Abstract
The integration of dissimilar materials into heterostructures has become a powerful tool for engineering interfaces and electronic structure. The advent of 2D materials has provided unprecedented opportunities for novel heterostructures in the form of van der Waals stacks, laterally stitched 2D layers and more complex layered and 3D architectures. This Primer provides an overview of state-of-the-art methodologies for producing such van der Waals heterostructures, focusing on the two fundamentally different strategies, top-down deterministic assembly and bottom-up synthesis. Successful techniques, advantages and limitations are discussed for both approaches. As important as the fabrication itself is the characterization of the resulting engineered materials, for which a range of analysis techniques covering structure, composition and emerging functionality are highlighted. Examples of the properties of artificial van der Waals structures include optoelectronics and plasmonics, twistronics and unique functionality arising from the generalization of van der Waals assembly from 2D to 3D crystalline components. Finally, current issues of reproducibility, limitations and opportunities for future breakthroughs in terms of enhanced homogeneity, interfacial purity, feature control and ultimately orders-of-magnitude increased complexity of van der Waals heterostructures are discussed.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photon. 10, 307–311 (2016).
Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).
Nakamura, S., Mukai, T. & Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994).
Jae-Sung, R. et al. SiGe heterojunction bipolar transistors and circuits toward terahertz communication applications. IEEE Trans. Microw. Theory Tech. 52, 2390–2408 (2004).
Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).
Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).
Fox, M. & Ispasoiu, R. in Springer Handbook Of Electronic And Photonic Materials (eds Safa, K. & Peter, C.) 1021–1040 (Springer, 2007).
Pohl, U. W. Epitaxy Of Semiconductors: Introduction To Physical Principles (Springer, 2013).
Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S. & Robinson, I. K. GexSi1−x/Si strained-layer superlattice grown by molecular beam epitaxy. J. Vac. Sci. Technol. A 2, 436–440 (1984).
Mo, Y. W., Savage, D. E., Swartzentruber, B. S. & Lagally, M. G. Kinetic pathway in Stranski–Krastanov growth of Ge on Si(001). Phys. Rev. Lett. 65, 1020–1023 (1990).
Hull, R. & Bean, J. C. Nucleation of misfit dislocations in strained-layer epitaxy in the GexSi1−x/Si system. J. Vac. Sci. Technol. A 7, 2580–2585 (1989).
Koma, A. Van der Waals epitaxy — a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216, 72–76 (1992).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). The first report of the exfoliation of single-layer graphene using adhesive tape.
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
Bistritzer, R. & MacDonald, A. H. Moire bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012).
Sutter, P., Cortes, R., Lahiri, J. & Sutter, E. Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett. 12, 4869–4874 (2012).
Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). First demonstration of a transistor from a monolayer semiconductor (MoS2), prepared by mechanical exfoliation from a layered bulk crystal.
Zhao, W. J. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013).
Meng, L. et al. Buckled silicene formation on Ir(111). Nano Lett. 13, 685–690 (2013).
Hao, Y. F. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 11, 426–431 (2016).
Sutter, P. W., Flege, J. I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 7, 406–411 (2008).
Chang, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 37, 2108017 (2021).
Huang, Y. et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9, 10612–10620 (2015). This paper reports an oxygen plasma enhanced exfoliation method, which can produce large-area 2D crystals including graphene and the high-temperature superconductor bismuth strontium calcium copper oxide (Bi-2212).
Huang, Y. et al. Raman spectral band oscillations in large graphene bubbles. Phys. Rev. Lett. 120, 186104 (2018).
Magda, G. Z. et al. Exfoliation of large-area transition metal chalcogenide single layers. Sci. Rep. 5, 14714 (2015).
Desai, S. B. et al. Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv. Mater. 28, 4053–4058 (2016).
Velicky, M. et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 12, 10463–10472 (2018).
Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).
Huang, Y. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020). This paper introduces a universal mechanical exfoliation technology for large-area 2D crystals that uses Au films to enhance the interfacial interaction between a 2D material and a substrate.
Huang, Y. et al. An efficient route to prepare suspended monolayer for feasible optical and electronic characterizations of two-dimensional materials. InfoMat 4, e12274 (2022).
Liu, F. et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367, 903–906 (2020).
Frisenda, R. et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53–68 (2018). This tutorial review reports all the details of deterministic transfer methods; the information is compiled and shared in a pedagogical way and differences, advantages and challenges of the different deterministic transfer methods are presented.
Zhao, Q., Wang, T., Ryu, Y. K., Frisenda, R. & Castellanos-Gomez, A. An inexpensive system for the deterministic transfer of 2D materials. J. Phys. Mater. 3, 016001 (2020).
Gant, P. et al. A system for the deterministic transfer of 2D materials under inert environmental conditions. 2D Mater. 7, 025034 (2020).
Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).
Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Quantum Hall effect and Landau-level crossing of Dirac fermions in trilayer graphene. Nat. Phys. 7, 621–625 (2011).
Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014). This work presents an all-dry alternative to the wet-based deterministic transfer methods reported up until then, including all the technical details required to allow other laboratories to easily replicate the technique, information that was somewhat missing in the articles reporting other deterministic transfer methods.
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).
Sutter, P., Huang, Y. & Sutter, E. Nanoscale integration of two-dimensional materials by lateral heteroepitaxy. Nano Lett. 14, 4846–4851 (2014).
Lee, J. et al. Direct epitaxial synthesis of selective two-dimensional lateral heterostructures. ACS Nano 13, 13047–13055 (2019).
Gong, Y. J. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15, 6135–6141 (2015).
Sahoo, P. K., Memaran, S., Xin, Y., Balicas, L. & Gutierrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63–67 (2018). This paper introduces the water-assisted one-pot CVD method for growth of 2D multi-junction heterostructures.
Sahoo, P. K. et al. Bilayer lateral heterostructures of transition-metal dichalcogenides and their optoelectronic response. ACS Nano 13, 12372–12384 (2019).
Gong, Y. J. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).
Huang, C. M. et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).
Duan, X. D. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).
Li, M. Y. et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015).
Xie, S. E. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1135 (2018). This paper describes the modulated metal–organic CVD approach for producing 2D lateral superlattices.
Zhang, Z. W. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017). This paper introduces the multistep CVD approach for lateral 2D heterostructures with reverse flow capability for better control of sample quality.
Mahjouri-Samani, M. et al. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nat. Commun. 6, 7749 (2015).
Taghinejad, H. et al. Synthetic engineering of morphology and electronic band gap in lateral heterostructures of monolayer transition metal dichalcogenides. ACS Nano 14, 6323–6330 (2020).
Li, H. N. et al. Laterally stitched heterostructures of transition metal dichalcogenide: chemical vapor deposition growth on lithographically patterned area. ACS Nano 10, 10516–10523 (2016).
Afaneh, T., Sahoo, P. K., Nobrega, I. A. P., Xin, Y. & Gutierrez, H. R. Laser-assisted chemical modification of monolayer transition metal dichalcogenides. Adv. Funct. Mater. 28, 1802949 (2018).
Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).
Sun, L. et al. Chemical vapour deposition. Nat. Rev. Methods Primers 1, 5 (2021). This review describes the basics of the CVD technique, its different components and procedures, as well as materials characterization techniques.
Li, H. L. et al. Lateral growth of composition graded atomic layer MoS2(1-x)Se2x nanosheets. J. Am. Chem. Soc. 137, 5284–5287 (2015).
Wu, X. P. et al. Spatially composition-modulated two-dimensional WS2xSe2(1-x) nanosheets. Nanoscale 9, 4707–4712 (2017).
Yu, H. et al. Spatially graded millimeter sized Mo1-xWxS2 monolayer alloys: synthesis and memory effect. ACS Appl. Mater. Interf. 13, 44693–44702 (2021).
Nugera, F. A. et al. Bandgap engineering in 2D lateral heterostructures of transition metal dichalcogenides via controlled alloying. Small 18, 2106600 (2022).
Yang, T. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8, 1906 (2017).
Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020). This work reports the scalable synthesis of 2D van der Waals heterostructure arrays on existing 2D semiconductors.
Bergeron, H., Lebedev, D. & Hersam, M. C. Polymorphism in post-dichalcogenide two-dimensional materials. Chem. Rev. 121, 2713–2775 (2021).
Huang, Y. et al. Tin disulfide — an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics. ACS Nano 8, 10743–10755 (2014).
Yu, J. et al. Monodisperse SnS2 nanosheets for high-performance photocatalytic hydrogen generation. ACS Appl. Mater. Interf. 6, 22370–22377 (2014).
Tian, Z., Guo, C., Zhao, M., Li, R. & Xue, J. Two-dimensional SnS: a phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano 11, 2219–2226 (2017).
Luan, Y. et al. Imaging anisotropic waveguide exciton polaritons in tin sulfide. Nano Lett. 22, 1497–1503 (2022).
Lin, S. et al. Accessing valley degree of freedom in bulk Tin(II) sulfide at room temperature. Nat. Commun. 9, 1455 (2018).
Higashitarumizu, N. et al. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun. 11, 2428 (2020).
Sutter, P., Komsa, H. P., Lu, H., Gruverman, A. & Sutter, E. Few-layer tin sulfide (SnS): controlled synthesis, thickness dependent vibrational properties, and ferroelectricity. Nano Today 37, 101082 (2021).
Sutter, E. et al. Electron-beam induced transformations of layered tin dichalcogenides. Nano Lett. 16, 4410–4416 (2016).
Sutter, P., Wang, J. & Sutter, E. Wrap-around core–shell heterostructures of layered crystals. Adv. Mater. 31, 1902166 (2019). This paper introduces a new type of van der Waals heterostructure with promising light harvesting properties, opening up van der Waals architectures beyond the archetypal vertical stacks and laterally stitched 2D layers.
Sutter, P. & Sutter, E. Growth mechanisms of anisotropic layered group IV chalcogenides on van der Waals substrates for energy conversion applications. ACS Appl. Nano Mater. 1, 3026–3034 (2018).
Sutter, E., Wang, J. & Sutter, P. Surface passivation by excess sulfur for controlled synthesis of large, thin SnS flakes. Chem. Mater. 32, 8034–8042 (2020).
Sutter, E., Wang, J. & Sutter, P. Nanoparticle-templated thickness controlled growth, thermal stability, and decomposition of ultrathin tin sulfide plates. Chem. Mater. 31, 2563–2570 (2019).
Sutter, E., Wang, J. & Sutter, P. Lateral heterostructures of multilayer GeS and SnS van der Waals crystals. ACS Nano 14, 12248–12255 (2020).
Sutter, E., Unocic, R. R., Idrobo, J.-C. & Sutter, P. Multilayer lateral heterostructures of van der Waals crystals with sharp, carrier–transparent interfaces. Adv. Sci. 9, 2103830 (2022).
Sutter, P., Khorashad, L. K., Argyropoulos, C. & Sutter, E. Cathodoluminescence of ultrathin twisted Ge1–xSnxS van der Waals nanoribbon waveguides. Adv. Mater. 33, 2006649 (2021). This paper discusses synthetic ultrathin 3D-shaped van der Waals nanoribbon waveguides and explains the coherent electron-beam excitation of photonic modes in such waveguides.
Molina-Mendoza, A. J. et al. Franckeite as a naturally occurring van der Waals heterostructure. Nat. Commun. 8, 14409 (2017).
Velický, M. et al. Exfoliation of natural van der Waals heterostructures to a single unit cell thickness. Nat. Commun. 8, 14410 (2017).
Ray, K. et al. Photoresponse of natural van der Waals heterostructures. ACS Nano 11, 6024–6030 (2017).
Niu, Y. et al. Mechanical and liquid phase exfoliation of cylindrite: a natural van der Waals superlattice with intrinsic magnetic interactions. 2D Mater. 6, 035023 (2019).
Dasgupta, A., Yang, X. & Gao, J. Naturally occurring van der Waals heterostructure lengenbachite with strong in-plane structural and optical anisotropy. npj 2D Mater. Appl. 5, 88 (2021).
Frisenda, R., Niu, Y., Gant, P., Muñoz, M. & Castellanos-Gomez, A. Naturally occurring van der Waals materials. npj 2D Mater. Appl. 4, 38 (2020).
Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014).
Yeh, P.-C. et al. Direct measurement of the tunable electronic structure of bilayer MoS2 by interlayer twist. Nano Lett. 16, 953–959 (2016).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). This paper reports the first experimental observation of gate-tuneable electron correlation effects due to flat bands in magic angle twisted bilayer graphene.
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).
Peymanirad, F. et al. Thermal activated rotation of graphene flake on graphene. 2D Mater. 4, 025015 (2017).
Sun, L. et al. Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nat. Commun. 12, 2391 (2021).
Zhao, Y. et al. Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces. Science 370, 442–445 (2020). This work demonstrates control over interlayer twist in dislocated growth spirals of TMDs synthesized on non-planar substrates.
Sutter, P., Ibragimova, R., Komsa, H.-P., Parkinson, B. A. & Sutter, E. Self-organized twist-heterostructures via aligned van der Waals epitaxy and solid-state transformations. Nat. Commun. 10, 5528 (2019).
Eshelby, J. D. Screw dislocations in thin rods. J. Appl. Phys. 24, 176–179 (1953).
Sutter, P., Wimer, S. & Sutter, E. Chiral twisted van der Waals nanowires. Nature 570, 354–357 (2019). This study shows that Eshelby twist in van der Waals nanowires gives rise to precisely tuneable interlayer twist and demonstrates modulated optoelectronic properties due to changing interlayer moiré registries in single nanowires.
Sutter, E. & Sutter, P. Ultrathin twisted germanium sulfide van der Waals nanowires by bismuth catalyzed vapor–liquid–solid growth. Small 17, 2104784 (2021).
Sutter, P., Idrobo, J.-C. & Sutter, E. Van der Waals nanowires with continuously variable interlayer twist and twist homojunctions. Adv. Funct. Mater. 31, 2006412 (2021).
Roddaro, S., Pingue, P., Piazza, V., Pellegrini, V. & Beltram, F. The optical visibility of graphene: interference colors of ultrathin graphite on SiO2. Nano Lett. 7, 2707–2710 (2007).
Jung, I. et al. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7, 3569–3575 (2007).
Ni, Z. H. et al. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758–2763 (2007).
Bian, K. et al. Scanning probe microscopy. Nat. Rev. Methods Primers 1, 36 (2021).
Wang, Z.-J. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9, 1506–1519 (2015).
Sang, X. et al. In situ edge engineering in two-dimensional transition metal dichalcogenides. Nat. Commun. 9, 2051 (2018).
Sutter, P. & Sutter, E. Microscopy of graphene growth, processing, and properties. Adv. Funct. Mater. 23, 2617–2634 (2013).
Sutter, P., Albrecht, P., Tong, X. & Sutter, E. Mechanical decoupling of graphene from Ru(0001) by interfacial reaction with oxygen. J. Phys. Chem. C 117, 6320–6324 (2013).
Sutter, P., Hybertsen, M. S., Sadowski, J. T. & Sutter, E. Electronic structure of few-layer epitaxial graphene on Ru(0001). Nano Lett. 9, 2654–2660 (2009).
Jin, W. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 106801 (2013).
Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).
Iranzo, D. A. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).
Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).
Sahoo, P. K. et al. Probing nano-heterogeneity and aging effects in lateral 2D heterostructures using tip-enhanced photoluminescence. Opt. Mater. Express 9, 1620–1631 (2019).
Sutter, E., Zhang, B., Sun, M. & Sutter, P. Few-layer to multilayer germanium(II) sulfide: synthesis, structure, stability, and optoelectronics. ACS Nano 13, 9352–9362 (2019).
Sutter, P., Argyropoulos, C. & Sutter, E. Germanium sulfide nano-optics probed by STEM-cathodoluminescence spectroscopy. Nano Lett. 18, 4576–4583 (2018).
Sutter, E., French, J. S., Sutter, S., Idrobo, J. C. & Sutter, P. Vapor–liquid–solid growth and optoelectronics of gallium sulfide van der Waals nanowires. ACS Nano 14, 6117–6126 (2020).
Sutter, P., French, J. S., Khosravi Khorashad, L., Argyropoulos, C. & Sutter, E. Optoelectronics and nanophotonics of vapor–liquid–solid grown GaSe van der Waals nanoribbons. Nano Lett. 21, 4335–4342 (2021).
Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).
Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).
Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014).
Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).
Zhang, N. et al. Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett. 18, 7651–7657 (2018).
Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).
Kunstmann, J. et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 14, 801–805 (2018).
Tran, K. et al. Evidence for moire excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).
Seyler, K. L. et al. Signatures of moire-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).
Alexeev, E. M. et al. Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures. Nature 572, 81–86 (2019).
Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).
Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).
Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).
Bandurin, D. A. et al. Resonant terahertz detection using graphene plasmons. Nat. Commun. 9, 5392 (2018).
Ni, G. X. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).
Hu, F. et al. Tailored plasmons in pentacene/graphene heterostructures with interlayer electron transfer. Nano Lett. 19, 6058–6064 (2019).
Rizzo, D. J. et al. Charge-transfer plasmon polaritons at graphene/α-RuCl3 interfaces. Nano Lett. 20, 8438–8445 (2020).
Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017).
Lee, I.-H., Yoo, D., Avouris, P., Low, T. & Oh, S.-H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313–319 (2019).
Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).
Wang, P. & Duan, X. Probing and pushing the limit of emerging electronic materials via van der Waals integration. MRS Bull. 46, 534–546 (2021).
Cheng, R. et al. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl Acad. Sci. USA 109, 11588–11592 (2012).
Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018). This study generalizes van der Waals integration of 3D metal thin-film electrodes with 2D semiconductors to create nearly ideal metal–semiconductor junctions.
Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).
Liao, L. et al. High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc. Natl Acad. Sci. USA 107, 6711–6715 (2010). This study first demonstrates damage-free 2D semiconductor–dielectric van der Waals integration with pristine interfaces and retained electronic performance.
Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).
Liao, L. et al. High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Adv. Mater. 22, 1941–1945 (2010).
Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014).
Lee, S.-J. et al. Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nat. Electron. 3, 630–637 (2020).
Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304 (2014).
Chen, P. et al. Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. Nature 599, 404–410 (2021).
Haick, H., Ambrico, M., Ghabboun, J., Ligonzo, T. & Cahen, D. Contacting organic molecules by metal evaporation. Phys. Chem. Chem. Phys. 6, 4538–4541 (2004).
Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).
Liu, Y. et al. van der Waals integrated devices based on nanomembranes of 3D materials. Nano Lett. 20, 1410–1416 (2020).
Sutter, P., Zahl, P. & Sutter, E. Continuous formation and faceting of SiGe islands on Si(100). Appl. Phys. Lett. 82, 3454–3456 (2003).
Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).
Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).
Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moire superlattices. Nature 497, 598–602 (2013).
Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).
Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).
Yang, W. et al. Hofstadter butterfly and many-body effects in epitaxial graphene superlattice. Nano Lett. 16, 2387–2392 (2016).
Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).
Wang, L. et al. Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science 350, 1231–1234 (2015).
Wang, D. M. et al. Thermally induced graphene rotation on hexagonal boron nitride. Phys Rev. Lett. 116, 126101 (2016).
Woods, C. R. et al. Macroscopic self-reorientation of interacting two-dimensional crystals. Nat. Commun. 7, 10800 (2016).
Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).
Liu, X. M. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).
Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215 (2020).
Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).
He, M. H. et al. Symmetry breaking in twisted double bilayer graphene. Nat. Phys. 17, 26–30 (2021).
Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).
Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moire superlattices. Nature 579, 359–363 (2020).
Tang, Y. H. et al. Simulation of Hubbard model physics in WSe2/WS2 moire superlattices. Nature 579, 353–358 (2020).
Jin, C. H. et al. Observation of moire excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).
Xian, L. D., Kennes, D. M., Tancogne-Dejean, N., Altarelli, M. & Rubio, A. Multiflat bands and strong correlations in twisted bilayer boron nitride: doping-induced correlated insulator and superconductor. Nano Lett. 19, 4934–4940 (2019).
Kennes, D. M., Xian, L., Claassen, M. & Rubio, A. One-dimensional flat bands in twisted bilayer germanium selenide. Nat. Commun. 11, 1124 (2020).
Kennes, D. M. et al. Moire heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).
Masubuchi, S. et al. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 9, 1413 (2018).
Frisenda, R. & Castellanos-Gomez, A. Robotic assembly of artificial nanomaterials. Nat. Nanotechnol. 13, 441–442 (2018).
Tang, L., Tan, J., Nong, H., Liu, B. & Cheng, H.-M. Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. Acc. Mater. Res. 2, 36–47 (2021).
Tang, L. et al. Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides. ACS Nano 14, 4646–4653 (2020).
Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014).
Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).
Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).
Mannix, A. J. et al. Robotic four-dimensional pixel assembly of van der Waals solids. Nat. Nanotechnol. 17, 361–366 (2022).
Zhang, Y. et al. Edge-epitaxial growth of 2D NbS2-WS2 lateral metal-semiconductor heterostructures. Adv. Mater. 30, 1803665 (2018).
Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).
Van der Donck, M. et al. Three-dimensional electron-hole superfluidity in a superlattice close to room temperature. Phys. Rev. B 102, 060503 (2020).
Ren, H., Wan, Z. & Duan, X. Van der Waals superlattices. Natl Sci. Rev. 9, nwab166 (2021).
Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021). This study first demonstrates a series of high-order van der Waals superlattices that are difficult to achieve using exfoliation and restacking approaches.
Lin, Z. et al. High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. Chem 7, 1887–1902 (2021).
Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).
Cui, C., Xue, F., Hu, W.-J. & Li, L.-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2, 18 (2018).
Hossain, M. et al. Recent advances in two-dimensional materials with charge density waves: synthesis, characterization and applications. Crystals 7, 298 (2017).
Zomer, P. J., Dash, S. P., Tombros, N. & Wees, B. J. V. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011).
Schneider, G. F., Calado, V. E., Zandbergen, H., Vandersypen, L. M. K. & Dekker, C. Wedging transfer of nanostructures. Nano Lett. 10, 1912–1916 (2010).
Yang, R., Zheng, X., Wang, Z., Miller, C. J. & Feng, P. X.-L. Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing. J. Vac. Sci. Technol. B 32, 061203 (2014).
Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & Wees, B. J. V. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).
Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).
Son, S. et al. Strongly adhesive dry transfer technique for van der Waals heterostructure. 2D Mater. 7, 041005 (2020).
Acknowledgements
P.S. and E.S. acknowledge support from the National Science Foundation, Division of Materials Research, Solid State and Materials Chemistry Program under grant number DMR-1607795 (twisted nanowire synthesis and diffraction analysis), the Department of the Navy, Office of Naval Research under ONR award number N00014-20-1-2305 (twisted nanowire optoelectronics), and the US Department of Energy, Office of Science, Basic Energy Sciences, under award number DE-SC0016343 (synthesis of twisted stacks, development of STEM-CL spectroscopy). J.Q. acknowledges financial support from the Agencia Estatal de Investigación of Spain (grant number PID2019-106820RB) and from Universidad Complutense de Madrid and the European Commission (MSCA COFUND UNA4CAREER project number 4129252). A.C.-G. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research And Innovation Program (grant agreement number 755655, ERC-StG 2017 project 2D-TOPSENSE), the EU FLAG-ERA project To2Dox (JTC-2019-009), the Comunidad de Madrid through the CAIRO-CM project (Y2020/NMT-6661) and the Spanish Ministry of Science and Innovation (grant number PID2020-118078RB-I00). Y.H. acknowledges support from the National Key Research and Development Program of China (grant numbers 2019YFA0308000 and 2018YFA0704201), the National Natural Science Foundation of China (NNSFC grant numbers 62022089 and 11874405), Chongqing Outstanding Youth Fund (grant number 2021ZX0400005) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (grant number XDB33000000). X.D. acknowledges financial support by the Office of Naval Research through grant number N00014-18-1-2707. H.R.G. acknowledges support from the National Science Foundation (grant number DMR-1557434). Z.F. is supported by the National Science Foundation (grant number DMR-1945560).
Author information
Authors and Affiliations
Contributions
Introduction (P.S.); Experimentation (A.C.-G., H.R.G., Y.H., X.H., J.Q., E.S. and P.S.); Results (H.R.G., E.S. and P.S.); Applications (A.C.-G., X.D., Z.F., Y.H., X.H., J.Q., Q.Q., E.S. and P.S.); Reproducibility and data deposition (A.C.-G., H.R.G., J.Q. and P.S.); Limitations and optimizations (A.C.-G., H.R.G., J.Q. and P.S.); Outlook (A.C.-G., X.D., H.R.G., J.Q., E.S. and P.S.).
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks Zhongfan Liu, Luzhao Sun, Hugen Yan and the other, anonymous, reviewer for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Quantum wells
-
Layer with locally reduced confining potential for electrons and/or holes, sandwiched between barrier layers with higher potential energy for the charge carriers.
- Epitaxial heterostructures
-
Integrated dissimilar 3D crystalline (non-layered) materials with the same or a similar crystal structure and low lattice mismatch, usually formed via crystal growth or deposition processes, where the crystal orientation of each subsequent component is dictated by the underlying lattice.
- Exfoliation
-
Isolation of a 2D or few-layer flake by peeling of one or more layers from a layered bulk crystal, often involving an adhesive tape whose interaction with the topmost layers of the crystal is stronger than the interlayer interaction.
- Micromechanical assembly
-
Process of stacking of 2D flakes, where the relative position and orientation is precisely controlled by suitable manipulators such as micrometre- or piezo stages.
- Spin-coated
-
A process for coating flat substrates with thin films, involving the application of a small drop of the liquid coating solution in the centre of the substrate followed by the uniform spreading of the material by spinning of the substrate at high rotation frequency.
- Axial twisting
-
Twisting of a ribbon-like 2D or layered crystal around its symmetry axis, continuously changing its orientation and thereby shaping it into the third dimension.
- Eshelby twist
-
Crystal rotation in thin whiskers or nanowires due to a torque between their ends, induced by a screw dislocation (a linear lattice defect) along their symmetry axis.
- Moiré potential
-
A periodic modulation of the local potential by a moiré pattern, notably the twist moiré in twisted van der Waals stacks.
- Dirac cones
-
Cone-shaped, linearly dispersing low-energy valence and conduction bands that meet at a single point at/near the Fermi level, found in graphene and related materials.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Castellanos-Gomez, A., Duan, X., Fei, Z. et al. Van der Waals heterostructures. Nat Rev Methods Primers 2, 58 (2022). https://doi.org/10.1038/s43586-022-00139-1
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-022-00139-1
This article is cited by
-
Facet-selective growth of halide perovskite/2D semiconductor van der Waals heterostructures for improved optical gain and lasing
Nature Communications (2024)
-
Superconducting tunnel junctions with layered superconductors
Quantum Frontiers (2024)
-
Deep learning in two-dimensional materials: Characterization, prediction, and design
Frontiers of Physics (2024)
-
Tunable lattice thermal conductivity of 2D MoSe2 via biaxial strain: a comparative study between the monolayer and bilayer
Applied Physics A (2024)
-
Progress and prospects of Moiré superlattices in twisted TMD heterostructures
Nano Research (2024)