Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Van der Waals heterostructures

Abstract

The integration of dissimilar materials into heterostructures has become a powerful tool for engineering interfaces and electronic structure. The advent of 2D materials has provided unprecedented opportunities for novel heterostructures in the form of van der Waals stacks, laterally stitched 2D layers and more complex layered and 3D architectures. This Primer provides an overview of state-of-the-art methodologies for producing such van der Waals heterostructures, focusing on the two fundamentally different strategies, top-down deterministic assembly and bottom-up synthesis. Successful techniques, advantages and limitations are discussed for both approaches. As important as the fabrication itself is the characterization of the resulting engineered materials, for which a range of analysis techniques covering structure, composition and emerging functionality are highlighted. Examples of the properties of artificial van der Waals structures include optoelectronics and plasmonics, twistronics and unique functionality arising from the generalization of van der Waals assembly from 2D to 3D crystalline components. Finally, current issues of reproducibility, limitations and opportunities for future breakthroughs in terms of enhanced homogeneity, interfacial purity, feature control and ultimately orders-of-magnitude increased complexity of van der Waals heterostructures are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epitaxial heterostructures of 3D crystals and van der Waals heterostructures.
Fig. 2: Working principle of gold-film-assisted exfoliation and examples of exfoliated 2D crystals.
Fig. 3: Main steps of processes for assembly of Van der Waals stacks.
Fig. 4: CVD approaches for producing multi-junction heterostructures and superlattices.
Fig. 5: Bottom-up synthesis approaches with control over interlayer twist.
Fig. 6: Characterization of van der Waals heterostructures.
Fig. 7: Plasmonic response of graphene based van der Waals heterostructures.

Similar content being viewed by others

References

  1. Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photon. 10, 307–311 (2016).

    Article  ADS  Google Scholar 

  2. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  3. Nakamura, S., Mukai, T. & Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994).

    Article  ADS  Google Scholar 

  4. Jae-Sung, R. et al. SiGe heterojunction bipolar transistors and circuits toward terahertz communication applications. IEEE Trans. Microw. Theory Tech. 52, 2390–2408 (2004).

    Article  Google Scholar 

  5. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    Article  ADS  Google Scholar 

  6. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  ADS  Google Scholar 

  7. Fox, M. & Ispasoiu, R. in Springer Handbook Of Electronic And Photonic Materials (eds Safa, K. & Peter, C.) 1021–1040 (Springer, 2007).

  8. Pohl, U. W. Epitaxy Of Semiconductors: Introduction To Physical Principles (Springer, 2013).

  9. Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S. & Robinson, I. K. GexSi1−x/Si strained-layer superlattice grown by molecular beam epitaxy. J. Vac. Sci. Technol. A 2, 436–440 (1984).

    Article  ADS  Google Scholar 

  10. Mo, Y. W., Savage, D. E., Swartzentruber, B. S. & Lagally, M. G. Kinetic pathway in Stranski–Krastanov growth of Ge on Si(001). Phys. Rev. Lett. 65, 1020–1023 (1990).

    Article  ADS  Google Scholar 

  11. Hull, R. & Bean, J. C. Nucleation of misfit dislocations in strained-layer epitaxy in the GexSi1−x/Si system. J. Vac. Sci. Technol. A 7, 2580–2585 (1989).

    Article  ADS  Google Scholar 

  12. Koma, A. Van der Waals epitaxy — a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216, 72–76 (1992).

    Article  ADS  Google Scholar 

  13. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). The first report of the exfoliation of single-layer graphene using adhesive tape.

    Article  ADS  Google Scholar 

  14. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  15. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  16. Bistritzer, R. & MacDonald, A. H. Moire bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  ADS  Google Scholar 

  17. Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012).

    Article  ADS  Google Scholar 

  18. Sutter, P., Cortes, R., Lahiri, J. & Sutter, E. Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett. 12, 4869–4874 (2012).

    Article  ADS  Google Scholar 

  19. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  20. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  21. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). First demonstration of a transistor from a monolayer semiconductor (MoS2), prepared by mechanical exfoliation from a layered bulk crystal.

    Article  ADS  Google Scholar 

  22. Zhao, W. J. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013).

    Article  Google Scholar 

  23. Meng, L. et al. Buckled silicene formation on Ir(111). Nano Lett. 13, 685–690 (2013).

    Article  ADS  Google Scholar 

  24. Hao, Y. F. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 11, 426–431 (2016).

    Article  ADS  Google Scholar 

  25. Sutter, P. W., Flege, J. I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 7, 406–411 (2008).

    Article  ADS  Google Scholar 

  26. Chang, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 37, 2108017 (2021).

    Article  Google Scholar 

  27. Huang, Y. et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9, 10612–10620 (2015). This paper reports an oxygen plasma enhanced exfoliation method, which can produce large-area 2D crystals including graphene and the high-temperature superconductor bismuth strontium calcium copper oxide (Bi-2212).

    Article  Google Scholar 

  28. Huang, Y. et al. Raman spectral band oscillations in large graphene bubbles. Phys. Rev. Lett. 120, 186104 (2018).

    Article  ADS  Google Scholar 

  29. Magda, G. Z. et al. Exfoliation of large-area transition metal chalcogenide single layers. Sci. Rep. 5, 14714 (2015).

    Article  ADS  Google Scholar 

  30. Desai, S. B. et al. Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv. Mater. 28, 4053–4058 (2016).

    Article  Google Scholar 

  31. Velicky, M. et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 12, 10463–10472 (2018).

    Article  Google Scholar 

  32. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  ADS  Google Scholar 

  33. Huang, Y. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020). This paper introduces a universal mechanical exfoliation technology for large-area 2D crystals that uses Au films to enhance the interfacial interaction between a 2D material and a substrate.

    Article  ADS  Google Scholar 

  34. Huang, Y. et al. An efficient route to prepare suspended monolayer for feasible optical and electronic characterizations of two-dimensional materials. InfoMat 4, e12274 (2022).

    Article  Google Scholar 

  35. Liu, F. et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367, 903–906 (2020).

    Article  ADS  Google Scholar 

  36. Frisenda, R. et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53–68 (2018). This tutorial review reports all the details of deterministic transfer methods; the information is compiled and shared in a pedagogical way and differences, advantages and challenges of the different deterministic transfer methods are presented.

    Article  Google Scholar 

  37. Zhao, Q., Wang, T., Ryu, Y. K., Frisenda, R. & Castellanos-Gomez, A. An inexpensive system for the deterministic transfer of 2D materials. J. Phys. Mater. 3, 016001 (2020).

    Article  Google Scholar 

  38. Gant, P. et al. A system for the deterministic transfer of 2D materials under inert environmental conditions. 2D Mater. 7, 025034 (2020).

    Article  Google Scholar 

  39. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  40. Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Quantum Hall effect and Landau-level crossing of Dirac fermions in trilayer graphene. Nat. Phys. 7, 621–625 (2011).

    Article  Google Scholar 

  41. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014). This work presents an all-dry alternative to the wet-based deterministic transfer methods reported up until then, including all the technical details required to allow other laboratories to easily replicate the technique, information that was somewhat missing in the articles reporting other deterministic transfer methods.

    Article  Google Scholar 

  42. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  Google Scholar 

  43. Sutter, P., Huang, Y. & Sutter, E. Nanoscale integration of two-dimensional materials by lateral heteroepitaxy. Nano Lett. 14, 4846–4851 (2014).

    Article  ADS  Google Scholar 

  44. Lee, J. et al. Direct epitaxial synthesis of selective two-dimensional lateral heterostructures. ACS Nano 13, 13047–13055 (2019).

    Article  Google Scholar 

  45. Gong, Y. J. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15, 6135–6141 (2015).

    Article  ADS  Google Scholar 

  46. Sahoo, P. K., Memaran, S., Xin, Y., Balicas, L. & Gutierrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63–67 (2018). This paper introduces the water-assisted one-pot CVD method for growth of 2D multi-junction heterostructures.

    Article  ADS  Google Scholar 

  47. Sahoo, P. K. et al. Bilayer lateral heterostructures of transition-metal dichalcogenides and their optoelectronic response. ACS Nano 13, 12372–12384 (2019).

    Article  Google Scholar 

  48. Gong, Y. J. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    Article  ADS  Google Scholar 

  49. Huang, C. M. et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

    Article  Google Scholar 

  50. Duan, X. D. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

    Article  ADS  Google Scholar 

  51. Li, M. Y. et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015).

    Article  ADS  Google Scholar 

  52. Xie, S. E. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1135 (2018). This paper describes the modulated metal–organic CVD approach for producing 2D lateral superlattices.

    Article  ADS  Google Scholar 

  53. Zhang, Z. W. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017). This paper introduces the multistep CVD approach for lateral 2D heterostructures with reverse flow capability for better control of sample quality.

    Article  Google Scholar 

  54. Mahjouri-Samani, M. et al. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nat. Commun. 6, 7749 (2015).

    Article  ADS  Google Scholar 

  55. Taghinejad, H. et al. Synthetic engineering of morphology and electronic band gap in lateral heterostructures of monolayer transition metal dichalcogenides. ACS Nano 14, 6323–6330 (2020).

    Article  Google Scholar 

  56. Li, H. N. et al. Laterally stitched heterostructures of transition metal dichalcogenide: chemical vapor deposition growth on lithographically patterned area. ACS Nano 10, 10516–10523 (2016).

    Article  Google Scholar 

  57. Afaneh, T., Sahoo, P. K., Nobrega, I. A. P., Xin, Y. & Gutierrez, H. R. Laser-assisted chemical modification of monolayer transition metal dichalcogenides. Adv. Funct. Mater. 28, 1802949 (2018).

    Article  Google Scholar 

  58. Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

    Article  ADS  Google Scholar 

  59. Sun, L. et al. Chemical vapour deposition. Nat. Rev. Methods Primers 1, 5 (2021). This review describes the basics of the CVD technique, its different components and procedures, as well as materials characterization techniques.

    Article  Google Scholar 

  60. Li, H. L. et al. Lateral growth of composition graded atomic layer MoS2(1-x)Se2x nanosheets. J. Am. Chem. Soc. 137, 5284–5287 (2015).

    Article  Google Scholar 

  61. Wu, X. P. et al. Spatially composition-modulated two-dimensional WS2xSe2(1-x) nanosheets. Nanoscale 9, 4707–4712 (2017).

    Article  Google Scholar 

  62. Yu, H. et al. Spatially graded millimeter sized Mo1-xWxS2 monolayer alloys: synthesis and memory effect. ACS Appl. Mater. Interf. 13, 44693–44702 (2021).

    Article  Google Scholar 

  63. Nugera, F. A. et al. Bandgap engineering in 2D lateral heterostructures of transition metal dichalcogenides via controlled alloying. Small 18, 2106600 (2022).

    Article  Google Scholar 

  64. Yang, T. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8, 1906 (2017).

    Article  ADS  Google Scholar 

  65. Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020). This work reports the scalable synthesis of 2D van der Waals heterostructure arrays on existing 2D semiconductors.

    Article  ADS  Google Scholar 

  66. Bergeron, H., Lebedev, D. & Hersam, M. C. Polymorphism in post-dichalcogenide two-dimensional materials. Chem. Rev. 121, 2713–2775 (2021).

    Article  Google Scholar 

  67. Huang, Y. et al. Tin disulfide — an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics. ACS Nano 8, 10743–10755 (2014).

    Article  Google Scholar 

  68. Yu, J. et al. Monodisperse SnS2 nanosheets for high-performance photocatalytic hydrogen generation. ACS Appl. Mater. Interf. 6, 22370–22377 (2014).

    Article  Google Scholar 

  69. Tian, Z., Guo, C., Zhao, M., Li, R. & Xue, J. Two-dimensional SnS: a phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano 11, 2219–2226 (2017).

    Article  Google Scholar 

  70. Luan, Y. et al. Imaging anisotropic waveguide exciton polaritons in tin sulfide. Nano Lett. 22, 1497–1503 (2022).

    Article  ADS  Google Scholar 

  71. Lin, S. et al. Accessing valley degree of freedom in bulk Tin(II) sulfide at room temperature. Nat. Commun. 9, 1455 (2018).

    Article  ADS  Google Scholar 

  72. Higashitarumizu, N. et al. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun. 11, 2428 (2020).

    Article  ADS  Google Scholar 

  73. Sutter, P., Komsa, H. P., Lu, H., Gruverman, A. & Sutter, E. Few-layer tin sulfide (SnS): controlled synthesis, thickness dependent vibrational properties, and ferroelectricity. Nano Today 37, 101082 (2021).

    Article  Google Scholar 

  74. Sutter, E. et al. Electron-beam induced transformations of layered tin dichalcogenides. Nano Lett. 16, 4410–4416 (2016).

    Article  ADS  Google Scholar 

  75. Sutter, P., Wang, J. & Sutter, E. Wrap-around core–shell heterostructures of layered crystals. Adv. Mater. 31, 1902166 (2019). This paper introduces a new type of van der Waals heterostructure with promising light harvesting properties, opening up van der Waals architectures beyond the archetypal vertical stacks and laterally stitched 2D layers.

    Article  Google Scholar 

  76. Sutter, P. & Sutter, E. Growth mechanisms of anisotropic layered group IV chalcogenides on van der Waals substrates for energy conversion applications. ACS Appl. Nano Mater. 1, 3026–3034 (2018).

    Article  Google Scholar 

  77. Sutter, E., Wang, J. & Sutter, P. Surface passivation by excess sulfur for controlled synthesis of large, thin SnS flakes. Chem. Mater. 32, 8034–8042 (2020).

    Article  Google Scholar 

  78. Sutter, E., Wang, J. & Sutter, P. Nanoparticle-templated thickness controlled growth, thermal stability, and decomposition of ultrathin tin sulfide plates. Chem. Mater. 31, 2563–2570 (2019).

    Article  Google Scholar 

  79. Sutter, E., Wang, J. & Sutter, P. Lateral heterostructures of multilayer GeS and SnS van der Waals crystals. ACS Nano 14, 12248–12255 (2020).

    Article  Google Scholar 

  80. Sutter, E., Unocic, R. R., Idrobo, J.-C. & Sutter, P. Multilayer lateral heterostructures of van der Waals crystals with sharp, carrier–transparent interfaces. Adv. Sci. 9, 2103830 (2022).

    Article  Google Scholar 

  81. Sutter, P., Khorashad, L. K., Argyropoulos, C. & Sutter, E. Cathodoluminescence of ultrathin twisted Ge1–xSnxS van der Waals nanoribbon waveguides. Adv. Mater. 33, 2006649 (2021). This paper discusses synthetic ultrathin 3D-shaped van der Waals nanoribbon waveguides and explains the coherent electron-beam excitation of photonic modes in such waveguides.

    Article  Google Scholar 

  82. Molina-Mendoza, A. J. et al. Franckeite as a naturally occurring van der Waals heterostructure. Nat. Commun. 8, 14409 (2017).

    Article  ADS  Google Scholar 

  83. Velický, M. et al. Exfoliation of natural van der Waals heterostructures to a single unit cell thickness. Nat. Commun. 8, 14410 (2017).

    Article  ADS  Google Scholar 

  84. Ray, K. et al. Photoresponse of natural van der Waals heterostructures. ACS Nano 11, 6024–6030 (2017).

    Article  Google Scholar 

  85. Niu, Y. et al. Mechanical and liquid phase exfoliation of cylindrite: a natural van der Waals superlattice with intrinsic magnetic interactions. 2D Mater. 6, 035023 (2019).

    Article  Google Scholar 

  86. Dasgupta, A., Yang, X. & Gao, J. Naturally occurring van der Waals heterostructure lengenbachite with strong in-plane structural and optical anisotropy. npj 2D Mater. Appl. 5, 88 (2021).

    Article  Google Scholar 

  87. Frisenda, R., Niu, Y., Gant, P., Muñoz, M. & Castellanos-Gomez, A. Naturally occurring van der Waals materials. npj 2D Mater. Appl. 4, 38 (2020).

    Article  Google Scholar 

  88. Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014).

    Article  ADS  Google Scholar 

  89. Yeh, P.-C. et al. Direct measurement of the tunable electronic structure of bilayer MoS2 by interlayer twist. Nano Lett. 16, 953–959 (2016).

    Article  ADS  Google Scholar 

  90. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). This paper reports the first experimental observation of gate-tuneable electron correlation effects due to flat bands in magic angle twisted bilayer graphene.

    Article  ADS  Google Scholar 

  91. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  92. Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article  ADS  Google Scholar 

  93. Peymanirad, F. et al. Thermal activated rotation of graphene flake on graphene. 2D Mater. 4, 025015 (2017).

    Article  Google Scholar 

  94. Sun, L. et al. Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nat. Commun. 12, 2391 (2021).

    Article  ADS  Google Scholar 

  95. Zhao, Y. et al. Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces. Science 370, 442–445 (2020). This work demonstrates control over interlayer twist in dislocated growth spirals of TMDs synthesized on non-planar substrates.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Sutter, P., Ibragimova, R., Komsa, H.-P., Parkinson, B. A. & Sutter, E. Self-organized twist-heterostructures via aligned van der Waals epitaxy and solid-state transformations. Nat. Commun. 10, 5528 (2019).

    Article  ADS  Google Scholar 

  97. Eshelby, J. D. Screw dislocations in thin rods. J. Appl. Phys. 24, 176–179 (1953).

    Article  ADS  Google Scholar 

  98. Sutter, P., Wimer, S. & Sutter, E. Chiral twisted van der Waals nanowires. Nature 570, 354–357 (2019). This study shows that Eshelby twist in van der Waals nanowires gives rise to precisely tuneable interlayer twist and demonstrates modulated optoelectronic properties due to changing interlayer moiré registries in single nanowires.

    Article  ADS  Google Scholar 

  99. Sutter, E. & Sutter, P. Ultrathin twisted germanium sulfide van der Waals nanowires by bismuth catalyzed vapor–liquid–solid growth. Small 17, 2104784 (2021).

    Article  Google Scholar 

  100. Sutter, P., Idrobo, J.-C. & Sutter, E. Van der Waals nanowires with continuously variable interlayer twist and twist homojunctions. Adv. Funct. Mater. 31, 2006412 (2021).

    Article  Google Scholar 

  101. Roddaro, S., Pingue, P., Piazza, V., Pellegrini, V. & Beltram, F. The optical visibility of graphene: interference colors of ultrathin graphite on SiO2. Nano Lett. 7, 2707–2710 (2007).

    Article  ADS  Google Scholar 

  102. Jung, I. et al. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7, 3569–3575 (2007).

    Article  ADS  Google Scholar 

  103. Ni, Z. H. et al. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758–2763 (2007).

    Article  ADS  Google Scholar 

  104. Bian, K. et al. Scanning probe microscopy. Nat. Rev. Methods Primers 1, 36 (2021).

    Article  Google Scholar 

  105. Wang, Z.-J. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9, 1506–1519 (2015).

    Article  Google Scholar 

  106. Sang, X. et al. In situ edge engineering in two-dimensional transition metal dichalcogenides. Nat. Commun. 9, 2051 (2018).

    Article  ADS  Google Scholar 

  107. Sutter, P. & Sutter, E. Microscopy of graphene growth, processing, and properties. Adv. Funct. Mater. 23, 2617–2634 (2013).

    Article  Google Scholar 

  108. Sutter, P., Albrecht, P., Tong, X. & Sutter, E. Mechanical decoupling of graphene from Ru(0001) by interfacial reaction with oxygen. J. Phys. Chem. C 117, 6320–6324 (2013).

    Article  Google Scholar 

  109. Sutter, P., Hybertsen, M. S., Sadowski, J. T. & Sutter, E. Electronic structure of few-layer epitaxial graphene on Ru(0001). Nano Lett. 9, 2654–2660 (2009).

    Article  ADS  Google Scholar 

  110. Jin, W. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 106801 (2013).

    Article  ADS  Google Scholar 

  111. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  ADS  Google Scholar 

  112. Iranzo, D. A. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    Article  ADS  Google Scholar 

  113. Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  114. Sahoo, P. K. et al. Probing nano-heterogeneity and aging effects in lateral 2D heterostructures using tip-enhanced photoluminescence. Opt. Mater. Express 9, 1620–1631 (2019).

    Article  ADS  Google Scholar 

  115. Sutter, E., Zhang, B., Sun, M. & Sutter, P. Few-layer to multilayer germanium(II) sulfide: synthesis, structure, stability, and optoelectronics. ACS Nano 13, 9352–9362 (2019).

    Article  Google Scholar 

  116. Sutter, P., Argyropoulos, C. & Sutter, E. Germanium sulfide nano-optics probed by STEM-cathodoluminescence spectroscopy. Nano Lett. 18, 4576–4583 (2018).

    Article  ADS  Google Scholar 

  117. Sutter, E., French, J. S., Sutter, S., Idrobo, J. C. & Sutter, P. Vapor–liquid–solid growth and optoelectronics of gallium sulfide van der Waals nanowires. ACS Nano 14, 6117–6126 (2020).

    Article  Google Scholar 

  118. Sutter, P., French, J. S., Khosravi Khorashad, L., Argyropoulos, C. & Sutter, E. Optoelectronics and nanophotonics of vapor–liquid–solid grown GaSe van der Waals nanoribbons. Nano Lett. 21, 4335–4342 (2021).

    Article  ADS  Google Scholar 

  119. Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).

    Article  ADS  Google Scholar 

  120. Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    Article  ADS  Google Scholar 

  121. Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014).

    Article  ADS  Google Scholar 

  122. Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    Article  ADS  Google Scholar 

  123. Zhang, N. et al. Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett. 18, 7651–7657 (2018).

    Article  ADS  Google Scholar 

  124. Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    Article  ADS  Google Scholar 

  125. Kunstmann, J. et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 14, 801–805 (2018).

    Article  Google Scholar 

  126. Tran, K. et al. Evidence for moire excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  ADS  Google Scholar 

  127. Seyler, K. L. et al. Signatures of moire-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  ADS  Google Scholar 

  128. Alexeev, E. M. et al. Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures. Nature 572, 81–86 (2019).

    Article  ADS  Google Scholar 

  129. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  ADS  Google Scholar 

  130. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Article  ADS  Google Scholar 

  131. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article  ADS  Google Scholar 

  132. Bandurin, D. A. et al. Resonant terahertz detection using graphene plasmons. Nat. Commun. 9, 5392 (2018).

    Article  ADS  Google Scholar 

  133. Ni, G. X. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).

    Article  ADS  Google Scholar 

  134. Hu, F. et al. Tailored plasmons in pentacene/graphene heterostructures with interlayer electron transfer. Nano Lett. 19, 6058–6064 (2019).

    Article  ADS  Google Scholar 

  135. Rizzo, D. J. et al. Charge-transfer plasmon polaritons at graphene/α-RuCl3 interfaces. Nano Lett. 20, 8438–8445 (2020).

    Article  ADS  Google Scholar 

  136. Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017).

    Article  ADS  Google Scholar 

  137. Lee, I.-H., Yoo, D., Avouris, P., Low, T. & Oh, S.-H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313–319 (2019).

    Article  ADS  Google Scholar 

  138. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  ADS  Google Scholar 

  139. Wang, P. & Duan, X. Probing and pushing the limit of emerging electronic materials via van der Waals integration. MRS Bull. 46, 534–546 (2021).

    Article  ADS  Google Scholar 

  140. Cheng, R. et al. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl Acad. Sci. USA 109, 11588–11592 (2012).

    Article  ADS  Google Scholar 

  141. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018). This study generalizes van der Waals integration of 3D metal thin-film electrodes with 2D semiconductors to create nearly ideal metal–semiconductor junctions.

    Article  ADS  Google Scholar 

  142. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    Article  ADS  Google Scholar 

  143. Liao, L. et al. High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc. Natl Acad. Sci. USA 107, 6711–6715 (2010). This study first demonstrates damage-free 2D semiconductor–dielectric van der Waals integration with pristine interfaces and retained electronic performance.

    Article  ADS  Google Scholar 

  144. Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).

    Article  ADS  Google Scholar 

  145. Liao, L. et al. High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Adv. Mater. 22, 1941–1945 (2010).

    Article  Google Scholar 

  146. Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014).

    Article  ADS  Google Scholar 

  147. Lee, S.-J. et al. Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nat. Electron. 3, 630–637 (2020).

    Article  Google Scholar 

  148. Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304 (2014).

    Article  ADS  Google Scholar 

  149. Chen, P. et al. Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. Nature 599, 404–410 (2021).

    Article  ADS  Google Scholar 

  150. Haick, H., Ambrico, M., Ghabboun, J., Ligonzo, T. & Cahen, D. Contacting organic molecules by metal evaporation. Phys. Chem. Chem. Phys. 6, 4538–4541 (2004).

    Article  Google Scholar 

  151. Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).

    Article  ADS  Google Scholar 

  152. Liu, Y. et al. van der Waals integrated devices based on nanomembranes of 3D materials. Nano Lett. 20, 1410–1416 (2020).

    Article  ADS  Google Scholar 

  153. Sutter, P., Zahl, P. & Sutter, E. Continuous formation and faceting of SiGe islands on Si(100). Appl. Phys. Lett. 82, 3454–3456 (2003).

    Article  ADS  Google Scholar 

  154. Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).

    Article  Google Scholar 

  155. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    Article  Google Scholar 

  156. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moire superlattices. Nature 497, 598–602 (2013).

    Article  ADS  Google Scholar 

  157. Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).

    Article  ADS  Google Scholar 

  158. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  ADS  Google Scholar 

  159. Yang, W. et al. Hofstadter butterfly and many-body effects in epitaxial graphene superlattice. Nano Lett. 16, 2387–2392 (2016).

    Article  ADS  Google Scholar 

  160. Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article  Google Scholar 

  161. Wang, L. et al. Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science 350, 1231–1234 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  162. Wang, D. M. et al. Thermally induced graphene rotation on hexagonal boron nitride. Phys Rev. Lett. 116, 126101 (2016).

    Article  ADS  Google Scholar 

  163. Woods, C. R. et al. Macroscopic self-reorientation of interacting two-dimensional crystals. Nat. Commun. 7, 10800 (2016).

    Article  ADS  Google Scholar 

  164. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article  ADS  Google Scholar 

  165. Liu, X. M. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).

    Article  ADS  Google Scholar 

  166. Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215 (2020).

    Article  ADS  Google Scholar 

  167. Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).

    Article  Google Scholar 

  168. He, M. H. et al. Symmetry breaking in twisted double bilayer graphene. Nat. Phys. 17, 26–30 (2021).

    Article  Google Scholar 

  169. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article  ADS  Google Scholar 

  170. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moire superlattices. Nature 579, 359–363 (2020).

    Article  ADS  Google Scholar 

  171. Tang, Y. H. et al. Simulation of Hubbard model physics in WSe2/WS2 moire superlattices. Nature 579, 353–358 (2020).

    Article  ADS  Google Scholar 

  172. Jin, C. H. et al. Observation of moire excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  ADS  Google Scholar 

  173. Xian, L. D., Kennes, D. M., Tancogne-Dejean, N., Altarelli, M. & Rubio, A. Multiflat bands and strong correlations in twisted bilayer boron nitride: doping-induced correlated insulator and superconductor. Nano Lett. 19, 4934–4940 (2019).

    Article  ADS  Google Scholar 

  174. Kennes, D. M., Xian, L., Claassen, M. & Rubio, A. One-dimensional flat bands in twisted bilayer germanium selenide. Nat. Commun. 11, 1124 (2020).

    Article  ADS  Google Scholar 

  175. Kennes, D. M. et al. Moire heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  Google Scholar 

  176. Masubuchi, S. et al. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 9, 1413 (2018).

    Article  ADS  Google Scholar 

  177. Frisenda, R. & Castellanos-Gomez, A. Robotic assembly of artificial nanomaterials. Nat. Nanotechnol. 13, 441–442 (2018).

    Article  ADS  Google Scholar 

  178. Tang, L., Tan, J., Nong, H., Liu, B. & Cheng, H.-M. Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. Acc. Mater. Res. 2, 36–47 (2021).

    Article  Google Scholar 

  179. Tang, L. et al. Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides. ACS Nano 14, 4646–4653 (2020).

    Article  Google Scholar 

  180. Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014).

    Article  ADS  Google Scholar 

  181. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    Article  ADS  Google Scholar 

  182. Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Article  ADS  Google Scholar 

  183. Mannix, A. J. et al. Robotic four-dimensional pixel assembly of van der Waals solids. Nat. Nanotechnol. 17, 361–366 (2022).

    Article  ADS  Google Scholar 

  184. Zhang, Y. et al. Edge-epitaxial growth of 2D NbS2-WS2 lateral metal-semiconductor heterostructures. Adv. Mater. 30, 1803665 (2018).

    Article  Google Scholar 

  185. Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    Article  ADS  Google Scholar 

  186. Van der Donck, M. et al. Three-dimensional electron-hole superfluidity in a superlattice close to room temperature. Phys. Rev. B 102, 060503 (2020).

    Article  Google Scholar 

  187. Ren, H., Wan, Z. & Duan, X. Van der Waals superlattices. Natl Sci. Rev. 9, nwab166 (2021).

    Article  Google Scholar 

  188. Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021). This study first demonstrates a series of high-order van der Waals superlattices that are difficult to achieve using exfoliation and restacking approaches.

    Article  ADS  Google Scholar 

  189. Lin, Z. et al. High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. Chem 7, 1887–1902 (2021).

    Article  Google Scholar 

  190. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    Article  ADS  Google Scholar 

  191. Cui, C., Xue, F., Hu, W.-J. & Li, L.-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2, 18 (2018).

    Article  Google Scholar 

  192. Hossain, M. et al. Recent advances in two-dimensional materials with charge density waves: synthesis, characterization and applications. Crystals 7, 298 (2017).

    Article  Google Scholar 

  193. Zomer, P. J., Dash, S. P., Tombros, N. & Wees, B. J. V. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011).

    Article  ADS  Google Scholar 

  194. Schneider, G. F., Calado, V. E., Zandbergen, H., Vandersypen, L. M. K. & Dekker, C. Wedging transfer of nanostructures. Nano Lett. 10, 1912–1916 (2010).

    Article  ADS  Google Scholar 

  195. Yang, R., Zheng, X., Wang, Z., Miller, C. J. & Feng, P. X.-L. Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing. J. Vac. Sci. Technol. B 32, 061203 (2014).

    Article  Google Scholar 

  196. Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & Wees, B. J. V. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

    Article  ADS  Google Scholar 

  197. Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    Article  ADS  Google Scholar 

  198. Son, S. et al. Strongly adhesive dry transfer technique for van der Waals heterostructure. 2D Mater. 7, 041005 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

P.S. and E.S. acknowledge support from the National Science Foundation, Division of Materials Research, Solid State and Materials Chemistry Program under grant number DMR-1607795 (twisted nanowire synthesis and diffraction analysis), the Department of the Navy, Office of Naval Research under ONR award number N00014-20-1-2305 (twisted nanowire optoelectronics), and the US Department of Energy, Office of Science, Basic Energy Sciences, under award number DE-SC0016343 (synthesis of twisted stacks, development of STEM-CL spectroscopy). J.Q. acknowledges financial support from the Agencia Estatal de Investigación of Spain (grant number PID2019-106820RB) and from Universidad Complutense de Madrid and the European Commission (MSCA COFUND UNA4CAREER project number 4129252). A.C.-G. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research And Innovation Program (grant agreement number 755655, ERC-StG 2017 project 2D-TOPSENSE), the EU FLAG-ERA project To2Dox (JTC-2019-009), the Comunidad de Madrid through the CAIRO-CM project (Y2020/NMT-6661) and the Spanish Ministry of Science and Innovation (grant number PID2020-118078RB-I00). Y.H. acknowledges support from the National Key Research and Development Program of China (grant numbers 2019YFA0308000 and 2018YFA0704201), the National Natural Science Foundation of China (NNSFC grant numbers 62022089 and 11874405), Chongqing Outstanding Youth Fund (grant number 2021ZX0400005) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (grant number XDB33000000). X.D. acknowledges financial support by the Office of Naval Research through grant number N00014-18-1-2707. H.R.G. acknowledges support from the National Science Foundation (grant number DMR-1557434). Z.F. is supported by the National Science Foundation (grant number DMR-1945560).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (P.S.); Experimentation (A.C.-G., H.R.G., Y.H., X.H., J.Q., E.S. and P.S.); Results (H.R.G., E.S. and P.S.); Applications (A.C.-G., X.D., Z.F., Y.H., X.H., J.Q., Q.Q., E.S. and P.S.); Reproducibility and data deposition (A.C.-G., H.R.G., J.Q. and P.S.); Limitations and optimizations (A.C.-G., H.R.G., J.Q. and P.S.); Outlook (A.C.-G., X.D., H.R.G., J.Q., E.S. and P.S.).

Corresponding author

Correspondence to Peter Sutter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Zhongfan Liu, Luzhao Sun, Hugen Yan and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Quantum wells

Layer with locally reduced confining potential for electrons and/or holes, sandwiched between barrier layers with higher potential energy for the charge carriers.

Epitaxial heterostructures

Integrated dissimilar 3D crystalline (non-layered) materials with the same or a similar crystal structure and low lattice mismatch, usually formed via crystal growth or deposition processes, where the crystal orientation of each subsequent component is dictated by the underlying lattice.

Exfoliation

Isolation of a 2D or few-layer flake by peeling of one or more layers from a layered bulk crystal, often involving an adhesive tape whose interaction with the topmost layers of the crystal is stronger than the interlayer interaction.

Micromechanical assembly

Process of stacking of 2D flakes, where the relative position and orientation is precisely controlled by suitable manipulators such as micrometre- or piezo stages.

Spin-coated

A process for coating flat substrates with thin films, involving the application of a small drop of the liquid coating solution in the centre of the substrate followed by the uniform spreading of the material by spinning of the substrate at high rotation frequency.

Axial twisting

Twisting of a ribbon-like 2D or layered crystal around its symmetry axis, continuously changing its orientation and thereby shaping it into the third dimension.

Eshelby twist

Crystal rotation in thin whiskers or nanowires due to a torque between their ends, induced by a screw dislocation (a linear lattice defect) along their symmetry axis.

Moiré potential

A periodic modulation of the local potential by a moiré pattern, notably the twist moiré in twisted van der Waals stacks.

Dirac cones

Cone-shaped, linearly dispersing low-energy valence and conduction bands that meet at a single point at/near the Fermi level, found in graphene and related materials.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellanos-Gomez, A., Duan, X., Fei, Z. et al. Van der Waals heterostructures. Nat Rev Methods Primers 2, 58 (2022). https://doi.org/10.1038/s43586-022-00139-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-022-00139-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing