. Dis. 217, 451–455 (2018).

    Article  Google Scholar 

  216. Pardi, N. et al. Characterization of HIV-1 nucleoside-modified mRNA vaccines in rabbits and rhesus macaques. Mol. Ther. Nucleic Acids 15, 36–47 (2019).

    Article  Google Scholar 

  217. August, A. et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against chikungunya virus. Nat. Med. 27, 2224–2233 (2021).

    Article  Google Scholar 

  218. Hewitt, S. L. et al. Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin. Cancer Res. 26, 6284–6298 (2020).

    Article  Google Scholar 

  219. Liu, L. et al. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther. 26, 45–55 (2018).

    Article  Google Scholar 

  220. Liu, C. et al. mRNA-based cancer therapeutics. Nat. Rev. Cancer https://doi.org/10.1038/s41568-023-00586-2 (2023). This review presents recent advances in mRNA technology for cancer therapy.

    Article  Google Scholar 

  221. Huang, X., Tang, T., Zhang, G. & Liang, T. Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development. Mol. Cancer. 20, 50 (2021).

    Article  Google Scholar 

  222. Huang, X., Zhang, G., Tang, T. Y., Gao, X. & Liang, T. B. Personalized pancreatic cancer therapy: from the perspective of mRNA vaccine. Mil. Med. Res. 9, 53 (2022).

    Google Scholar 

  223. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article  ADS  Google Scholar 

  224. No authors listed. mRNA vaccine slows melanoma recurrence. Cancer Discov. 13, 1278 (2023).

    Article  Google Scholar 

  225. Wei, J. & Hui, A. M. The paradigm shift in treatment from Covid-19 to oncology with mRNA vaccines. Cancer Treat. Rev. 107, 102405 (2022).

    Article  Google Scholar 

  226. Porciuncula, A. et al. Spatial mapping and immunomodulatory role of the OX40/OX40L pathway in human non-small cell lung cancer. Clin. Cancer Res. 27, 6174–6183 (2021).

    Article  Google Scholar 

  227. Patel, M. R. et al. A phase I study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ, for intratumoral (iTu) injection alone and in combination with durvalumab. J. Clin. Oncol. 38, 3092–3092 (2020).

    Article  Google Scholar 

  228. Abadier, M. et al. 708 MEDI1191 (IL-12 mRNA) induces peripheral and intratumoral immunostimulatory effect in patients with cutaneous or subcutaneous (C/SC) lesions. J. Immunother. Cancer 10, A741 (2022).

    Google Scholar 

  229. Li, T. et al. Current progress in the development of prophylactic and therapeutic vaccines. Sci. China Life Sci. 66, 679–710 (2023).

    Article  ADS  Google Scholar 

  230. Abdelzaher, H. M. et al. RNA vaccines against infectious diseases: vital progress with room for improvement. Vaccines 9, 1211 (2021).

    Article  Google Scholar 

  231. Heine, A., Juranek, S. & Brossart, P. Clinical and immunological effects of mRNA vaccines in malignant diseases. Mol. Cancer 20, 52 (2021).

    Article  Google Scholar 

  232. Yarchoan, M., Johnson, B. A. III, Lutz, E. R., Laheru, D. A. & Jaffee, E. M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17, 209–222 (2017).

    Article  Google Scholar 

  233. Nawaz, M. et al. Lipid nanoparticles deliver the therapeutic VEGFA mRNA in vitro and in vivo and transform extracellular vesicles for their functional extensions. Adv. Sci. 10, e2206187 (2023).

    Article  Google Scholar 

  234. Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    Article  Google Scholar 

  235. Kong, L., Campbell, F. & Kros, A. DePEGylation strategies to increase cancer nanomedicine efficacy. Nanoscale Horiz. 4, 378–387 (2019).

    Article  ADS  Google Scholar 

  236. Rizvi, F. et al. Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA. Nat. Commun. 12, 613 (2021).

    Article  ADS  Google Scholar 

  237. Jiang, L. et al. Systemic messenger RNA as an etiological treatment for acute intermittent porphyria. Nat. Med. 24, 1899–1909 (2018).

    Article  Google Scholar 

  238. Schrom, E. et al. Translation of angiotensin-converting enzyme 2 upon liver- and lung-targeted delivery of optimized chemically modified mRNA. Mol. Ther. Nucleic Acids 7, 350–365 (2017).

    Article  Google Scholar 

  239. Qiu, M. et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of ANGPTL3. Proc. Natl Acad. Sci. USA 118, e2020401118 (2021).

    Article  Google Scholar 

  240. Gan, Z. et al. Nanoparticles containing constrained phospholipids deliver mRNA to liver immune cells in vivo without targeting ligands. Bioeng. Transl. Med. 5, e10161 (2020).

    Article  Google Scholar 

  241. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  ADS  Google Scholar 

  242. Ogawa, K. et al. Focused ultrasound/microbubbles-assisted BBB opening enhances LNP-mediated mRNA delivery to brain. J. Control. Release 348, 34–41 (2022).

    Article  Google Scholar 

  243. Rui, Y., Wilson, D. R. & Green, J. J. Non-viral delivery to enable genome editing. Trends Biotechnol. 37, 281–293 (2019).

    Article  Google Scholar 

  244. Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013).

    Article  Google Scholar 

  245. Bhattacharyya, T., Dasgupta, A. K., Ray, N. R. & Sarkar, S. Molecular discriminators using single wall carbon nanotubes. Nanotechnology 23, 385304 (2012).

    Article  Google Scholar 

  246. Larson, N. R. et al. pH-dependent phase behavior and stability of cationic lipid–mRNA nanoparticles. J. Pharm. Sci. 111, 690–698 (2022).

    Article  Google Scholar 

  247. Kobiyama, K. & Ishii, K. J. Making innate sense of mRNA vaccine adjuvanticity. Nat. Immunol. 23, 474–476 (2022).

    Article  Google Scholar 

  248. Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022).

    Article  Google Scholar 

  249. Kim, B. et al. Optimization of storage conditions for lipid nanoparticle-formulated self-replicating RNA vaccines. J. Control. Release 353, 241–253 (2023).

    Article  Google Scholar 

  250. Zhao, P. et al. Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact. Mater. 5, 358–363 (2020).

    Article  Google Scholar 

  251. Jones, K. L., Drane, D. & Gowans, E. J. Long-term storage of DNA-free RNA for use in vaccine studies. Biotechniques 43, 675–681 (2007).

    Article  Google Scholar 

  252. Vander Straeten, A. et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01774-z (2023).

    Article  Google Scholar 

  253. Alberer, M. et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 390, 1511–1520 (2017).

    Article  Google Scholar 

  254. Shimabukuro, T. & Nair, N. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer–BioNTech Covid-19 vaccine. J. Am. Med. Assoc. 325, 780–781 (2021).

    Article  Google Scholar 

  255. Chu, D. K. et al. Risk of second allergic reaction to SARS-CoV-2 vaccines: a systematic review and meta-analysis. JAMA Intern. Med. 182, 376–385 (2022).

    Article  Google Scholar 

  256. Castells, M. C. & Phillips, E. J. Maintaining safety with SARS-CoV-2 vaccines. N. Engl. J. Med. 384, 643–649 (2021).

    Article  Google Scholar 

  257. Ju, Y. et al. Impact of anti-PEG antibodies induced by SARS-CoV-2 mRNA vaccines. Nat. Rev. Immunol. 23, 135–136 (2023).

    Article  Google Scholar 

  258. Ermilova, I. & Swenson, J. DOPC versus DOPE as a helper lipid for gene-therapies: molecular dynamics simulations with DLin-MC3-DMA. Phys. Chem. Chem. Phys. 22, 28256–28268 (2020).

    Article  Google Scholar 

  259. Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Article  Google Scholar 

  260. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    Article  ADS  Google Scholar 

  261. Hayashi, C. T. H. et al. mRNA-LNP expressing PfCSP and Pfs25 vaccine candidates targeting infection and transmission of Plasmodium falciparum. npj Vaccines 7, 155 (2022).

    Article  Google Scholar 

  262. Baeza Garcia, A. et al. Neutralization of the Plasmodium-encoded MIF ortholog confers protective immunity against malaria infection. Nat. Commun. 9, 2714 (2018).

    Article  ADS  Google Scholar 

  263. Sajid, A. et al. mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent. Sci. Transl. Med. 13, eabj9827 (2021).

    Article  Google Scholar 

  264. Duthie, M. S. et al. Heterologous immunization with defined RNA and subunit vaccines enhances T cell responses that protect against Leishmania donovani. Front. Immunol. 9, 2420 (2018).

    Article  Google Scholar 

  265. Xue, T. et al. RNA encoding the MPT83 antigen induces protective immune responses against Mycobacterium tuberculosis infection. Infect. Immun. 72, 6324–6329 (2004).

    Article  Google Scholar 

  266. Kon, E. et al. A single-dose F1-based mRNA–LNP vaccine provides protection against the lethal plague bacterium. Sci. Adv. 9, eadg1036 (2023).

    Article  ADS  Google Scholar 

  267. Perez-Garcia, C. G. et al. Development of an mRNA replacement therapy for phenylketonuria. Mol. Ther. Nucleic Acids 28, 87–98 (2022).

    Article  Google Scholar 

  268. You, Y. et al. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00989-w (2023).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the American Heart Association (AHA) Transformational Project Award (23TPA1072337; W.T.), AHA’s Second Century Early Faculty Independence Award (23SCEFIA1151841; W.T.), American Lung Association (ALA) Cancer Discovery Award (LCD1034625; W.T.), ALA Courtney Cox Cole Lung Cancer Research Award (No. 2022A017206; W.T.), Novo Nordisk ValidatioNN Award (No. 2023A009607; W.T.), Harvard/Brigham Health & Technology Innovation Fund (No. 2023A004452; W.T.), Department of Anesthesiology-Basic Scientist Grant (No. 2420 BPA075; W.T.), Nanotechnology Foundation (No. 2022A002721; W.T.), Gillian Reny Stepping Strong Center for Trauma Innovation Breakthrough Innovator Award (No. 113548; W.T.), Khoury Innovation Award (No. 2020A003219; W.T.), Center for Nanomedicine Research Fund (No. 2019A014810; W.T.), National Institute of Allergy and Infectious Diseases (No. R01AI174902; Y.D.), National Institute of General Medical Sciences (No. R35GM144117; Y.D.), the National Institutes of Health (R01 EB025192-01A1 and R01 CA269787-01; D.J.S.) and Farokhzad Family Distinguished Chair Foundation (No. 018129; W.T.).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (S.C., X.H., Y.X. and E.Á.-B.); Experimentation (S.C., X.H., Y.X. and E.Á.-B.); Results (S.C., X.H. and Y.X.); Applications (S.C., X.H., Y.X. and E.Á.-B.); Reproducibility and data deposition (S.C. and E.Á.-B.); Limitations and optimizations (S.C., X.H., Y.X., Y.S., W.C. and S.K.); Outlook (S.C., X.H., E.Á.-B. and W.C.); and overview of the Primer (D.J.S., Y.D. and W.T.).

Corresponding authors

Correspondence to Daniel J. Siegwart, Yizhou Dong or Wei Tao.

Ethics declarations

Competing interests

D.J.S. declares the following competing interests: ReCode Therapeutics, Tome Biosciences, Signify Bio, and Pfizer Inc. Y.D. is a scientific advisory board member of Oncorus Inc., Arbor Biotechnologies, and FL85. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Anna Blakney, Dan Peer, Joseph Rosenecker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Clearance rate

The volume or quantity of a substance removed from a system per unit of time.

Encapsulation efficiency

The proportion of mRNA molecules successfully enclosed within the nanoparticle carrier.

Self-amplifying mRNA vaccines

mRNA vaccines incorporate engineered mRNA sequences to perpetually generate specific antigens, thereby augmenting and extending the immune response.

Zeta potential

The electrokinetic potential difference between the dispersing medium and the immobile layer of fluid adhered to the dispersed particle, reflecting the surface charge and potential interactions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Huang, X., Xue, Y. et al. Nanotechnology-based mRNA vaccines. Nat Rev Methods Primers 3, 63 (2023). https://doi.org/10.1038/s43586-023-00246-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00246-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer