Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Modulating cell signalling in vivo with magnetic nanotransducers

Abstract

Weak magnetic fields offer nearly lossless transmission of signals within biological tissue. Magnetic nanomaterials are capable of transducing magnetic fields into a range of biologically relevant signals in vitro and in vivo. These nanotransducers have recently enabled magnetic control of cellular processes, from neuronal firing and gene expression to programmed apoptosis. Effective implementation of magnetically controlled cellular signalling relies on careful tailoring of magnetic nanotransducers and magnetic fields to the responses of the intended molecular targets. This Primer discusses the versatility of magnetic modulation modalities and offers practical guidelines for selection of appropriate materials and field parameters, with a particular focus on applications in neuroscience. With recent developments in magnetic instrumentation and nanoparticle chemistries, including those that are commercially available, magnetic approaches promise to empower research aimed at connecting molecular and cellular signalling to physiology and behaviour in untethered moving subjects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Magnetic transduction mechanisms.
Fig. 2: Magnetic neuromodulation workflow.
Fig. 3: Chemical and physical analysis of MNPs used for magneto-thermal modulation.
Fig. 4: Chemical, physical and targeting properties of magneto-mechanical nanotransducers.
Fig. 5: An in vitro panel for magneto-thermal activation and silencing of neurons.
Fig. 6: Magneto-thermal and chemomagnetic control of behaviour and physiology: examples of data sets.
Fig. 7: Applications of magneto-mechanical stimulation to trigger neuronal firing in vitro and in vivo.

Similar content being viewed by others

References

  1. Pankhurst, Q. A., Connolly, J., Jones, S. K. & Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, R167–R181 (2003).

    Article  ADS  Google Scholar 

  2. Hergt, R., Dutz, S., Müller, R. & Zeisberger, M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter 18, S2919–S2934 (2006).

    Article  ADS  Google Scholar 

  3. Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606 (2010). This work is the first report of magneto-thermal stimulation of neural activity.

    Article  ADS  Google Scholar 

  4. Chen, R., Romero, G., Christiansen, M. G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015). This work is the first report of magneto-thermal stimulation in the deep brain of a mouse.

    Article  ADS  Google Scholar 

  5. Lee, J.-u. et al. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nat. Mater. 20, 1029–1036 (2021). This work is the first report of magneto-mechanical control of mouse behaviour.

    Article  ADS  Google Scholar 

  6. George, M. S., Lisanby, S. H. & Sackeim, H. A. Transcranial magnetic stimulation: applications in neuropsychiatry. Arch. Gen. Psychiatry 56, 300–311 (1999).

    Article  Google Scholar 

  7. Wassermann, E. M. & Lisanby, S. H. Therapeutic application of repetitive transcranial magnetic stimulation: a review. Clin. Neurophysiol. 112, 1367–1377 (2001).

    Article  Google Scholar 

  8. Silvanto, J., Cowey, A., Lavie, N. & Walsh, V. Striate cortex (V1) activity gates awareness of motion. Nat. Neurosci. 8, 143–144 (2005).

    Article  Google Scholar 

  9. Fregni, F. & Pascual-Leone, A. Technology insight: noninvasive brain stimulation in neurology — perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol. 3, 383–393 (2007).

    Article  Google Scholar 

  10. Kobayashi, M. & Pascual-Leone, A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2, 145–156 (2003).

    Article  Google Scholar 

  11. Hallett, M. Transcranial magnetic stimulation and the human brain. Nature 406, 147–150 (2000).

    Article  ADS  Google Scholar 

  12. Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

    Article  ADS  Google Scholar 

  13. Christiansen, M. G., Senko, A. W. & Anikeeva, P. Magnetic strategies for nervous system control. Annu. Rev. Neurosci. 42, 271–293 (2019).

    Article  Google Scholar 

  14. Seo, D. et al. A mechanogenetic toolkit for interrogating cell signaling in space and time. Cell 165, 1507–1518 (2016).

    Article  Google Scholar 

  15. Beaulieu, J.-M. & Gainetdinov, R. R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 63, 182–217 (2011).

    Article  Google Scholar 

  16. Snyder, S. H. Brain peptides as neurotransmitters. Science 209, 976–983 (1980).

    Article  ADS  Google Scholar 

  17. Fonnum, F. Glutamate: a neurotransmitter in mammalian brain. J. Neurochemistry 42, 1–11 (1984).

    Article  Google Scholar 

  18. Park, J. et al. In situ electrochemical generation of nitric oxide for neuronal modulation. Nat. Nanotechnol. 15, 690–697 (2020).

    Article  ADS  Google Scholar 

  19. Park, J. et al. Electrochemical modulation of carbon monoxide-mediated cell signaling. Angew. Chem. Int. Ed. 60, 20325–20330 (2021).

    Article  Google Scholar 

  20. Tehovnik, E. J. Electrical stimulation of neural tissue to evoke behavioral responses. J. Neurosci. Methods 65, 1–17 (1996).

    Article  Google Scholar 

  21. Clapham, D. E., Runnels, L. W. & Strübing, C. The TRP ion channel family. Nat. Rev. Neurosci. 2, 387–396 (2001).

    Article  Google Scholar 

  22. Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748–754 (2004).

    Article  ADS  Google Scholar 

  23. Martinac, B. Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci. 117, 2449–2460 (2004).

    Article  Google Scholar 

  24. Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    Article  ADS  Google Scholar 

  25. Zhu, C., Bao, G. & Wang, N. Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2, 189–226 (2000).

    Article  Google Scholar 

  26. Rivnay, J., Wang, H., Fenno, L., Deisseroth, K. & Malliaras, G. G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3, e1601649 (2017).

    Article  ADS  Google Scholar 

  27. Rao, S. et al. Remotely controlled chemomagnetic modulation of targeted neural circuits. Nat. Nanotechnol. 14, 967–973 (2019). This work is the first report of chemomagnetic control of neural activity and mouse behaviour.

    Article  ADS  Google Scholar 

  28. Golovin, Y. I. et al. Towards nanomedicines of the future: remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J. Control. Rel. 219, 43–60 (2015).

    Article  Google Scholar 

  29. Yue, K. et al. Magneto-electric nano-particles for non-invasive brain stimulation. PLoS ONE 7, e44040 (2012).

    Article  ADS  Google Scholar 

  30. Guduru, R. et al. Magnetoelectric ‘spin’ on stimulating the brain. Nanomedicine 10, 2051–2061 (2015).

    Article  Google Scholar 

  31. Kozielski, K. L. et al. Nonresonant powering of injectable nanoelectrodes enables wireless deep brain stimulation in freely moving mice. Sci. Adv. 7, eabc4189 (2021). This work presents the first application of nanoscale magnetoelectric coupling to control mouse behaviour.

    Article  ADS  Google Scholar 

  32. Johnsen, S. & Lohmann, K. J. Magnetoreception in animals. Phys. Today 61, 29–35 (2008).

    Article  Google Scholar 

  33. Rodgers, C. T. & Hore, P. J. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl Acad. Sci. USA 106, 353–360 (2009).

    Article  ADS  Google Scholar 

  34. Kirschvink, J. L., Walker, M. M. & Diebel, C. E. Magnetite-based magnetoreception. Curr. Opin. Neurobiol. 11, 462–467 (2001).

    Article  Google Scholar 

  35. Lohmann, K. J. & Johnsen, S. The neurobiology of magnetoreception in vertebrate animals. Trends Neurosci. 23, 153–159 (2000).

    Article  Google Scholar 

  36. Park, J., Koehler, F., Varnavides, G., Antonini, M.-J. & Anikeeva, P. Influence of magnetic fields on electrochemical reactions of redox cofactor solutions. Angew. Chem. Int. Ed. 60, 18295–18302 (2021).

    Article  Google Scholar 

  37. Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016).

    Article  Google Scholar 

  38. Barbic, M. Possible magneto-mechanical and magneto-thermal mechanisms of ion channel activation in magnetogenetics. eLife 8, e45807 (2019).

    Article  Google Scholar 

  39. Brier, M. I. et al. Uncovering a possible role of reactive oxygen species in magnetogenetics. Sci. Rep. 10, 13096 (2020).

    Article  ADS  Google Scholar 

  40. Hernández-Morales, M., Shang, T., Chen, J., Han, V. & Liu, C. Lipid oxidation induced by RF waves and mediated by ferritin iron causes activation of ferritin-tagged ion channels. Cell Rep. 30, 3250–3260.e7 (2020).

    Article  Google Scholar 

  41. Field, S. B. & Bleehen, N. M. Hyperthermia in the treatment of cancer. Cancer Treat. Rev. 6, 63–94 (1979).

    Article  Google Scholar 

  42. Wust, P. et al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 3, 487–497 (2002).

    Article  Google Scholar 

  43. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  ADS  Google Scholar 

  44. Stanley, S. A. et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336, 604–608 (2012).

    Article  ADS  Google Scholar 

  45. Hescham, S.-A. et al. Magnetothermal nanoparticle technology alleviates parkinsonian-like symptoms in mice. Nat. Commun. 12, 5569 (2021).

    Article  ADS  Google Scholar 

  46. Munshi, R. et al. Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. eLife 6, e27069 (2017). This work is the first report of magneto-thermal control of mouse behaviour.

    Article  Google Scholar 

  47. Rosenfeld, D. et al. Transgene-free remote magnetothermal regulation of adrenal hormones. Sci. Adv. 6, eaaz3734 (2020). This work is the first report of magneto-thermal control of endocrine signalling mediated by endogenous TRPV1 in genetically intact rats.

    Article  ADS  Google Scholar 

  48. Luo, J., Shen, W. L. & Montell, C. TRPA1 mediates sensation of the rate of temperature change in Drosophila larvae. Nat. Neurosci. 20, 34–41 (2017).

    Article  Google Scholar 

  49. Sebesta, C. et al. Subsecond multichannel magnetic control of select neural circuits in freely moving flies. Nat. Mater. https://doi.org/10.1038/s41563-022-01281-7 (2022). This work is the first demonstration of sub-second magneto-thermal control of behaviour mediated by ion channels responsive to temperature change rather than temperature threshold.

    Article  Google Scholar 

  50. Yang, Y. D. et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455, 1210–1215 (2008).

    Article  ADS  Google Scholar 

  51. Cho, H. et al. The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat. Neurosci. 15, 1015–1021 (2012).

    Article  Google Scholar 

  52. Maingret, F. et al. TREK-1 is a heat-activated background K+ channel. EMBO J. 19, 2483–2491 (2000).

    Article  Google Scholar 

  53. Munshi, R., Qadri, S. M. & Pralle, A. Transient magnetothermal neuronal silencing using the chloride channel anoctamin 1 (TMEM16A). Front. Neurosci. https://doi.org/10.3389/fnins.2018.00560 (2018).

    Article  Google Scholar 

  54. Romero, G., Christiansen, M. G., Stocche Barbosa, L., Garcia, F. & Anikeeva, P. Localized excitation of neural activity via rapid magnetothermal drug release. Adv. Funct. Mater. 26, 6471–6478 (2016).

    Article  Google Scholar 

  55. Park, J. et al. Remotely controlled proton generation for neuromodulation. Nano Lett. 20, 6535–6541 (2020).

    Article  ADS  Google Scholar 

  56. Moon, J. et al. Magnetothermal multiplexing for selective remote control of cell signaling. Adv. Funct. Mater. 30, 2000577 (2020).

    Article  Google Scholar 

  57. Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992).

    Article  ADS  Google Scholar 

  58. Kim, D.-H. et al. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 9, 165–171 (2010).

    Article  ADS  Google Scholar 

  59. Gregurec, D. et al. Magnetic vortex nanodiscs enable remote magnetomechanical neural stimulation. ACS Nano 14, 8036–8045 (2020). This work is the first report of magneto-mechanical stimulation of neural activity.

    Article  Google Scholar 

  60. Collier, C. et al. Wireless force-inducing neuronal stimulation mediated by high magnetic moment microdiscs. Adv. Healthc. Mater. 11, 2101826 (2022).

    Article  Google Scholar 

  61. Mannix, R. J. et al. Nanomagnetic actuation of receptor-mediated signal transduction. Nat. Nanotechnol. 3, 36–40 (2008).

    Article  ADS  Google Scholar 

  62. Dobson, J. Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 3, 139–143 (2008).

    Article  ADS  Google Scholar 

  63. Tseng, P., Judy, J. W. & Di Carlo, D. Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior. Nat. Methods 9, 1113–1119 (2012).

    Article  Google Scholar 

  64. Cho, M. H. et al. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat. Mater. 11, 1038–1043 (2012).

    Article  ADS  Google Scholar 

  65. Etoc, F. et al. Magnetogenetic control of protein gradients inside living cells with high spatial and temporal resolution. Nano Lett. 15, 3487–3494 (2015).

    Article  ADS  Google Scholar 

  66. Yu, Y. et al. Remote and selective control of astrocytes by magnetomechanical stimulation. Adv. Sci. 9, e2104194 (2022).

    Article  Google Scholar 

  67. Christiansen, M. G., Senko, A. W., Chen, R., Romero, G. & Anikeeva, P. Magnetically multiplexed heating of single domain nanoparticles. Appl. Phys. Lett. 104, 213103 (2014).

    Article  ADS  Google Scholar 

  68. Christiansen, M. G., Howe, C. M., Bono, D. C., Perreault, D. J. & Anikeeva, P. Practical methods for generating alternating magnetic fields for biomedical research. Rev. Sci. Instrum. 88, 084301 (2017).

    Article  ADS  Google Scholar 

  69. Young, J. H., Wang, M.-T. & Brezovich, I. A. J. E. L. Frequency/depth-penetration considerations in hyperthermia by magnetically induced currents. IET J. 16, 358–359 (1980).

    Google Scholar 

  70. Bordelon, D. E. et al. Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications. IEEE Trans. Magn. 48, 47–52 (2012).

    Article  ADS  Google Scholar 

  71. Müller, K. F. Berechnung der Induktivität von Spulen [German]. Arch. für Elektrotechnik 17, 336–353 (1926).

    Article  Google Scholar 

  72. Irving, M. & Gottlieb, P. E. in Practical Transformer Handbook (eds Irving, M. & Gottlieb, P. E.) 1–24 (Newnes, 1998).

  73. Blanchard, J. The history of electrical resonance. Bell Syst. Techn. J. 20, 415–433 (1941).

    Article  Google Scholar 

  74. Ripka, P. Magnetic sensors and magnetometers. Meas. Sci. Technol. 13, 645–645 (2002).

    Article  ADS  Google Scholar 

  75. Gavilán, H. et al. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem. Soc. Rev. 50, 11614–11667 (2021).

    Article  Google Scholar 

  76. Fortin, J.-P. et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129, 2628–2635 (2007).

    Article  Google Scholar 

  77. Nosrati, H. et al. New insight about biocompatibility and biodegradability of iron oxide magnetic nanoparticles: stereological and in vivo MRI monitor. Sci. Rep. 9, 7173 (2019).

    Article  ADS  Google Scholar 

  78. Costa, C. et al. In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests. J. Appl. Toxicol. 36, 361–372 (2016).

    Article  Google Scholar 

  79. Nuzhina, J. V., Shtil, A. A., Prilepskii, A. Y. & Vinogradov, V. V. Preclinical evaluation and clinical translation of magnetite-based nanomedicines. J. Drug Deliv. Sci. Technol. 54, 101282 (2019).

    Article  Google Scholar 

  80. Li, Z., Tan, B., Allix, M., Cooper, A. I. & Rosseinsky, M. J. Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection. Small 4, 231–239 (2008).

    Article  Google Scholar 

  81. LaGrow, A. P. et al. Unravelling the growth mechanism of the co-precipitation of iron oxide nanoparticles with the aid of synchrotron X-ray diffraction in solution. Nanoscale 11, 6620–6628 (2019).

    Article  Google Scholar 

  82. Andrés Vergés, M. et al. Uniform and water stable magnetite nanoparticles with diameters around the monodomain–multidomain limit. J. Phys. D Appl. Phys. 41, 134003 (2008).

    Article  ADS  Google Scholar 

  83. Kemp, S. J., Ferguson, R. M., Khandhar, A. P. & Krishnan, K. M. Monodisperse magnetite nanoparticles with nearly ideal saturation magnetization. RSC Adv. 6, 77452–77464 (2016).

    Article  ADS  Google Scholar 

  84. Jang, J.-t et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed. 48, 1234–1238 (2009).

    Article  Google Scholar 

  85. Xie, W. et al. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 8, 3284–3307 (2018).

    Article  Google Scholar 

  86. Kovalenko, M. V. et al. Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J. Am. Chem. Soc. 129, 6352–6353 (2007).

    Article  Google Scholar 

  87. Zhao, Z. et al. Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat. Commun. 4, 2266 (2013).

    Article  ADS  Google Scholar 

  88. Chen, R. et al. High-performance ferrite nanoparticles through nonaqueous redox phase tuning. Nano Lett. 16, 1345–1351 (2016).

    Article  ADS  Google Scholar 

  89. Wu, K. et al. Investigation of commercial iron oxide nanoparticles: structural and magnetic property characterization. ACS Omega 6, 6274–6283 (2021).

    Article  Google Scholar 

  90. Noh, S.-h et al. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett. 12, 3716–3721 (2012).

    Article  ADS  Google Scholar 

  91. Lee, S.-Y. & Harris, M. T. Surface modification of magnetic nanoparticles capped by oleic acids: characterization and colloidal stability in polar solvents. J. Colloid Interface Sci. 293, 401–408 (2006).

    Article  ADS  Google Scholar 

  92. Dong, A. et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 133, 998–1006 (2011).

    Article  Google Scholar 

  93. Palma, S. I. C. J. et al. Effects of phase transfer ligands on monodisperse iron oxide magnetic nanoparticles. J. Colloid Interface Sci. 437, 147–155 (2015).

    Article  ADS  Google Scholar 

  94. Chan, N. et al. Multidentate block-copolymer-stabilized ultrasmall superparamagnetic iron oxide nanoparticles with enhanced colloidal stability for magnetic resonance imaging. Biomacromolecules 15, 2146–2156 (2014).

    Article  Google Scholar 

  95. Chen, R., Christiansen, M. G. & Anikeeva, P. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. ACS Nano 7, 8990–9000 (2013).

    Article  Google Scholar 

  96. Lu, C., Bhatt, L. R., Jun, H. Y., Park, S. H. & Chai, K. Y. Carboxyl–polyethylene glycol–phosphoric acid: a ligand for highly stabilized iron oxide nanoparticles. J. Mater. Chem. 22, 19806–19811 (2012).

    Article  Google Scholar 

  97. Das, M. et al. Orthogonal biofunctionalization of magnetic nanoparticles via “clickable” poly(ethylene glycol) silanes: a “universal ligand” strategy to design stealth and target-specific nanocarriers. J. Mater. Chem. 22, 24652–24667 (2012).

    Article  Google Scholar 

  98. Amstad, E., Gillich, T., Bilecka, I., Textor, M. & Reimhult, E. Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. Nano Lett. 9, 4042–4048 (2009).

    Article  ADS  Google Scholar 

  99. Xu, C. et al. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 126, 9938–9939 (2004).

    Article  Google Scholar 

  100. Zhang, L., Tong, S., Zhang, Q. & Bao, G. Lipid-encapsulated Fe3O4 nanoparticles for multimodal magnetic resonance/fluorescence imaging. ACS Appl. Nano Mater. 3, 6785–6797 (2020).

    Article  Google Scholar 

  101. Wang, F. et al. Profiling metal oxides with lipids: magnetic liposomal nanoparticles displaying DNA and proteins. Angew. Chem. Int. Ed. 55, 12063–12067 (2016).

    Article  ADS  Google Scholar 

  102. Davis, H. C. et al. Nanoscale heat transfer from magnetic nanoparticles and ferritin in an alternating magnetic field. Biophys. J. 118, 1502–1510 (2020).

    Article  ADS  Google Scholar 

  103. Lim, Y. et al. Magnetothermally activated nanometer-level modular functional group grafting of nanoparticles. Nano Lett. 21, 3649–3656 (2021).

    Article  ADS  Google Scholar 

  104. Oz, Y., Arslan, M., Gevrek, T. N., Sanyal, R. & Sanyal, A. Modular fabrication of polymer brush coated magnetic nanoparticles: engineering the interface for targeted cellular imaging. ACS Appl. Mater. Interfaces 8, 19813–19826 (2016).

    Article  Google Scholar 

  105. Mai, B. T. et al. Thermoresponsive iron oxide nanocubes for an effective clinical translation of magnetic hyperthermia and heat-mediated chemotherapy. ACS Appl. Mater. Interfaces 11, 5727–5739 (2019).

    Article  Google Scholar 

  106. Guntnur, R. T. et al. On-demand chemomagnetic modulation of striatal neurons facilitated by hybrid magnetic nanoparticles. Adv. Funct. Mater. 32, 2204732 (2022).

    Article  Google Scholar 

  107. Loynachan, C. N. et al. Targeted magnetic nanoparticles for remote magnetothermal disruption of amyloid-β aggregates. Adv. Healthc. Mater. 4, 2100–2109 (2015).

    Article  Google Scholar 

  108. Patsula, V. et al. Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model. Sci. Rep. 9, 10765 (2019).

    Article  ADS  Google Scholar 

  109. Lee, J.-H. et al. Magnetic nanoparticles for ultrafast mechanical control of inner ear hair cells. ACS Nano 8, 6590–6598 (2014).

    Article  Google Scholar 

  110. Markaki, A. E. & Clyne, T. W. Magneto-mechanical stimulation of bone growth in a bonded array of ferromagnetic fibres. Biomaterials 25, 4805–4815 (2004).

    Article  Google Scholar 

  111. Hu, B., El Haj, A. J. & Dobson, J. Receptor-targeted, magneto-mechanical stimulation of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int. J. Mol. Sci. 14, 19276–19293 (2013).

    Article  Google Scholar 

  112. Bidan, C. M. et al. Magneto-active substrates for local mechanical stimulation of living cells. Sci. Rep. 8, 1464 (2018).

    Article  ADS  Google Scholar 

  113. Tay, Z. W. et al. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano 12, 3699–3713 (2018).

    Article  Google Scholar 

  114. Tay, A. & Di Carlo, D. Magnetic nanoparticle-based mechanical stimulation for restoration of mechano-sensitive ion channel equilibrium in neural networks. Nano Lett. 17, 886–892 (2017).

    Article  ADS  Google Scholar 

  115. Lisjak, D. & Mertelj, A. Anisotropic magnetic nanoparticles: a review of their properties, syntheses and potential applications. Prog. Mater. Sci. 95, 286–328 (2018).

    Article  Google Scholar 

  116. Matthews, B. D. et al. Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface β1 integrins. Integr. Biol. 2, 435–442 (2010).

    Article  Google Scholar 

  117. Parreiras, S. O. & Martins, M. D. Effect of planar anisotropy in vortex configuration of micro-scale disks. Phys. Procedia 75, 1142–1149 (2015).

    Article  ADS  Google Scholar 

  118. Ammar, M. et al. A quantitative analysis of magnetic vortices in permalloy nanoparticles characterized by electron holography. J. Magn. Magn. Mater. 320, e716–e719 (2008).

    Article  Google Scholar 

  119. Yang, Y. et al. Stable vortex magnetite nanorings colloid: micromagnetic simulation and experimental demonstration. J. Appl. Phys. 111, 044303 (2012).

    Article  ADS  Google Scholar 

  120. Kim, J.-w et al. Single-cell mechanogenetics using monovalent magnetoplasmonic nanoparticles. Nat. Protoc. 12, 1871–1889 (2017).

    Article  Google Scholar 

  121. Vock, S. et al. Magnetic vortex observation in FeCo nanowires by quantitative magnetic force microscopy. Appl. Phys. Lett. 105, 172409 (2014).

    Article  ADS  Google Scholar 

  122. Coïsson, M. et al. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy. Sci. Rep. 6, 29904 (2016).

    Article  ADS  Google Scholar 

  123. Anand, M., Carrey, J. & Banerjee, V. Spin morphologies and heat dissipation in spherical assemblies of magnetic nanoparticles. Phys. Rev. B 94, 094425 (2016).

    Article  ADS  Google Scholar 

  124. Aurélio, D. & Vejpravova, J. Understanding magnetization dynamics of a magnetic nanoparticle with a disordered shell using micromagnetic simulations. Nanomaterials 10, 1149 (2020).

    Article  Google Scholar 

  125. Evans, R. F. L. et al. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26, 103202 (2014).

    Article  ADS  Google Scholar 

  126. Hergt, R. & Dutz, S. Magnetic particle hyperthermia — biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 311, 187–192 (2007).

    Article  ADS  Google Scholar 

  127. Di Loreto, S. et al. Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J. Cell. Physiol. 219, 334–343 (2009).

    Article  Google Scholar 

  128. Myrtill, S. Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr. Med. Chem. 14, 1141–1152 (2007).

    Article  Google Scholar 

  129. Khalil, W. K. B., Girgis, E., Emam, A. N., Mohamed, M. B. & Rao, K. V. Genotoxicity evaluation of nanomaterials: DNA damage, micronuclei, and 8-hydroxy-2-deoxyguanosine induced by magnetic doped CdSe quantum dots in male mice. Chem. Res. Toxicol. 24, 640–650 (2011).

    Article  Google Scholar 

  130. Singh, N. et al. The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials 33, 163–170 (2012).

    Article  Google Scholar 

  131. Mai, T. & Hilt, J. Z. Magnetic nanoparticles: reactive oxygen species generation and potential therapeutic applications. J. Nanopart. Res. 19, 253 (2017).

    Article  ADS  Google Scholar 

  132. Feng, Q. et al. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci. Rep. 8, 2082 (2018).

    Article  ADS  Google Scholar 

  133. Foroozandeh, P. & Aziz, A. A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 13, 339 (2018).

    Article  ADS  Google Scholar 

  134. Middeldorp, J. & Hol, E. M. GFAP in health and disease. Prog. Neurobiol. 93, 421–443 (2011).

    Article  Google Scholar 

  135. Ito, D. et al. Microglia-specific localisation of a novel calcium binding protein, Iba1. Mol. Brain Res. 57, 1–9 (1998).

    Article  Google Scholar 

  136. Holness, C. & Simmons, D. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood 81, 1607–1613 (1993).

    Article  Google Scholar 

  137. Saxena, T. et al. The impact of chronic blood–brain barrier breach on intracortical electrode function. Biomaterials 34, 4703–4713 (2013).

    Article  Google Scholar 

  138. Bressenot, A. et al. Assessment of apoptosis by immunohistochemistry to active caspase-3, active caspase-7, or cleaved PARP in monolayer cells and spheroid and subcutaneous xenografts of human carcinoma. J. Histochem. Cytochem. 57, 289–300 (2009).

    Article  Google Scholar 

  139. Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361–365 (2019).

    Article  ADS  Google Scholar 

  140. Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article  ADS  Google Scholar 

  141. Mank, M. & Griesbeck, O. Genetically encoded calcium indicators. Chem. Rev. 108, 1550–1564 (2008).

    Article  Google Scholar 

  142. Paredes, R. M., Etzler, J. C., Watts, L. T., Zheng, W. & Lechleiter, J. D. Chemical calcium indicators. Methods 46, 143–151 (2008).

    Article  Google Scholar 

  143. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  ADS  Google Scholar 

  144. Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019).

    Article  Google Scholar 

  145. Zhang, Y. et al. jGCaMP8 fast genetically encoded calcium indicators. Janelia Res. Campus https://doi.org/10.25378/janelia.13148243.v1 (2020).

    Article  Google Scholar 

  146. Wu, N., Nishioka, W. K., Derecki, N. C. & Maher, M. P. High-throughput-compatible assays using a genetically-encoded calcium indicator. Sci. Rep. 9, 12692 (2019).

    Article  ADS  Google Scholar 

  147. Xu, Y., Zou, P. & Cohen, A. E. Voltage imaging with genetically encoded indicators. Curr. Opin. Chem. Biol. 39, 1–10 (2017).

    Article  ADS  Google Scholar 

  148. Emiliani, V., Cohen, A. E., Deisseroth, K. & Häusser, M. All-optical interrogation of neural circuits. J. Neurosci. 35, 13917–13926 (2015).

    Article  Google Scholar 

  149. Chien, M.-P. et al. Photoactivated voltage imaging in tissue with an archaerhodopsin-derived reporter. Sci. Adv. 7, eabe3216 (2021).

    Article  ADS  Google Scholar 

  150. Cho, Y. K. et al. Roadmap on neurophotonics. J. Opt. 18, 093007 (2016).

    Article  ADS  Google Scholar 

  151. Deo, C. & Lavis, L. D. Synthetic and genetically encoded fluorescent neural activity indicators. Curr. Opin. Neurobiol. 50, 101–108 (2018).

    Article  Google Scholar 

  152. FallahRad, M. et al. Electrophysiology equipment for reliable study of kHz electrical stimulation. J. Physiol. 597, 2131–2137 (2019).

    Article  Google Scholar 

  153. Pashut, T. et al. Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation. Front. Cell Neurosci. https://doi.org/10.3389/fncel.2014.00145 (2014).

    Article  Google Scholar 

  154. Liu, J., Munshi, R., He, M., Parker, S. & Pralle, A. Deep brain magnetothermal silencing of dopaminergic neurons via endogenous TREK1 channels abolishes place preference in mice. Preprint at bioRxiv https://doi.org/10.1101/2022.04.12.487994 (2022).

    Article  Google Scholar 

  155. Maeng, L. Y. et al. Probing neuro-endocrine interactions through remote magnetothermal adrenal stimulation. Front. Neurosci. https://doi.org/10.3389/fnins.2022.901108 (2022).

    Article  Google Scholar 

  156. Schrödel, T., Prevedel, R., Aumayr, K., Zimmer, M. & Vaziri, A. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat. Methods 10, 1013–1020 (2013).

    Article  Google Scholar 

  157. Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H. & Chklovskii, D. B. Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7, e1001066 (2011).

    Article  ADS  Google Scholar 

  158. Muqit, M. M. K. & Feany, M. B. Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nat. Rev. Neurosci. 3, 237–243 (2002).

    Article  Google Scholar 

  159. Ng, C.-H. et al. Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J. Neurosci. 29, 11257 (2009).

    Article  Google Scholar 

  160. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    Article  Google Scholar 

  161. Silva, A. J. et al. Mutant mice and neuroscience: recommendations concerning genetic background. Neuron 19, 755–759 (1997).

    Article  Google Scholar 

  162. Hunt, S. P., Pini, A. & Evan, G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328, 632–634 (1987).

    Article  ADS  Google Scholar 

  163. Sagar, S. M., Sharp, F. R. & Curran, T. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240, 1328–1331 (1988).

    Article  ADS  Google Scholar 

  164. Mohammed, A. I. et al. An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging. Sci. Rep. 6, 20986 (2016).

    Article  ADS  Google Scholar 

  165. Yang, G., Pan, F., Parkhurst, C. N., Grutzendler, J. & Gan, W.-B. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat. Protoc. 5, 201–208 (2010).

    Article  Google Scholar 

  166. Matsuzaki, M. & Ebina, T. Optical deep-cortex exploration in behaving rhesus macaques. Nat. Commun. 12, 4656 (2021).

    Article  ADS  Google Scholar 

  167. Sekiguchi, K. J. et al. Imaging large-scale cellular activity in spinal cord of freely behaving mice. Nat. Commun. 7, 11450 (2016).

    Article  ADS  Google Scholar 

  168. Cheng, Y.-T., Lett, K. M. & Schaffer, C. B. Surgical preparations, labeling strategies, and optical techniques for cell-resolved, in vivo imaging in the mouse spinal cord. Exp. Neurol. 318, 192–204 (2019).

    Article  Google Scholar 

  169. Nelson, N. A., Wang, X., Cook, D., Carey, E. M. & Nimmerjahn, A. Imaging spinal cord activity in behaving animals. Exp. Neurol. 320, 112974 (2019).

    Article  Google Scholar 

  170. Rakhilin, N. et al. An intravital window to image the colon in real time. Nat. Commun. 10, 5647 (2019).

    Article  ADS  Google Scholar 

  171. Huang, Q. et al. Intravital imaging of mouse embryos. Science 368, 181–186 (2020).

    Article  ADS  Google Scholar 

  172. Motegi, Y. et al. Confocal and multiphoton calcium imaging of the enteric nervous system in anesthetized mice. Neurosci. Res. 151, 53–60 (2020).

    Article  Google Scholar 

  173. Gunaydin, LisaA. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).

    Article  Google Scholar 

  174. Won, S. M. et al. Recent advances in materials, devices, and systems for neural interfaces. Adv. Mater. 30, 1800534 (2018).

    Article  Google Scholar 

  175. Fallegger, F., Schiavone, G. & Lacour, S. P. Conformable hybrid systems for implantable bioelectronic interfaces. Adv. Mater. 32, 1903904 (2020).

    Article  Google Scholar 

  176. Schuerle, S., Dudani, J. S., Christiansen, M. G., Anikeeva, P. & Bhatia, S. N. Magnetically actuated protease sensors for in vivo tumor profiling. Nano Lett. 16, 6303–6310 (2016).

    Article  ADS  Google Scholar 

  177. Calvo, A. C. & Azanza, Ma. J. Synaptic neurone activity under applied 50 Hz alternating magnetic fields. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 124, 99–107 (1999).

    Article  Google Scholar 

  178. Moghadam, M. K., Firoozabadi, S. M. & Janahmadi, M. 50 Hz alternating extremely low frequency magnetic fields affect excitability, firing and action potential shape through interaction with ionic channels in snail neurones. Environmentalist 28, 341–347 (2008).

    Article  Google Scholar 

  179. Lee, J.-H. et al. Artificial control of cell signaling and growth by magnetic nanoparticles. Angew. Chem. Int. Ed. 49, 5698–5702 (2010).

    Article  Google Scholar 

  180. Yoo, D., Lee, J.-H., Shin, T.-H. & Cheon, J. Theranostic magnetic nanoparticles. Acc. Chem. Res. 44, 863–874 (2011).

    Article  Google Scholar 

  181. Harvey, B. K., Wang, Y. & Hoffer, B. J. Transgenic rodent models of Parkinson’s disease. Acta Neurochir. Suppl. 101, 89–92 (2008).

    Article  Google Scholar 

  182. Perlmutter, J. S. & Mink, J. W. Deep brain stimulation. Annu. Rev. Neurosci. 29, 229–257 (2006).

    Article  Google Scholar 

  183. Szallasi, A. & Gunthorpe, J. M. Peripheral TRPV1 receptors as targets for drug development: new molecules and mechanisms. Curr. Pharm. Des. 14, 32–41 (2008).

    Article  Google Scholar 

  184. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    Article  Google Scholar 

  185. Tye, K. M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541 (2013).

    Article  ADS  Google Scholar 

  186. Su, C.-L., Yen, P.-H., Cheng, C.-C. & Chiang, P.-H. Remote deep brain stimulation by transgene-free magnetomechanical approach. Preprint at bioRxiv https://doi.org/10.1101/2021.11.27.470141 (2021).

    Article  Google Scholar 

  187. Riccio, A. et al. Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137, 761–772 (2009).

    Article  Google Scholar 

  188. Gottlieb, P. et al. Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflügers Arch. Eur. J. Physiol. 455, 1097–1103 (2008).

    Article  Google Scholar 

  189. Cao, D.-S., Yu, S.-Q. & Premkumar, L. S. Modulation of transient receptor potential vanilloid 4-mediated membrane currents and synaptic transmission by protein kinase C. Mol. Pain https://doi.org/10.1186/1744-8069-5-5 (2009).

    Article  Google Scholar 

  190. Errico, C. et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527, 499–502 (2015).

    Article  ADS  Google Scholar 

  191. Abedi, M. H. et al. Ultrasound-controllable engineered bacteria for cancer immunotherapy. Nat. Commun. 13, 1585 (2022).

    Article  ADS  Google Scholar 

  192. Szablowski, J. O., Bar-Zion, A. & Shapiro, M. G. Achieving spatial and molecular specificity with ultrasound-targeted biomolecular nanotherapeutics. Acc. Chem. Res. 52, 2427–2434 (2019).

    Article  Google Scholar 

  193. Shahriari, D., Rosenfeld, D. & Anikeeva, P. Emerging frontier of peripheral nerve and organ interfaces. Neuron 108, 270–285 (2020).

    Article  Google Scholar 

  194. Rao, M. & Gershon, M. D. The bowel and beyond: the enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 13, 517–528 (2016).

    Article  Google Scholar 

  195. Caterina, M. J. & Julius, D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci. 24, 487–517 (2001).

    Article  Google Scholar 

  196. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).

    Article  ADS  Google Scholar 

  197. Singer, A. et al. Magnetoelectric materials for miniature, wireless neural stimulation at therapeutic frequencies. Neuron 107, 631–643.e5 (2020).

    Article  Google Scholar 

  198. Nguyen, T. et al. In vivo wireless brain stimulation via non-invasive and targeted delivery of magnetoelectric nanoparticles. Neurotherapeutics 18, 2091–2106 (2021).

    Article  Google Scholar 

  199. Pardo, M. et al. Size-dependent intranasal administration of magnetoelectric nanoparticles for targeted brain localization. Nanomedicine. 32, 102337 (2021).

    Article  Google Scholar 

  200. Wang, P. et al. Colossal magnetoelectric effect in core–shell magnetoelectric nanoparticles. Nano Lett. 20, 5765–5772 (2020).

    Article  ADS  Google Scholar 

  201. Khizroev, S. Technobiology’s enabler: the magnetoelectric nanoparticle. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a034207 (2019).

    Article  Google Scholar 

  202. Åström, M., Diczfalusy, E., Martens, H. & Wårdell, K. Relationship between neural activation and electric field distribution during deep brain stimulation. IEEE Trans. Biomed. Eng. 62, 664–672 (2015).

    Article  Google Scholar 

  203. Stanley, S. A. et al. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature 531, 647–650 (2016).

    Article  ADS  Google Scholar 

  204. Wheeler, M. A. et al. Genetically targeted magnetic control of the nervous system. Nat. Neurosci. 19, 756–761 (2016).

    Article  Google Scholar 

  205. Jutz, G., van Rijn, P., Santos Miranda, B. & Böker, A. Ferritin: a versatile building block for bionanotechnology. Chem. Rev. 115, 1653–1701 (2015).

    Article  Google Scholar 

  206. Chasteen, N. D. & Harrison, P. M. Mineralization in ferritin: an efficient means of iron storage. J. Struct. Biol. 126, 182–194 (1999).

    Article  Google Scholar 

  207. Stühn, L., Auernhammer, J. & Dietz, C. pH-depended protein shell dis- and reassembly of ferritin nanoparticles revealed by atomic force microscopy. Sci. Rep. 9, 17755 (2019).

    Article  ADS  Google Scholar 

  208. Kilcoyne, S. H. & Cywinski, R. Ferritin: a model superparamagnet. J. Magn. Magn. Mater. 140–144, 1466–1467 (1995).

    Article  ADS  Google Scholar 

  209. Meister, M. Physical limits to magnetogenetics. eLife 5, e17210 (2016). This work is an example of a biophysics analysis that should accompany or precede the development of magnetic neuromodulation techniques.

    Article  Google Scholar 

  210. Kole, K. et al. Assessing the utility of Magneto to control neuronal excitability in the somatosensory cortex. Nat. Neurosci. 23, 1044–1046 (2020).

    Article  Google Scholar 

  211. Wang, G. et al. Revaluation of magnetic properties of magneto. Nat. Neurosci. 23, 1047–1050 (2020).

    Article  Google Scholar 

  212. Robbins, M., Christensen, C. N., Kaminski, C. F. & Zlatic, M. Calcium imaging analysis — how far have we come? F1000Res. 10, 258–258 (2021).

    Article  Google Scholar 

  213. Pnevmatikakis, E. A. Analysis pipelines for calcium imaging data. Curr. Opin. Neurobiol. 55, 15–21 (2019).

    Article  Google Scholar 

  214. Qin, Z., Li, Y. & Gu, N. Progress in applications of Prussian blue nanoparticles in biomedicine. Adv. Healthc. Mater. 7, e1800347 (2018).

    Article  Google Scholar 

  215. Nowicka-Jankowska, T. Some properties of isosbestic points. J. Inorg. Nucl. Chem. 33, 2043–2050 (1971).

    Article  Google Scholar 

  216. Terstappen, G. C., Meyer, A. H., Bell, R. D. & Zhang, W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov. 20, 362–383 (2021).

    Article  Google Scholar 

  217. Dong, X. Current strategies for brain drug delivery. Theranostics 8, 1481–1493 (2018).

    Article  Google Scholar 

  218. Kong, S. D. et al. Magnetic targeting of nanoparticles across the intact blood–brain barrier. J. Control. Rel. 164, 49–57 (2012).

    Article  Google Scholar 

  219. Arruebo, M., Fernández-Pacheco, R., Ibarra, M. R. & Santamaría, J. Magnetic nanoparticles for drug delivery. Nano Today 2, 22–32 (2007).

    Article  Google Scholar 

  220. Mody, V. V. et al. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl. Nanosci. 4, 385–392 (2014).

    Article  ADS  Google Scholar 

  221. Huang, J. et al. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv. Funct. Mater. 26, 3818–3836 (2016).

    Article  Google Scholar 

  222. Levitz, J. et al. Dual optical control and mechanistic insights into photoswitchable group II and III metabotropic glutamate receptors. Proc. Natl Acad. Sci. USA 114, E3546–E3554 (2017).

    Article  Google Scholar 

  223. Ma, W. et al. Modular assembly of proteins on nanoparticles. Nat. Commun. 9, 1489 (2018).

    Article  ADS  Google Scholar 

  224. Jin, G.-Z., Chakraborty, A., Lee, J.-H., Knowles, J. C. & Kim, H.-W. Targeting with nanoparticles for the therapeutic treatment of brain diseases. J. Tissue Eng. 11, 2041731419897460 (2020).

    Article  Google Scholar 

  225. Malachowski, T. & Hassel, A. Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. Eng. Regen. 1, 35–50 (2020).

    Google Scholar 

  226. Sahay, G., Alakhova, D. Y. & Kabanov, A. V. Endocytosis of nanomedicines. J. Control. Rel. 145, 182–195 (2010).

    Article  Google Scholar 

  227. Zhao, F. et al. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7, 1322–1337 (2011).

    Article  Google Scholar 

  228. Zhang, S., Gao, H. & Bao, G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 9, 8655–8671 (2015).

    Article  Google Scholar 

  229. Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    Article  ADS  Google Scholar 

  230. Patel, S. et al. Brief update on endocytosis of nanomedicines. Adv. Drug. Deliv. Rev. 144, 90–111 (2019).

    Article  Google Scholar 

  231. Singh, A. P., Biswas, A., Shukla, A. & Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal. Transduct. Target. Ther. 4, 33 (2019).

    Article  Google Scholar 

  232. Varnavides, G., Jermyn, A. S., Anikeeva, P. & Narang, P. Nonequilibrium phonon transport across nanoscale interfaces. Phys. Rev. B 100, 115402 (2019).

    Article  ADS  Google Scholar 

  233. Dong, J. & Zink, J. I. Taking the temperature of the interiors of magnetically heated nanoparticles. ACS Nano 8, 5199–5207 (2014).

    Article  Google Scholar 

  234. Yoo, D., Jeong, H., Noh, S.-H., Lee, J.-H. & Cheon, J. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia. Angew. Chem. Int. Ed. 52, 13047–13051 (2013).

    Article  Google Scholar 

  235. Cao, S. et al. Transient receptor potential vanilloid 4 (TRPV4) activation by arachidonic acid requires protein kinase A-mediated phosphorylation. J. Biol. Chem. 293, 5307–5322 (2018).

    Article  Google Scholar 

  236. Martino, F., Perestrelo, A. R., Vinarský, V., Pagliari, S. & Forte, G. Cellular mechanotransduction: from tension to function. Front. Physiol. https://doi.org/10.3389/fphys.2018.00824 (2018).

    Article  Google Scholar 

  237. Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Bono, Y. J. Kim, K. Nagao and D. Rosenfeld for the fruitful discussions of magnetic instrumentation, magnetic nanomaterials chemistry and biological applications of magnetic modulation. P.A. and A.P. thank M. Shapiro, J. Cheon, J. Robinson, M. Christiansen and G. Varnavides for their insights into magneto-thermal modulation at the nanoscale.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (G.R.,J.P., F.K., A.P. and P.A.); Experimentation (G.R., J.P., F.K., A.P. and P.A.); Results (G.R., J.P., F.K., A.P. and P.A.); Applications (G.R., J.P., F.K., A.P. and P.A.); Reproducibility and data deposition (G.R., J.P., F.K., A.P. and P.A.); Limitations and optimizations (G.R., J.P., F.K., A.P. and P.A.); Outlook (G.R., A.P. and P.A.); Overview of the Primer (G.R., J.P., F.K., A.P. and P.A.).

Corresponding authors

Correspondence to Gabriela Romero, Arnd Pralle or Polina Anikeeva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Gianni Ciofani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Magnetic modulation

Control of cellular processes or animal behaviour by methods based on the application of magnetic fields.

Transcranial magnetic stimulation

A non-invasive therapeutic and diagnostic method explored as a treatment for neurological and psychiatric conditions based on the electromagnetic induction of local currents in targeted brain regions by externally applied pulsed magnetic fields.

Transducers

Devices to convert one type of signal into another. In this Primer, used to define nanoparticles converting magnetic field energy into other physical stimuli such as heat, force or electric fields.

Magnetosomes

Magnetic iron oxide or iron sulfide nanoparticles enclosed in a biomolecular membrane enabling magnetotactic bacteria to orient along the Earth’s magnetic field lines.

Superparamagnetic nanoparticles

Magnetic nanoparticles (MNPs) whose magnetization in the absence of a magnetic field rotates freely resulting in net-zero magnetization of particle ensembles. Application of a weak magnetic field, however, endows these particles with magnetization response commensurate with magnetic properties of the material that the particles are composed of.

Eddy currents

Electric current loops induced in a conductor surface by a changing magnetic field.

Magneto-mechanical torque

A torque exerted when a magnetic object rotates around an axis to align its magnetic moment with the applied magnetic field direction.

Ferromagnetic

Magnetic materials with high susceptibility to magnetization and the strength of the magnetizing applied field, in which magnetization persists after removal of the magnetic field.

Ferrimagnetic

Magnetic materials comprising two crystalline sublattices with opposing but not equal magnetic moments. In these materials, magnetization persists after the removal of the applied magnetic field, although its values are typically lower than that for ferromagnetic materials.

Brownian relaxation

Magnetic relaxation due to rotational diffusion of magnetic nanoparticles (MNPs) in a liquid.

Neél magnetization relaxation

Magnetic relaxation caused by the reorientation of the magnetization vector inside magnetic nanoparticles (MNPs) without their physical rotation.

Optogenetics

A technique that employs light as an external stimulus to control biological activity in cells genetically modified to express light-sensitive ion channels.

Fibre photometry

A technique using an optical fibre to collect fluorescence from tissues in vivo frequently used in neuroscience to record fluorescence changes of activity indicators.

Subthalamic nucleus

A brain region that is part of the basal ganglia in the subthalamus that is targeted in clinic to treat patients with Parkinson disease.

Zona fasciculata

A middle region of the adrenal cortex responsible for the production of cortisol in humans and corticosterone in rodents.

Nucleus accumbens

Brain region in the ventral striatum involved in processing of motivation, aversion, reward and learning.

Phonons

Atomic lattice vibration waves carrying thermal energy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, G., Park, J., Koehler, F. et al. Modulating cell signalling in vivo with magnetic nanotransducers. Nat Rev Methods Primers 2, 92 (2022). https://doi.org/10.1038/s43586-022-00170-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-022-00170-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research