Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Optical coherence tomography

Abstract

Optical coherence tomography (OCT) is a non-contact method for imaging the topological and internal microstructure of samples in three dimensions. OCT can be configured as a conventional microscope, an ophthalmic scanner or endoscopes and small-diameter catheters for accessing internal biological organs. In this Primer, the principles underpinning the different instrument configurations that are tailored to distinct imaging applications are described and the origin of signal, based on light scattering and propagation, is explained. Although OCT has been used for imaging inanimate objects, the discussion focuses on biological and medical imaging. The signal processing methods and algorithms that make OCT exquisitely sensitive to reflections, as weak as just a few photons, and reveal functional information in addition to structure are examined. Image processing, display and interpretation, which are all critical for effective biomedical imaging, are discussed in the context of specific applications. Finally, image artefacts and limitations that commonly arise and future advances and opportunities are considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basic OCT system configuration.
Fig. 2: Basic OCT signal analysis.
Fig. 3: Circular-ranging concept.
Fig. 4: Basic image processing steps.
Fig. 5: Polarization-sensitive OCT results.
Fig. 6: OCTA principle and results.
Fig. 7: Elastography results.
Fig. 8: Ophthalmic application.
Fig. 9: Catheter and endoscopic applications.

Similar content being viewed by others

References

  1. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    ADS  Google Scholar 

  2. Youngquist, R. C., Carr, S. & Davies, D. E. Optical coherence-domain reflectometry: a new optical evaluation technique. Opt. Lett. 12, 158–160 (1987).

    ADS  Google Scholar 

  3. Eickhoff, W. & Ulrich, R. Optical frequency domain reflectometry in single-mode fiber. Appl. Phys. Lett. 39, 693–695 (1981).

    ADS  Google Scholar 

  4. Fercher, A., Mengedoht, K. & Werner, W. Eye-length measurement by interferometry with partially coherent light. Opt. Lett. 13, 186–188 (1988).

    ADS  Google Scholar 

  5. Hee, M. R., Huang, D., Swanson, E. A. & Fujimoto, J. G. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Am. B 9, 903–908 (1992).

    ADS  Google Scholar 

  6. De Boer, J. F., Milner, T. E., van Gemert, M. J. & Nelson, J. S. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22, 934–936 (1997).

    ADS  Google Scholar 

  7. Wang, X., Milner, T. & Nelson, J. Characterization of fluid flow velocity by optical Doppler tomography. Opt. Lett. 20, 1337–1339 (1995).

    ADS  Google Scholar 

  8. Schmitt, J. M. OCT elastography: imaging microscopic deformation and strain of tissue. Opt. Express 3, 199–211 (1998).

    ADS  Google Scholar 

  9. Bouma, B. et al. High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source. Opt. Lett. 20, 1486–1488 (1995).

    ADS  Google Scholar 

  10. Bouma, B. E., Tearney, G. J., Bilinsky, I. P., Golubovic, B. & Fujimoto, J. G. Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography. Opt. Lett. 21, 1839–1841 (1996).

    ADS  Google Scholar 

  11. Tearney, G., Bouma, B. & Fujimoto, J. High-speed phase- and group-delay scanning with a grating-based phase control delay line. Opt. Lett. 22, 1811–1813 (1997).

    ADS  Google Scholar 

  12. Tearney, G. et al. Scanning single-mode fiber optic catheter–endoscope for optical coherence tomography. Opt. Lett. 21, 543–545 (1996).

    ADS  Google Scholar 

  13. Tearney, G. J. et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997).

    Google Scholar 

  14. Choma, M. A., Sarunic, M. V., Yang, C. & Izatt, J. A. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003).

    ADS  Google Scholar 

  15. Leitgeb, R., Hitzenberger, C. & Fercher, A. F. Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003).

    ADS  Google Scholar 

  16. de Boer, J. F. et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28, 2067–2069 (2003).

    ADS  Google Scholar 

  17. Yun, S. H., Tearney, G. J., de Boer, J. F., Iftimia, N. & Bouma, B. E. High-speed optical frequency-domain imaging. Opt. Express 11, 2953–2963 (2003).

    ADS  Google Scholar 

  18. Cense, B. et al. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express 12, 2435–2447 (2004).

    ADS  Google Scholar 

  19. Wojtkowski, M. et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express 12, 2404–2422 (2004).

    ADS  Google Scholar 

  20. Swanson, E. & Huang, D. Ophthalmic OCT reaches $1 billion per year. Retin Physician 8, 45 (2011).

    Google Scholar 

  21. Fahed, A. C. & Jang, I.-K. Plaque erosion and acute coronary syndromes: phenotype, molecular characteristics and future directions. Nat. Rev. Cardiol. 18, 724–734 (2021).

    Google Scholar 

  22. Leggett, C. L. et al. Comparative diagnostic performance of volumetric laser endomicroscopy and confocal laser endomicroscopy in the detection of dysplasia associated with Barrett’s esophagus. Gastrointest. Endosc. 83, 880–888.e2 (2016).

    Google Scholar 

  23. Hariri, L. P. et al. Volumetric optical frequency domain imaging of pulmonary pathology with precise correlation to histopathology. Chest 143, 64–74 (2013).

    Google Scholar 

  24. Vakoc, B. J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15, 1219–1223 (2009).

    Google Scholar 

  25. Izatt, J. A., Hee, M. R., Owen, G. M., Swanson, E. A. & Fujimoto, J. G. Optical coherence microscopy in scattering media. Opt. Lett. 19, 590–592 (1994).

    ADS  Google Scholar 

  26. Beaurepaire, E., Boccara, A. C., Lebec, M., Blanchot, L. & Saint-Jalmes, H. Full-field optical coherence microscopy. Opt. Lett. 23, 244–246 (1998).

    ADS  Google Scholar 

  27. Vinegoni, C. et al. in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X 226–233 (SPIE, 2006).

  28. Ughi, G. J. et al. Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging. JACC Cardiovasc. Imaging 9, 1304–1314 (2016).

    Google Scholar 

  29. Bouma, B. E. & Tearney, G. J. Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography. Opt. Lett. 24, 531–533 (1999).

    ADS  Google Scholar 

  30. Rollins, A. M. & Izatt, J. A. Optimal interferometer designs for optical coherence tomography. Opt. Lett. 24, 1484–1486 (1999).

    ADS  Google Scholar 

  31. Yun, S., Tearney, G., Bouma, B., Park, B. & de Boer, J. F. High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength. Opt. Express 11, 3598–3604 (2003).

    ADS  Google Scholar 

  32. Huang, J. et al. Empirical assessment of laser safety for photoacoustic-guided liver surgeries. Biomed. Opt. Express 12, 1205–1216 (2021).

    Google Scholar 

  33. American National Standards Institute. American National Standard for Safe Use of Lasers (Laser Institute of America, 2007).

  34. Wojtkowski, M., Kowalczyk, A., Leitgeb, R. & Fercher, A. Full range complex spectral optical coherence tomography technique in eye imaging. Opt. Lett. 27, 1415–1417 (2002).

    ADS  Google Scholar 

  35. Nassif, N. et al. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt. Lett. 29, 480–482 (2004).

    ADS  Google Scholar 

  36. Yun, S., Tearney, G., De Boer, J. & Bouma, B. Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts. Opt. Express 12, 5614–5624 (2004).

    ADS  Google Scholar 

  37. Tozburun, S., Blatter, C., Siddiqui, M., Meijer, E. F. & Vakoc, B. J. Phase-stable Doppler OCT at 19 MHz using a stretched-pulse mode-locked laser. Biomed. Opt. Express 9, 952–961 (2018).

    Google Scholar 

  38. Huber, R., Wojtkowski, M., Fujimoto, J. G., Jiang, J. & Cable, A. Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt. Express 13, 10523–10538 (2005).

    ADS  Google Scholar 

  39. Wieser, W., Biedermann, B. R., Klein, T., Eigenwillig, C. M. & Huber, R. Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt. Express 18, 14685–14704 (2010).

    ADS  Google Scholar 

  40. Xu, J. et al. High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch. Biomed. Opt. Express 6, 1340–1350 (2015).

    Google Scholar 

  41. Wang, Z. et al. Cubic meter volume optical coherence tomography. Optica 3, 1496–1503 (2016).

    ADS  Google Scholar 

  42. Siddiqui, M. & Vakoc, B. J. Optical-domain subsampling for data efficient depth ranging in Fourier-domain optical coherence tomography. Opt. Express 20, 17938 (2012).

    ADS  Google Scholar 

  43. Kolb, J. P. et al. Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates. PLoS ONE 14, e0213144 (2019).

    Google Scholar 

  44. Lippok, N., Siddiqui, M., Vakoc, B. J. & Bouma, B. E. Extended coherence length and depth ranging using a Fourier-domain mode-locked frequency comb and circular interferometric ranging. Phys. Rev. Appl. 11, 014018 (2019).

    ADS  Google Scholar 

  45. Lippok, N., Bouma, B. E. & Vakoc, B. J. Stable multi-megahertz circular-ranging optical coherence tomography at 1.3 µm. Biomed. Opt. Express 11, 174 (2020).

    Google Scholar 

  46. Tsai, T.-H., Zhou, C., Adler, D. C. & Fujimoto, J. G. Frequency comb swept lasers. Opt. Express 17, 21257–21270 (2009).

    ADS  Google Scholar 

  47. Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Google Scholar 

  48. Khazaeinezhad, R., Siddiqui, M. & Vakoc, B. J. 16 MHz wavelength-swept and wavelength-stepped laser architectures based on stretched-pulse active mode locking with a single continuously chirped fiber Bragg grating. Opt. Lett. 42, 2046 (2017).

    ADS  Google Scholar 

  49. Siddiqui, M. et al. High-speed optical coherence tomography by circular interferometric ranging. Nat. Photonics 12, 111–116 (2018).

    ADS  Google Scholar 

  50. Lippok, N. & Vakoc, B. J. Resolving absolute depth in circular-ranging optical coherence tomography by using a degenerate frequency comb. Opt. Lett. 45, 1079 (2020).

    ADS  Google Scholar 

  51. Kim, T. S. & Vakoc, B. J. Stepped frequency comb generation based on electro-optic phase-code mode-locking for moderate-speed circular-ranging OCT. Biomed. Opt. Express 11, 3534 (2020).

    Google Scholar 

  52. Baumann, B. Polarization sensitive optical coherence tomography: a review of technology and applications. Appl. Sci. 7, 474 (2017).

    Google Scholar 

  53. De Boer, J. F., Hitzenberger, C. K. & Yasuno, Y. Polarization sensitive optical coherence tomography — a review. Biomed. Opt. Express 8, 1838–1873 (2017).

    Google Scholar 

  54. Park, B. H. et al. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm. Opt. Express 13, 3931–3944 (2005).

    ADS  Google Scholar 

  55. Oh, W.-Y. et al. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Opt. Express 16, 1096–1103 (2008).

    ADS  Google Scholar 

  56. Makita, S., Yamanari, M. & Yasuno, Y. Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging. Opt. Express 18, 854–876 (2010).

    ADS  Google Scholar 

  57. Saxer, C. E. et al. High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin. Opt. Lett. 25, 1355–1357 (2000).

    ADS  Google Scholar 

  58. Baumann, B. et al. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit. Opt. Express 20, 10229–10241 (2012).

    ADS  Google Scholar 

  59. Ju, M. J. et al. Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging. Opt. Express 21, 19412–19436 (2013).

    ADS  Google Scholar 

  60. Villiger, M. et al. Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography. Optica 5, 1329–1337 (2018).

    ADS  Google Scholar 

  61. Hitzenberger, C. K., Götzinger, E., Sticker, M., Pircher, M. & Fercher, A. F. Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt. Express 9, 780–790 (2001).

    ADS  Google Scholar 

  62. Trasischker, W. et al. Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer. Biomed. Opt. Express 5, 2798–2809 (2014).

    Google Scholar 

  63. Götzinger, E., Baumann, B., Pircher, M. & Hitzenberger, C. K. Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography. Opt. Express 17, 22704–22717 (2009).

    ADS  Google Scholar 

  64. Al-Qaisi, M. K. & Akkin, T. Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber. Opt. Express 18, 3392–3403 (2010).

    ADS  Google Scholar 

  65. Xiong, Q. et al. Constrained polarization evolution simplifies depth-resolved retardation measurements with polarization-sensitive optical coherence tomography. Biomed. Opt. Express 10, 5207–5222 (2019).

    Google Scholar 

  66. Zhao, Y. et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett. 25, 114–116 (2000).

    ADS  Google Scholar 

  67. Leitgeb, R. A., Werkmeister, R. M., Blatter, C. & Schmetterer, L. Doppler optical coherence tomography. Prog. Retinal Eye Res. 41, 26–43 (2014).

    Google Scholar 

  68. Makita, S., Hong, Y., Yamanari, M., Yatagai, T. & Yasuno, Y. Optical coherence angiography. Opt. Express 14, 7821–7840 (2006).

    ADS  Google Scholar 

  69. Spaide, R. F., Fujimoto, J. G., Waheed, N. K., Sadda, S. R. & Staurenghi, G. Optical coherence tomography angiography. Prog. Retinal Eye Res. 64, 1–55 (2018).

    Google Scholar 

  70. Blatter, C. et al. Ultrahigh-speed non-invasive widefield angiography. J. Biomed. Opt. 17, 070505 (2012).

    ADS  Google Scholar 

  71. Salas, M. et al. Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye. Biomed. Opt. Express 9, 1871–1892 (2018).

    Google Scholar 

  72. Grulkowski, I. et al. Scanning protocols dedicated to smart velocity ranging in spectral OCT. Opt. Express 17, 23736–23754 (2009).

    ADS  Google Scholar 

  73. Ploner, S. B. et al. Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis. Retina 36, S118–S126 (2016).

    Google Scholar 

  74. Poddar, R. & Werner, J. S. Implementations of three OCT angiography (OCTA) methods with 1.7 MHz A-scan rate OCT system on imaging of human retinal and choroidal vasculature. Opt. Laser Technol. 102, 130–139 (2018).

    ADS  Google Scholar 

  75. Barton, J. K. & Stromski, S. Flow measurement without phase information in optical coherence tomography images. Opt. express 13, 5234–5239 (2005).

    ADS  Google Scholar 

  76. Liu, G. Y. et al. High power wavelength linearly swept mode locked fiber laser for OCT imaging. Opt. Express 16, 14095–14105 (2008).

    ADS  Google Scholar 

  77. Zhao, Y. et al. Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt. Lett. 25, 1358–1360 (2000).

    ADS  Google Scholar 

  78. Kim, D. Y. et al. In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography. Biomed. Opt. Express 2, 1504–1513 (2011).

    Google Scholar 

  79. An, L., Qin, J. & Wang, R. K. Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. Opt. Express 18, 8220–8228 (2010).

    ADS  Google Scholar 

  80. Gorczynska, I., Migacz, J. V., Zawadzki, R. J., Capps, A. G. & Werner, J. S. Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid. Biomed. Opt. Express 7, 911–942 (2016).

    Google Scholar 

  81. Gräfe, M. G., Nadiarnykh, O. & De Boer, J. F. Optical coherence tomography velocimetry based on decorrelation estimation of phasor pair ratios (DEPPAIR). Biomed. Opt. Express 10, 5470–5485 (2019).

    Google Scholar 

  82. Alam, S. K. & Garra, B. S. Tissue Elasticity Imaging: Volume 1: Theory and Methods (Elsevier, 2019).

  83. Kennedy, B. F., Wijesinghe, P. & Sampson, D. D. The emergence of optical elastography in biomedicine. Nat. Photonics 11, 215–221 (2017).

    ADS  Google Scholar 

  84. Larin, K. V. & Sampson, D. D. Optical coherence elastography–OCT at work in tissue biomechanics. Biomed. Opt. Express 8, 1172–1202 (2017).

    Google Scholar 

  85. Kennedy, B. F. Optical Coherence Elastography: Imaging Tissue Mechanics on the Micro-Scale (AIP, 2021).

  86. Liu, C.-H. et al. Nanobomb optical coherence elastography. Opt. Lett. 43, 2006–2009 (2018).

    ADS  Google Scholar 

  87. Zvietcovich, F., Pongchalee, P., Meemon, P., Rolland, J. P. & Parker, K. J. Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers. Nat. Commun. 10, 4895 (2019).

    ADS  Google Scholar 

  88. Kennedy, B. F. et al. Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure. Biomed. Opt. Express 5, 2113–2124 (2014).

    Google Scholar 

  89. Kennedy, K. M. et al. Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography. Sci. Rep. 5, 1–12 (2015).

    Google Scholar 

  90. Dong, L. et al. Volumetric quantitative optical coherence elastography with an iterative inversion method. Biomed. Opt. Express 10, 384–398 (2019).

    Google Scholar 

  91. Pelivanov, I. et al. Does group velocity always reflect elastic modulus in shear wave elastography? J. Biomed. Opt. 24, 076003 (2019).

    ADS  Google Scholar 

  92. Podoleanu, A. G. Optical coherence tomography. Br. J. Radiol. 78, 976–988 (2005).

    Google Scholar 

  93. Zawadzki, R. J. et al. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt. Express 13, 8532–8546 (2005).

    ADS  Google Scholar 

  94. Grulkowski, I. et al. Anterior segment imaging with spectral OCT system using a high-speed CMOS camera. Opt. Express 17, 4842–4858 (2009).

    ADS  Google Scholar 

  95. Schuman, J. S. et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography: a pilot study. Arch. Ophthalmol. 113, 586–596 (1995).

    Google Scholar 

  96. Wang, Y., Bower, B. A., Izatt, J. A., Tan, O. & Huang, D. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J. Biomed. Opt. 13, 064003 (2008).

    ADS  Google Scholar 

  97. Srinivasan, V. J. et al. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 113, 2054–2065 (2006).

    Google Scholar 

  98. Wojtkowski, M. et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112, 1734–1746 (2005).

    Google Scholar 

  99. Hee, M. R. et al. Quantitative assessment of macular edema with optical coherence tomography. Arch. Ophthalmol. 113, 1019–1029 (1995).

    Google Scholar 

  100. Hee, M. R. et al. Optical coherence tomography of the human retina. Arch. Ophthalmol. 113, 325–332 (1995).

    Google Scholar 

  101. Hee, M. R. Artifacts in optical coherence tomography topographic maps. Am. J. Ophthalmol. 139, 154–155 (2005).

    Google Scholar 

  102. Szkulmowski, M. et al. Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies. J. Biomed. Opt. 12, 041207 (2007).

    ADS  Google Scholar 

  103. Karnowski, K., Kaluzny, B. J., Szkulmowski, M., Gora, M. & Wojtkowski, M. Corneal topography with high-speed swept source OCT in clinical examination. Biomed. Opt. Express 9, 2709–2720 (2011).

    Google Scholar 

  104. Gora, M. et al. Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Opt. Express 17, 14880–14894 (2009).

    ADS  Google Scholar 

  105. Yun, S. H. et al. Comprehensive volumetric optical microscopy in vivo. Nat. Med. 12, 1429–1433 (2006).

    Google Scholar 

  106. Athanasiou, L. S. et al. Methodology for fully automated segmentation and plaque characterization in intracoronary optical coherence tomography images. J. Biomed. Opt. 19, 026009 (2014).

    ADS  Google Scholar 

  107. Ughi, G. J. et al. Automated segmentation and characterization of esophageal wall in vivo by tethered capsule optical coherence tomography endomicroscopy. Biomed. Opt. Express 7, 409–419 (2016).

    Google Scholar 

  108. Park, B. H., Pierce, M. C., Cense, B. & De Boer, J. F. Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography. Opt. Lett. 30, 2587–2589 (2005).

    ADS  Google Scholar 

  109. Todorović, M., Jiao, S., Wang, L. V. & Stoica, G. Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography. Opt. Lett. 29, 2402–2404 (2004).

    ADS  Google Scholar 

  110. Lu, S.-Y. & Chipman, R. A. Homogeneous and inhomogeneous Jones matrices. JOSA A 11, 766–773 (1994).

    ADS  Google Scholar 

  111. Park, B. H., Pierce, M. C., Cense, B. & De Boer, J. F. Real-time multi-functional optical coherence tomography. Opt. Express 11, 782–793 (2003).

    ADS  Google Scholar 

  112. Villiger, M. et al. Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging. Opt. Express 21, 16353–16369 (2013).

    ADS  Google Scholar 

  113. Villiger, M. et al. Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour. Sci. Rep. 6, 1–11 (2016).

    Google Scholar 

  114. Fan, C. & Yao, G. Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography. Biomed. Opt. Express 4, 460–465 (2013).

    Google Scholar 

  115. Zhang, E. Z. & Vakoc, B. J. Polarimetry noise in fiber-based optical coherence tomography instrumentation. Opt. Express 19, 16830–16842 (2011).

    ADS  Google Scholar 

  116. Villiger, M. et al. Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion. Opt. Lett. 38, 923–925 (2013).

    ADS  Google Scholar 

  117. Braaf, B., Vermeer, K. A., de Groot, M., Vienola, K. V. & de Boer, J. F. Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions. Biomed. Opt. Express 5, 2736–2758 (2014).

    Google Scholar 

  118. Aiello, A. & Woerdman, J. P. Role of spatial coherence in polarization tomography. Opt. Lett. 30, 1599–1601 (2005).

    ADS  Google Scholar 

  119. Adie, S. G., Hillman, T. R. & Sampson, D. D. Detection of multiple scattering in optical coherence tomography using the spatial distribution of Stokes vectors. Opt. Express 15, 18033–18049 (2007).

    ADS  Google Scholar 

  120. Götzinger, E. et al. Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Opt. Express 16, 16410–16422 (2008).

    ADS  Google Scholar 

  121. Villiger, M. et al. Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging. JACC: Cardiovasc. Imaging 11, 1666–1676 (2018).

    Google Scholar 

  122. Lippok, N. et al. Depolarization signatures map gold nanorods within biological tissue. Nat. Photonics 11, 583–588 (2017).

    Google Scholar 

  123. Takusagawa, H. L. et al. Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology 124, 1589–1599 (2017).

    Google Scholar 

  124. Laíns, I. et al. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). Prog. Retinal Eye Res. 84, 100951 (2021).

    Google Scholar 

  125. Tsai, T.-H. et al. Endoscopic optical coherence angiography enables 3-dimensional visualization of subsurface microvasculature. Gastroenterology 147, 1219–1221 (2014).

    Google Scholar 

  126. Wurster, L. M. et al. Comparison of optical coherence tomography angiography and narrow-band imaging using a bimodal endoscope. J. Biomed. Opt. 25, 032003 (2019).

    Google Scholar 

  127. Schmoll, T. et al. Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension. Biomed. Opt. Express 2, 1159–1168 (2011).

    Google Scholar 

  128. Meiburger, K. M. et al. Automatic skin lesion area determination of basal cell carcinoma using optical coherence tomography angiography and a skeletonization approach: preliminary results. J. Biophotonics 12, e201900131 (2019).

    Google Scholar 

  129. Yao, X., Alam, M. N., Le, D. & Toslak, D. Quantitative optical coherence tomography angiography: a review. Exp. Biol. Med. 245, 301–312 (2020).

    Google Scholar 

  130. Gao, M. et al. Reconstruction of high-resolution 6 × 6-mm OCT angiograms using deep learning. Biomed. Opt. Express 11, 3585–3600 (2020).

    Google Scholar 

  131. Tsokolas, G., Tsaousis, K. T., Diakonis, V. F., Matsou, A. & Tyradellis, S. Optical coherence tomography angiography in neurodegenerative diseases: a review. Eye Brain 12, 73 (2020).

    Google Scholar 

  132. Kennedy, K. M. et al. Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery. Cancer Res. 80, 1773–1783 (2020).

    Google Scholar 

  133. Pitre, J. J. et al. Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: model and experiments with acoustic micro-tapping OCE. Sci. Rep. 10, 1–14 (2020).

    Google Scholar 

  134. De Stefano, V. S., Ford, M. R., Seven, I. & Dupps, W. J. Depth-dependent corneal biomechanical properties in normal and keratoconic subjects by optical coherence elastography. Transl. Vis. Sci. Technol. 9, 4–4 (2020).

    Google Scholar 

  135. Hadden, W. J. et al. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc. Natl Acad. Sci. USA 114, 5647–5652 (2017).

    ADS  Google Scholar 

  136. Wijesinghe, P. et al. Ultrahigh-resolution optical coherence elastography images cellular-scale stiffness of mouse aorta. Biophys. J. 113, 2540–2551 (2017).

    ADS  Google Scholar 

  137. Mulligan, J. A., Ling, L., Leartprapun, N., Fischbach, C. & Adie, S. G. Computational 4D-OCM for label-free imaging of collective cell invasion and force-mediated deformations in collagen. Sci. Rep. 11, 1–13 (2021).

    Google Scholar 

  138. Swanson, E. A. et al. In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18, 1864–1866 (1993).

    ADS  Google Scholar 

  139. Windsor, M. A. et al. Estimating public and patient savings from basic research — a study of optical coherence tomography in managing antiangiogenic therapy. Am. J. Ophthalmol. 185, 115–122 (2018).

    Google Scholar 

  140. Ko, T. H. et al. Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology 111, 2033–2043 (2004).

    Google Scholar 

  141. Zhang, M. et al. Automated quantification of nonperfusion in three retinal plexuses using projection-resolved optical coherence tomography angiography in diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 57, 5101–5106 (2016).

    Google Scholar 

  142. Malihi, M. et al. Optical coherence tomographic angiography of choroidal neovascularization ill-defined with fluorescein angiography. Br. J. Ophthalmol. 101, 45–50 (2017).

    Google Scholar 

  143. You, Q. S. et al. Detection of clinically unsuspected retinal neovascularization with wide-field optical coherence tomography angiography. Retina https://doi.org/10.1097/IAE.0000000000002487 (2020).

    Article  Google Scholar 

  144. Tan, O. et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116, 2305–2314.e1–e2 (2009).

    Google Scholar 

  145. Chen, A. et al. Measuring glaucomatous focal perfusion loss in the peripapillary retina using OCT angiography. Ophthalmology 127, 484–491 (2020).

    Google Scholar 

  146. Zhang, X. et al. Comparison of glaucoma progression detection by optical coherence tomography and visual field. Am. J. Ophthalmol. 184, 63–74 (2017).

    Google Scholar 

  147. Li, Y. et al. Guiding flying-spot laser transepithelial phototherapeutic keratectomy with optical coherence tomography. J. Cataract. Refract. Surg. 43, 525–536 (2017).

    Google Scholar 

  148. Yang, Y., Pavlatos, E., Chamberlain, W., Huang, D. & Li, Y. Keratoconus detection using OCT corneal and epithelial thickness map parameters and patterns. J. Cataract. Refract. Surg. 47, 759–766 (2021).

    Google Scholar 

  149. Ma, P. et al. Evaluation of the diagnostic performance of swept-source anterior segment optical coherence tomography in primary angle closure disease. Am. J. Ophthalmol. 233, 68–77 (2022).

    Google Scholar 

  150. Wang, L., Tang, M., Huang, D., Weikert, M. P. & Koch, D. D. Comparison of newer intraocular lens power calculation methods for eyes after corneal refractive surgery. Ophthalmology 122, 2443–2449 (2015).

    Google Scholar 

  151. Libby, P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104, 365–372 (2001).

    Google Scholar 

  152. Jang, I.-K., Tearney, G. J. & Bouma, B. E. Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound. Circulation 104, 2754 (2001).

    Google Scholar 

  153. Yabushita, H. et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 106, 1640–1645 (2002).

    Google Scholar 

  154. Jang, I.-K. et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111, 1551–1555 (2005).

    Google Scholar 

  155. Bouma, B. et al. Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart 89, 317–320 (2003).

    Google Scholar 

  156. Tearney, G. J. et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107, 113–119 (2003).

    Google Scholar 

  157. Prati, F. et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur. Heart J. 33, 2513–2520 (2012).

    Google Scholar 

  158. Ali, Z. A. et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet 388, 2618–2628 (2016).

    Google Scholar 

  159. Kubo, T. et al. Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results. Eur. Heart J. 38, 3139–3147 (2017).

    Google Scholar 

  160. Tamis-Holland, J. E. et al. Contemporary diagnosis and management of patients with myocardial infarction in the absence of obstructive coronary artery disease: a scientific statement from the American Heart Association. Circulation 139, e891–e908 (2019).

    Google Scholar 

  161. Reynolds, H. R. et al. Coronary optical coherence tomography and cardiac magnetic resonance imaging to determine underlying causes of myocardial infarction with nonobstructive coronary arteries in women. Circulation 143, 624–640 (2021).

    Google Scholar 

  162. Jia, H. et al. Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study). Eur. Heart J. 38, 792–800 (2017).

    Google Scholar 

  163. Bouma, B. E., Tearney, G. J., Compton, C. C. & Nishioka, N. S. High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography. Gastrointest. Endosc. 51, 467–474 (2000).

    Google Scholar 

  164. Nguyen, T. H. et al. Prevalence and predictors of missed dysplasia on index Barrett’s esophagus diagnosing endoscopy in a veteran population. Clin. Gastroenterol. Hepatol. 20, e876–e889 (2021).

    Google Scholar 

  165. Poneros, J. M. et al. Diagnosis of specialized intestinal metaplasia by optical coherence tomography. Gastroenterology 120, 7–12 (2001).

    Google Scholar 

  166. Evans, J. A. et al. Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett’s esophagus. Clin. Gastroenterol. Hepatol. 4, 38–43 (2006).

    Google Scholar 

  167. Evans, J. A. et al. Identifying intestinal metaplasia at the squamocolumnar junction by using optical coherence tomography. Gastrointest. Endosc. 65, 50–56 (2007).

    Google Scholar 

  168. Blackshear, L., Aranda-Michel, E., Wolfsen, H., Wallace, M. & Tearney, G. Volumetric laser endomicroscopy (VLE): an OFDI case study of Barrett’s esophagus with dysplasia. Am. J. Gastroenterol. 108, S656 (2013).

    Google Scholar 

  169. Suter, M. J. et al. Esophageal-guided biopsy with volumetric laser endomicroscopy and laser cautery marking: a pilot clinical study. Gastrointest. Endosc. 79, 886–896 (2014).

    ADS  Google Scholar 

  170. Swager, A. F. et al. Feasibility of laser marking in Barrett’s esophagus with volumetric laser endomicroscopy: first-in-man pilot study. Gastrointest. Endosc. 86, 464–472 (2017).

    ADS  Google Scholar 

  171. Wolfsen, H. C. et al. Safety and feasibility of volumetric laser endomicroscopy in patients with Barrett’s esophagus (with videos). Gastrointest. Endosc. 82, 631–640 (2015).

    Google Scholar 

  172. Trindade, A. J. et al. Volumetric laser endomicroscopy features of dysplasia at the gastric cardia in Barrett’s oesophagus: results from an observational cohort study. BMJ Open Gastroenterol. 6, e000340 (2019).

    Google Scholar 

  173. Hatta, W. et al. Feasibility of optical coherence tomography for the evaluation of Barrett’s mucosa buried underneath esophageal squamous epithelium. Dig. Endosc. 28, 427–433 (2016).

    Google Scholar 

  174. Swager, A. F. et al. Detection of buried Barrett’s glands after radiofrequency ablation with volumetric laser endomicroscopy. Gastrointest. Endosc. 83, 80–88 (2016).

    ADS  Google Scholar 

  175. Lo, W. C. Y. et al. Balloon catheter-based radiofrequency ablation monitoring in porcine esophagus using optical coherence tomography. Biomed. Opt. Express 10, 2067–2089 (2019).

    ADS  Google Scholar 

  176. Liang, K. et al. Ultrahigh speed en face OCT capsule for endoscopic imaging. Biomed. Opt. Express 6, 1146–1163 (2015).

    Google Scholar 

  177. Gora, M. J. et al. Tethered capsule endomicroscopy for microscopic imaging of the esophagus, stomach, and duodenum without sedation in humans (with video). Gastrointest. Endosc. 88, 830–840.e3 (2018).

    Google Scholar 

  178. Pfau, P. R. et al. Criteria for the diagnosis of dysplasia by endoscopic optical coherence tomography. Gastrointest. Endosc. 58, 196–202 (2003).

    Google Scholar 

  179. Shen, B. et al. In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).

    Google Scholar 

  180. Masci, E. et al. Pilot study on the correlation of optical coherence tomography with histology in celiac disease and normal subjects. J. Gastroenterol. Hepatol. 22, 2256–2260 (2007).

    Google Scholar 

  181. Singh, P., Chak, A., Willis, J. E., Rollins, A. & Sivak, M. V. Jr In vivo optical coherence tomography imaging of the pancreatic and biliary ductal system. Gastrointest. Endosc. 62, 970–974 (2005).

    Google Scholar 

  182. Tyberg, A., Xu, M. M., Gaidhane, M. & Kahaleh, M. Second generation optical coherence tomography: preliminary experience in pancreatic and biliary strictures. Dig. Liver Dis. 50, 1214–1217 (2018).

    Google Scholar 

  183. Testoni, P. A. et al. Main pancreatic duct, common bile duct and sphincter of Oddi structure visualized by optical coherence tomography: an ex vivo study compared with histology. Dig. Liver Dis. 38, 409–414 (2006).

    Google Scholar 

  184. Corral, J. E. et al. Volumetric laser endomicroscopy in the biliary and pancreatic ducts: a feasibility study with histological correlation. Endoscopy 50, 1089–1094 (2018).

    Google Scholar 

  185. Testoni, P. A. et al. Intraductal optical coherence tomography for investigating main pancreatic duct strictures. Am. J. Gastroenterol. 102, 269–274 (2007).

    ADS  Google Scholar 

  186. James, A. L. & Wenzel, S. Clinical relevance of airway remodelling in airway diseases. Eur. Respir. J. 30, 134–155 (2007).

    Google Scholar 

  187. Chen, Y. et al. Validation of human small airway measurements using endobronchial optical coherence tomography. Respir. Med. 109, 1446–1453 (2015).

    Google Scholar 

  188. d’Hooghe, J. N. S. et al. Optical coherence tomography for identification and quantification of human airway wall layers. PLoS ONE 12, e0184145 (2017).

    Google Scholar 

  189. Su, Z.-Q. et al. Significance of spirometry and impulse oscillometry for detecting small airway disorders assessment with endobronchial optical coherence tomography in COPD. Int. J. Chron. Obstruct Pulmon Dis. 13, 3031–3044 (2018).

    Google Scholar 

  190. Coxon, H. O. et al. Airway wall thickness assessed using computed tomography and optical coherence tomography. Am. J. Respir. Crit. Care Med. 177, 1201–1206 (2008).

    Google Scholar 

  191. Adams, D. C. et al. Quantitative assessment of airway remodelling and response to allergen in asthma. Respirology 24, 1073–1080 (2019).

    Google Scholar 

  192. Adams, D. C. et al. Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo. Sci. Transl. Med. 8, 359ra131 (2016).

    Google Scholar 

  193. Vaselli, M. et al. Polarization sensitive optical coherence tomography for bronchoscopic airway smooth muscle detection in bronchial thermoplasty-treated patients with asthma. Chest 160, 432–435 (2021).

    Google Scholar 

  194. McWilliams, A., Lam, B. & Sutedja, T. Early proximal lung cancer diagnosis and treatment. Eur. Respir. J. 33, 656–665 (2009).

    Google Scholar 

  195. Lam, S. et al. In vivo optical coherence tomography imaging of preinvasive bronchial lesions. Clin. Cancer Res. 14, 2006–2011 (2008).

    Google Scholar 

  196. Tsuboi, M. et al. Optical coherence tomography in the diagnosis of bronchial lesions. Lung Cancer 49, 387–394 (2005).

    Google Scholar 

  197. Michel, R. G., Kinasewitz, G. T., Fung, K. M. & Keddissi, J. I. Optical coherence tomography as an adjunct to flexible bronchoscopy in the diagnosis of lung cancer: a pilot study. Chest 138, 984–988 (2010).

    Google Scholar 

  198. Hariri, L. P. et al. Seeing beyond the bronchoscope to increase the diagnostic yield of bronchoscopic biopsy. Am. J. Respir. Crit. Care Med. 187, 125–129 (2013).

    Google Scholar 

  199. Hariri, L. P. et al. Toward the guidance of transbronchial biopsy: identifying pulmonary nodules with optical coherence tomography. Chest 144, 1261–1268 (2013).

    Google Scholar 

  200. Hariri, L. P. et al. Diagnosing lung carcinomas with optical coherence tomography. Ann. Am. Thorac. Soc. 12, 193–201 (2015).

    Google Scholar 

  201. Hariri, L. P. et al. Endobronchial optical coherence tomography for low-risk microscopic assessment and diagnosis of idiopathic pulmonary fibrosis in vivo. Am. J. Respir. Crit. Care Med. 197, 949–952 (2018).

    Google Scholar 

  202. Nandy, S. et al. Diagnostic accuracy of endobronchial optical coherence tomography for the microscopic diagnosis of usual interstitial pneumonia. Am. J. Respir. Crit. Care Med. 204, 1164–11179 (2021).

    Google Scholar 

  203. Khan, S. M. et al. A global review of publicly available datasets for ophthalmological imaging: barriers to access, usability, and generalisability. Lancet Digital Health 3, e51–e66 (2021).

    Google Scholar 

  204. Thondapu, V. et al. High spatial endothelial shear stress gradient independently predicts site of acute coronary plaque rupture and erosion. Cardiovasc. Res. 117, 1974–1985 (2021).

    Google Scholar 

  205. McGovern, E. et al. Optical coherence tomography for the early detection of coronary vascular changes in children and adolescents after cardiac transplantation: findings from the international pediatric OCT registry. JACC Cardiovasc. Imaging 12, 2492–2501 (2019).

    Google Scholar 

  206. Lorenser, D. et al. Ultrathin side-viewing needle probe for optical coherence tomography. Opt. Lett. 36, 3894–3896 (2011).

    ADS  Google Scholar 

  207. Boppart, S., Drexler, W., Morgner, U., Kirtner, F. & Fujimoto, J. in Proc. Inter-Institute Workshop on In Vivo Optical Imaging at the National Institutes of Health 56–61 (Citeseer, 2000).

  208. Barton, J. K., Hoying, J. B. & Sullivan, C. J. Use of microbubbles as an optical coherence tomography contrast agent. Acad. Radiol. 9, S52–S55 (2002).

    Google Scholar 

  209. Tucker-Schwartz, J., Meyer, T., Patil, C., Duvall, C. & Skala, M. In vivo photothermal optical coherence tomography of gold nanorod contrast agents. Biomed. Opt. Express 3, 2881–2895 (2012).

    Google Scholar 

  210. Keahey, P. et al. Spectral-and polarization-dependent scattering of gold nanobipyramids for exogenous contrast in optical coherence tomography. Nano Lett. 21, 8595–8601 (2021).

    ADS  Google Scholar 

  211. Yang, H.-C. et al. A dual-modality probe utilizing intravascular ultrasound and optical coherence tomography for intravascular imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2839–2843 (2010).

    Google Scholar 

  212. Ono, M. et al. Advances in IVUS/OCT and future clinical perspective of novel hybrid catheter system in coronary imaging. Front. Cardiovasc. Med. 7, 119 (2020).

    Google Scholar 

  213. Allen, W. M. et al. Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins. Biomed. Opt. Express 7, 4139–4153 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (B.E.B.); Experimentation (B.E.B., J.F.d.B., R.L., D.D.S., B.J.V., M.V. and M.W.); Results (B.E.B., J.F.d.B., R.L., D.D.S., B.J.V., M.V. and M.W.); Applications (B.E.B., D.H., I.-K.J., T.Y., C.L.L. and M.S.); Reproducibility and data deposition (all authors); Limitations and optimizations (all authors); Outlook (all authors); Overview of the Primer (B.E.B.).

Corresponding author

Correspondence to Brett E. Bouma.

Ethics declarations

Competing interests

B.E.B., J.F.d.B., B.J.V. and M.V. are inventors on patents owned by Mass General Brigham in the field of optical coherence tomography (OCT) and acknowledge patent royalties, administered through Mass General Brigham, from organizations that may gain or lose financially through this publication. I.-K.J. has received educational grants from Abbott Vascular and consulting fees from Svelte Medical Systems, Inc. and Mitobridge, Inc. D.H. and Oregon Health & Science University (OHSU) have significant financial interests in an organization that may gain or lose financially through this publication. D.H. acknowledges research support and patent royalty from an organization that may gain or lose financially through this publication. D.D.S. is an inventor on patents owned by the University of Western Australia in the field of OCT and licensed to organizations that may gain or lose financially through this publication. T.Y., C.L.L., R.L., M.S. and M.W. declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Optical heterodyning

The mixing of oscillatory waveforms having different frequencies, typically in order to generate a signal having a lower frequency suitable for direct detection.

Optical coherence-domain reflectometry

A technique using light with short temporal coherence and an interferometer with a scanning path difference to measure weak distributed back reflections in one-dimensional waveguides.

Optical frequency-domain reflectometry

A technique that uses a wavelength swept laser and an interferometer with a fixed reference path length to measure weak distributed back reflections in one-dimensional waveguides.

Numerical aperture

Characterization of the range of angles through which an imaging system illuminates or collects light from a sample. A low f-number and a high numerical aperture characterize a system having high spatial resolution.

Shot noise

The fluctuations in a signal that arise from the particle nature of photons and that may be modelled by a Poisson process.

Polarization fading

In a coherent optical receiver, the characteristic decrease in the measured signal when the polarization states of the signal and the reference light become misaligned.

A-line

A sequence of pixel values corresponding to a geometric line within a sample.

Fabry–Perot filters

Optical cavities comprising two parallel reflectors for which the transmission spectrum is characterized by periodic, narrow bands.

Fibre Bragg gratings

A type of distributed Bragg reflector formed by periodic changes of the index of refraction in an optical fibre waveguide that may be used to selectively pass specific wavelengths of light.

Jones formalism

A calculus described by R. C. Jones for modelling the propagation of light in which vectors represent the polarization state of an optical field and matrices represent the operation of specific optical elements. Optical systems may be modelled by time-ordered products of the matrices representing each element of the system.

B-mode imaging

The acquisition of successive A-line data while the imaging beam is scanned transversely across a sample. Resulting data represent a cross-sectional image.

B–M-mode imaging

The acquisition of successive M-mode data while the imaging beam is scanned transversely across a sample. M-mode data are obtained by fixing the imaging beam at one sample location and repeatedly acquiring A-line data.

M–B-mode imaging

The acquisition of successive B-mode images over time.

f-Number

The ratio of the focal length to the illumination aperture. A low f-number and a high numerical aperture characterize a system having high spatial resolution.

Pull-back image

In endoscopic or catheter-based imaging, a two-dimensional, cross-sectional image comprises pixels in radial and circumferential coordinates. A helical scan representing a cylindrical volume may be acquired by repeating cross-sectional imaging while the imaging sensor is scanned or pulled back along a cylindrical axis, typically within a luminal organ.

Speckle

A mottled-appearing artefact of bright and dark features, on a scale near that of the resolution, that arises from coherent interference of back reflections from a sample. This is a characteristic of coherent imaging methods such as ultrasonography, confocal microscopy and optical coherence tomography.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouma, B.E., de Boer, J.F., Huang, D. et al. Optical coherence tomography. Nat Rev Methods Primers 2, 79 (2022). https://doi.org/10.1038/s43586-022-00162-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-022-00162-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing