Abstract
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive spectroscopic technique that provides non-destructive detection at the single-molecule level. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) provided a solution to the long-standing limitation of poor universality of traditional SERS substrates and morphology and, as a result, greatly expanded applications of SERS. In this Primer, we introduce the background, origin and enhancement mechanism of SHINERS before describing the experimental details of SHINERS, including the types and characterization of shell-isolated nanoparticles, relevant experimental instruments, and experimental reproducibility and data analysis. The recent advances in electrochemical catalysis, heterogeneous catalysis, batteries, and industry and living applications are highlighted. By analysing the limitations and possible optimizations of SHINERS, the guidance for further improvements is discussed. Finally, an outlook on the application of SHINERS-based research is presented.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$99.00 per year
only $99.00 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974). To our knowledge, this article is the first report of surface-enhanced Raman spectra.
Jeanmaire, D. L. & Van Duyne, R. P. Surface raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977). This work demonstrates that the anomalous enhancement in surface Raman spectra is due to a new effect: the SERS effect.
Albrecht, M. G. & Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977).
Li, J.-F., Zhang, Y.-J., Ding, S.-Y., Panneerselvam, R. & Tian, Z.-Q. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 117, 5002–5069 (2017).
Zhang, H., Duan, S., Radjenovic, P. M., Tian, Z.-Q. & Li, J.-F. Core–shell nanostructure-enhanced Raman spectroscopy for surface catalysis. Acc. Chem. Res. 53, 729–739 (2020).
Moskovits, M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys. 69, 4159–4161 (1978).
Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010). To our knowledge, this article is the first demonstration of the observation of SHINERS.
Li, J.-F., Anema, J. R., Wandlowski, T. & Tian, Z.-Q. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Chem. Soc. Rev. 44, 8399–8409 (2015).
Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3132 (2000).
Pettinger, B., Picardi, G., Schuster, R. & Ertl, G. Surface enhanced Raman spectroscopy: towards single molecule spectroscopy. Electrochemistry 68, 942–949 (2000).
Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000).
Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000). Together with Anderson (2000), Pettinger et al. (2000) and Hayazawa et al. (2000), this paper is the first reporting on TERS to our knowledge.
Pettinger, B., Ren, B., Picardi, G., Schuster, R. & Ertl, G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys. Rev. Lett. 92, 096101 (2004).
Wu, D.-Y., Li, J.-F., Ren, B. & Tian, Z.-Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008).
Liz-Marzán, L. M., Giersig, M. & Mulvaney, P. Synthesis of nanosized gold−silica core−shell particles. Langmuir 12, 4329–4335 (1996).
Dong, J.-C. et al. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces. J. Am. Chem. Soc. 142, 715–719 (2020).
Dong, J.-C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019). To our knowledge, this work studies the ORR reaction on a Pt(hkl) single-crystal surface in situ by the electrochemical SHINERS technique for the first time.
Zhou, H. et al. Application of SERS quantitative analysis method in food safety detection. Rev. Anal. Chem. 40, 173–186 (2021).
Wei, J. et al. Probing single-atom catalysts and catalytic reaction processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 60, 9306–9310 (2021).
Zhang, H. et al. In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Commun. 8, 15447 (2017). To our knowledge, this article is the first demonstration of the observation of the SHINERS-satellite strategy for the studies of heterogeneous nanocatalytic processes.
Zhang, H. et al. Revealing the role of interfacial properties on catalytic behaviors by in situ surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 139, 10339–10346 (2017).
Wang, Y.-H. et al. In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR). Angew. Chem. Int. Ed. 58, 16062–16066 (2019).
Chen, H.-Q. et al. Unmasking the critical role of the ordering degree of bimetallic nanocatalysts on oxygen reduction reaction by in situ Raman spectroscopy. Angew. Chem. Int. Ed. 61, e202117834 (2022).
Huang, J. et al. Rational design and synthesis of γFe2O3@Au magnetic gold nanoflowers for efficient cancer theranostics. Adv. Mater. 27, 5049–5056 (2015).
Li, J. F. et al. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Protoc. 8, 52–65 (2013).
Kudelski, A. & Wojtysiak, S. Silica-covered silver and gold nanoresonators for Raman analysis of surfaces of various materials. J. Phys. Chem. C. 116, 16167–16174 (2012).
Abdulrahman, H. B., Kolataj, K., Lenczewski, P., Krajczewski, J. & Kudelski, A. MnO2-protected silver nanoparticles: new electromagnetic nanoresonators for Raman analysis of surfaces in basis environment. Appl. Surf. Sci. 388, 704–709 (2016).
Krajczewski, J., Kolataj, K., Pietrasik, S. & Kudelski, A. Silica-covered star-shaped Au–Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces. Spectrochim. Acta A Mol. Biomol. Spectrosc. 193, 1–7 (2018).
Uzayisenga, V. et al. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy. Langmuir 28, 9140–9146 (2012).
Butcher, D. P. Jr., Boulos, S. P., Murphy, C. J., Ambrosio, R. C. & Gewirth, A. A. Face-dependent shell-isolated nanoparticle enhanced Raman spectroscopy of 2,2′-bipyridine on Au(100) and Au(111). J. Phys. Chem. C. 116, 5128–5140 (2012).
Zhang, B.-Q., Li, S.-B., Xiao, Q., Li, J. & Sun, J.-J. Rapid synthesis and characterization of ultra-thin shell Au@SiO2 nanorods with tunable SPR for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). J. Raman Spectrosc. 44, 1120–1125 (2013).
Li, S.-B. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) based on gold-core silica-shell nanorods. Z. Phys. Chem. 225, 775–783 (2011).
Kolataj, K., Krajczewski, J. & Kudelski, A. Dipyramidal-Au@SiO2 nanostructures: new efficient electromagnetic nanoresonators for Raman spectroscopy analysis of surfaces. Appl. Surf. Sci. 456, 932–940 (2018).
Krajczewski, J., Michalowska, A. & Kudelski, A. Star-shaped plasmonic nanostructures: new, simply synthetized materials for Raman analysis of surfaces. Spectrochim. Acta A Mol. Biomol. Spectrosc. 225, 117469 (2020).
Boccorh, D. K. et al. A universal polymer shell-isolated nanoparticle (SHIN) design for single particle spectro-electrochemical SERS sensing using different core shapes. Nanoscale Adv. 3, 6415–6426 (2021).
Abdulrahman, H. B., Krajczewski, J. & Kudelski, A. Modification of surfaces of silver nanoparticles for controlled deposition of silicon, manganese, and titanium dioxides. Appl. Surf. Sci. 427, 334–339 (2018).
Kolataj, K., Krajczewski, J. & Kudelski, A. Silver nanoparticles with many sharp apexes and edges as efficient nanoresonators for shell-isolated nanoparticle-enhanced Raman spectroscopy. J. Phys. Chem. C. 121, 12383–12391 (2017).
Sun, Y. G., Mayers, B. & Xia, Y. N. Metal nanostructures with hollow interiors. Adv. Mater. 15, 641–646 (2003).
Abdulrahman, H. B., Krajczewski, J., Aleksandrowska, D. & Kudelski, A. Silica-protected hollow silver and gold nanoparticles: new material for Raman analysis of surfaces. J. Phys. Chem. C 119, 20030–20038 (2015).
Michalowska, A. & Kudelski, A. The first silver-based plasmonic nanomaterial for shell-isolated nanoparticle-enhanced Raman spectroscopy with magnetic properties. Molecules 27, 3081 (2022).
Michalowska, A., Krajczewski, J. & Kudelski, A. Magnetic iron oxide cores with attached gold nanostructures coated with a layer of silica: an easily, homogeneously deposited new nanomaterial for surface-enhanced Raman scattering measurements. Spectrochim. Acta A Mol. Biomol. Spectrosc. 277, 121266 (2022).
Wei, D.-Y. et al. In situ Raman observation of oxygen activation and reaction at platinum–ceria interfaces during CO oxidation. J. Am. Chem. Soc. 143, 15635–15643 (2021).
Honesty, N. R. & Gewirth, A. A. Shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) investigation of benzotriazole film formation on Cu(100), Cu(111), and Cu(poly). J. Raman Spectrosc. 43, 46–50 (2012).
Lin, X.-D. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy: nanoparticle synthesis, characterization and applications in electrochemistry. J. Electroanal. Chem. Inter. Electrochem. 688, 5–11 (2013).
Barlow, B. C., Guo, B., Situm, A., Grosvenor, A. P. & Burgess, I. J. Shell isolated nanoparticle enhanced Raman spectroscopy (SHINERS) studies of steel surface corrosion. J. Electroanal. Chem. 853, 113559 (2019).
Fernandez-Vidal, J. et al. Long-life and pH-stable SnO2-coated Au nanoparticles for SHINERS. J. Phys. Chem. C. 126, 12074–12081 (2022).
Lin, X.-D. et al. Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). J. Raman Spectrosc. 43, 40–45 (2012).
Zhang, Y.-J. et al. Graphene-coated Au nanoparticle-enhanced Raman spectroscopy. J. Raman Spectrosc. 52, 439–445 (2021).
Ye, W. et al. Ultrathin polydopamine film coated gold nanoparticles: a sensitive, uniform, and stable SHINERS substrate for detection of benzotriazole. Analyst 142, 3459–3467 (2017).
Qian, K., Liu, H., Yang, L. & Liu, J. Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene. Analyst 137, 4644–4646 (2012).
Li, J.-F. et al. Extraordinary enhancement of Raman scattering from pyridine on single crystal Au and Pt electrodes by shell-isolated Au nanoparticles. J. Am. Chem. Soc. 133, 15922–15925 (2011).
Li, C.-Y. et al. In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 7648–7651 (2015). To our knowledge, this article is the first demonstration of electro-oxidation processes on gold single-crystal surfaces.
Li, J.-F. et al. Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface. J. Am. Chem. Soc. 137, 2400–2408 (2015).
Li, J.-F., Rudnev, A., Fu, Y., Bodappa, N. & Wandlowski, T. In situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applications. ACS Nano 7, 8940–8952 (2013).
Qiu, H. et al. Insights into the role of graphene in hybrid photocatalytic system by in-situ shell-isolated nanoparticle-enhanced Raman spectroscopy. Carbon 152, 305–315 (2019).
Zhang, W. et al. Large scale synthesis of pinhole-free shell-isolated nanoparticles (SHINs) using improved atomic layer deposition (ALD) method for practical applications. J. Raman Spectrosc. 46, 1200–1204 (2015).
Krajczewski, J., Abdulrahman, H. B., Kolataj, K. & Kudelski, A. Zirconium(IV) oxide: new coating material for nanoresonators for shell-isolated nanoparticle-enhanced Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 193, 480–485 (2018).
Gerrard, D. L. & Bowley, H. J. in Practical Raman Spectroscopy (eds Gardiner, D. J. & Graves, P. R.) 55–76 (Springer, 1989).
Barbillat, J. & da Silva, E. Near infra-red Raman spectroscopy with dispersive instruments and multichannel detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 53, 2411–2422 (1997).
Ma, D., Jin, T., Xie, K. & Huang, H. An overview of flow cell architecture design and optimization for electrochemical CO2 reduction. J. Mater. Chem. A 9, 20897–20918 (2021).
Pérez-Jiménez, A. I., Lyu, D., Lu, Z., Liu, G. & Ren, B. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. 11, 4563–4577 (2020).
Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Ze, H. et al. Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy. J. Am. Chem. Soc. 143, 1318–1322 (2021).
Anema, J. R., Li, J.-F., Yang, Z.-L., Ren, B. & Tian, Z.-Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering. Annu. Rev. Anal. Chem. 4, 129–150 (2011).
Wang, Y.-H. et al. Probing interfacial electronic and catalytic properties on well-defined surfaces by using in situ Raman spectroscopy. Angew. Chem. Int. Ed. 57, 11257–11261 (2018).
Li, C.-Y. et al. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019). To our knowledge, this paper is the first demonstration of in situ probing of electrified interfacial water structures at atomically flat surfaces.
Wang, Y.-H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021). This article demonstrates the mechanism of the structure and dissociation of interfacial water on atomically flat palladium single-crystal surfaces.
Galloway, T. A. & Hardwick, L. J. Utilizing in situ electrochemical SHINERS for oxygen reduction reaction studies in aprotic electrolytes. J. Phys. Chem. Lett. 7, 2119–2124 (2016).
Dong, J.-C., Panneerselvam, R., Lin, Y., Tian, X.-D. & Li, J.-F. Shell-isolated nanoparticle-enhanced Raman spectroscopy at single-crystal electrode surfaces. Adv. Opt. Mater. 4, 1144–1158 (2016).
Bodappa, N. et al. Early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ Raman spectroscopy. J. Am. Chem. Soc. 141, 12192–12196 (2019).
Rizo, R. et al. Investigating the presence of adsorbed species on Pt steps at low potentials. Nat. Commun. 13, 2550 (2022).
Su, M. et al. In situ Raman study of CO electrooxidation on Pt(hkl) single-crystal surfaces in acidic solution. Angew. Chem. Int. Ed. 59, 23554–23558 (2020).
Koohi-Fayegh, S. & Rosen, M. A. A review of energy storage types, applications and recent developments. J. Energy Storage 27, 101047 (2020).
Cowan, A. J. & Hardwick, L. J. Advanced spectroelectrochemical techniques to study electrode interfaces within lithium-ion and lithium-oxygen batteries. Annu. Rev. Anal. Chem. 12, 323–346 (2019).
Aurbach, D., McCloskey, B. D., Nazar, L. F. & Bruce, P. G. Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 1, 16128 (2016).
Hy, S., Felix, F., Rick, J., Su, W.-N. & Hwang, B. J. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0 ≤ x ≤ 0.5). J. Am. Chem. Soc. 136, 999–1007 (2014).
Hy, S. et al. In situ surface enhanced Raman spectroscopic studies of solid electrolyte interphase formation in lithium ion battery electrodes. J. Power Sources 256, 324–328 (2014).
Tripathi, A. M., Su, W.-N. & Hwang, B. J. In situ analytical techniques for battery interface analysis. Chem. Soc. Rev. 47, 736–851 (2018).
Gajan, A. et al. Solid electrolyte interphase instability in operating lithium-ion batteries unraveled by enhanced-Raman spectroscopy. ACS Energy Lett. 6, 1757–1763 (2021).
Cabo-Fernandez, L., Mueller, F., Passerini, S. & Hardwick, L. J. In situ Raman spectroscopy of carbon-coated ZnFe2O4 anode material in Li-ion batteries — investigation of SEI growth. Chem. Commun. 52, 3970–3973 (2016).
Cabo-Fernandez, L., Bresser, D., Braga, F., Passerini, S. & Hardwick, L. J. In-situ electrochemical SHINERS investigation of SEI composition on carbon-coated Zn0.9Fe0.1O anode for lithium-ion batteries. Batteries Supercaps 2, 168–177 (2019).
Martin-Yerga, D. et al. Dynamics of solid-electrolyte interphase formation on silicon electrodes revealed by combinatorial electrochemical screening. Angew. Chem. Int. Ed. 61, e202207184 (2022).
Li, X. et al. Direct visualization of the reversible O2–/O– redox process in Li-rich cathode materials. Adv. Mater. 30, 1705197 (2018).
Zhu, C., Fan, C., Cortes, E. & Xie, W. In situ surface-enhanced Raman spectroelectrochemistry reveals the molecular conformation of electrolyte additives in Li-ion batteries. J. Mater. Chem. A 9, 20024–20031 (2021).
Cao, R., Lee, J.-S., Liu, M. & Cho, J. Recent progress in non-precious catalysts for metal-air batteries. Adv. Energy Mater. 2, 816–829 (2012).
Aldous, I. M., Hardwick, L. J., Nichols, R. J. & Vivek, J. P. in Metal‐Air Batteries (ed. Xin-bo Zhang) 233–264 (Wiley, 2018).
Sharon, D. et al. Aprotic metal-oxygen batteries: recent findings and insights. J. Solid. State Electrochem. 21, 1861–1878 (2017).
Radjenovic, P. M. & Hardwick, L. J. Evaluating chemical bonding in dioxides for the development of metal-oxygen batteries: vibrational spectroscopic trends of dioxygenyls, dioxygen, superoxides and peroxides. Phys. Chem. Chem. Phys. 21, 1552–1563 (2019).
Galloway, T. A., Cabo-Fernandez, L., Aldous, I. M., Braga, F. & Hardwick, L. J. Shell isolated nanoparticles for enhanced Raman spectroscopy studies in lithium-oxygen cells. Faraday Discuss. 205, 469–490 (2017).
Ding, S.-Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).
Xue, L. et al. In situ/operando Raman techniques in lithium-sulfur batteries. Small Struct. 3, 2100170 (2022).
Wu, H.-L., Huff, L. A. & Gewirth, A. A. In situ Raman spectroscopy of sulfur speciation in lithium–sulfur batteries. ACS Appl. Mater. Inter. 7, 1709–1719 (2015).
Miele, E. et al. Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes. Nat. Commun. 13, 1651 (2022).
Li, C.-Y. et al. Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations. Nat. Commun. 13, 5330 (2022).
Freund, H.-J., Meijer, G., Scheffler, M., Schlogl, R. & Wolf, M. CO oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem. Int. Ed. 50, 10064–10094 (2011).
Hartman, T., Wondergem, C. S. & Weckhuysen, B. M. Practical guidelines for shell-isolated nanoparticle-enhanced Raman spectroscopy of heterogeneous catalysts. ChemPhysChem 19, 2461–2467 (2018).
Hartman, T. & Weckhuysen, B. M. Thermally stable TiO2- and SiO2-shell-isolated Au nanoparticles for in situ plasmon-enhanced Raman spectroscopy of hydrogenation catalysts. Chem. Eur. J. 24, 3733–3741 (2018).
Wondergem, C. S. et al. In situ shell-isolated nanoparticle-enhanced Raman spectroscopy of nickel-catalyzed hydrogenation reactions. ChemPhysChem 21, 625–632 (2020).
Wondergem, C. S., Hartman, T. & Weckhuysen, B. M. In situ shell-isolated nanoparticle-enhanced Raman spectroscopy to unravel sequential hydrogenation of phenylacetylene over platinum nanoparticles. ACS Catal. 9, 10794–10802 (2019).
Hartman, T., Geitenbeek, R. G., Whiting, G. T. & Weckhuysen, B. M. Operando monitoring of temperature and active species at the single catalyst particle level. Nat. Catal. 2, 986–996 (2019).
Xie, W., Walkenfort, B. & Schluecker, S. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. J. Am. Chem. Soc. 135, 1657–1660 (2013).
Wei, J. et al. In situ Raman monitoring and manipulating of interfacial hydrogen spillover by precise fabrication of Au/TiO2/Pt sandwich structures. Angew. Chem. Int. Ed. 59, 10343–10347 (2020).
Smith, S. R. et al. Quantitative SHINERS analysis of temporal changes in the passive layer at a gold electrode surface in a thiosulfate solution. Anal. Chem. 87, 3791–3799 (2015).
Smith, S. R., Zhou, C., Baron, J. Y., Choi, Y. & Lipkowski, J. Elucidating the interfacial interactions of copper and ammonia with the sulfur passive layer during thiosulfate mediated gold leaching. Electrochim. Acta 210, 925–934 (2016).
Honesty, N. R. & Gewirth, A. A. Investigating the effect of aging on transpassive behavior of Ni-based alloys in sulfuric acid with shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). Corros. Sci. 67, 67–74 (2013).
Zhang, K., Hu, Y. & Li, G. Diazotization-coupling reaction-based selective determination of nitrite in complex samples using shell-isolated nanoparticle-enhanced Raman spectroscopy. Talanta 116, 712–718 (2013).
Zhang, K., Liang, L., Huang, M., Hu, Y. & Li, G. Determination of iodate in iodized salt and water samples by shell-isolated nanoparticle-enhanced Raman spectroscopy. Microchim. Acta 181, 1301–1308 (2014).
Wei, Q. et al. Synthesis of MBA-encoded silver/silica core-shell nanoparticles as novel SERS tags for biosensing gibberellin A3 based on Au@Fe3O4 as substrate. Sensors 19, 5152 (2019).
Zdaniauskiene, A. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy for characterization of living yeast cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 240, 118560 (2020).
Fang, P.-P., Lu, X., Liu, H. & Tong, Y. Applications of shell-isolated nanoparticles in surface-enhanced Raman spectroscopy and fluorescence. Trends Anal. Chem. 66, 103–117 (2015).
Zheng, C. et al. The use of Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy for human breast cancer detection. Anal. Bioanal. Chem. 406, 5425–5432 (2014).
Zheng, C. et al. Molecular fingerprint of precancerous lesions in breast atypical hyperplasia. J. Int. Med. Res. 48, 0300060520931616 (2020).
Liang, L. et al. Exploring type II microcalcifications in benign and premalignant breast lesions by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 397–402 (2014).
Nicinski, K. et al. Detection of circulating tumor cells in blood by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in microfluidic device. Sci. Rep. 9, 9267 (2019).
El-Said, W. A., Alshitari, W. & Choi, J.-W. Controlled fabrication of gold nanobipyramids/polypyrrole for shell-isolated nanoparticle-enhanced Raman spectroscopy to detect γ-aminobutyric acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 229, 117890 (2020).
Puglieri, T. S., Madden, O. & Andrade, G. F. S. SHINERS in cultural heritage: can SHINERS spectra always be compared with normal Raman spectra? A study of alizarin and its adsorption in the silicon dioxide shell. J. Raman Spectrosc. 52, 1406–1417 (2021).
Zhang, S.-P. et al. In situ Raman study of the photoinduced behavior of dye molecules on TiO2(hkl) single crystal surfaces. Chem. Sci. 11, 6431–6435 (2020).
You, C.-Y. et al. Plasmon-enhanced fluorescence of phosphors using shell-isolated nanoparticles for display technologies. ACS Appl. Nano Mater. 3, 5846–5854 (2020).
Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).
Huang, Y.-P. et al. Shell-isolated tip-enhanced Raman and fluorescence spectroscopy. Angew. Chem. Int. Ed. 57, 7523–7527 (2018).
Acknowledgements
This work was supported by the National Key Research and Development Program of China (2019YFA0705400), the National Natural Science Foundation of China (21925404, T2293692, 22104124, 22174165 and 22021001), the Natural Sciences and Engineering Research Council of Canada (NSERC) to J.L. (RG-03958), and the UK Faraday Institution (EPSRC EP/S003053/1) through the Degradation Project (FIRG001 and FIRG024).
Author information
Authors and Affiliations
Contributions
Introduction (Z.-Q.T., Y.-J.Z. and H.Z.); Experimentation (A.K. and Y.-J.Z.); Results (Y.-J.Z. and H.Z.); Applications (Y.-J.Z., H.Z., P.-P.F., J.F.-V., L.J.H., J.L. and J.-F.L.); Reproducibility and data deposition (H.Z. and Y.-F.H.); Limitations and optimizations (H.Z. and Y.-F.H.); Outlook (Z.-Q.T., J.-F.L. and Y.-J.Z.). All authors discussed and edited the full manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks Jung Ho Yu, Wei Xie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Contact mode
-
The probed molecules are in direct contact with surface-enhanced Raman scattering (SERS) active material.
- Frens method
-
A method of reducing an aqueous solution of gold or silver precursor by sodium citrate at elevated temperature.
- Localized surface plasmon resonance effect
-
The collective oscillation effect of conduction electrons in nanostructures stimulated by incident light.
- Nanoresonators
-
Nanostructures with a localized surface plasmon resonance effect.
- Non-contact mode
-
The surface-enhanced Raman scattering (SERS) signal amplifier is separated from the surface of interest.
- Rayleigh scattering
-
A scattering in which the intensity of the scattered light is inversely proportional to the fourth power of the frequency of the incident light, and the intensity in each direction is not the same.
- Shell-isolated mode
-
The gold core acts as a signal amplifier, and the chemically inert dielectric shell prevents the interaction between the gold core and the system under study.
- SHINERS-satellite strategy
-
A developed core–shell satellite nanocomposite structure (gold core–silica shell–nanocatalyst satellite structure).
- Sol
-
A dispersed solution having colloidal particles with a diameter of 1–1,000 nm.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, YJ., Ze, H., Fang, PP. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat Rev Methods Primers 3, 36 (2023). https://doi.org/10.1038/s43586-023-00217-y
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-023-00217-y