Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Sustainable polymers

Abstract

Sustainable polymers are materials derived from renewable, recycled and waste carbon resources and their combinations, which at the end of life can be recycled, biodegraded or composted. Sustainable polymers also exhibit reduced environmental impact throughout their life cycle. This Primer presents an overview of the research in and potential of sustainable polymers, with a focus on their life cycle, synthetic routes from renewable carbon feedstocks, production, material characterization, applications, end of life, data reproducibility and limitations faced, and provides a brief outlook. The Primer also briefly covers other carbon feedstocks such as carbon dioxide and wastes, including agricultural and woody residues. Although still in their infancy, new sustainable polymers are already finding applications in packaging, automotive parts and 3D printing. This Primer also discusses the headwinds facing the adoption of sustainable polymers, including complexities of recycling and composting, manufacturing scale-up, data reproducibility, deposition and potential solutions. Development of sustainable polymers will accelerate the age of sustainable polymers and create a truly circular economy for plastics by reducing production and use of virgin plastics from finite resources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Life cycle of sustainable polymers.
Fig. 2: Synthesis of sustainable polymers from renewable feedstocks to bio-based polymers.
Fig. 3: Routes to some representative sustainable polymers synthesized from biomass feedstocks.
Fig. 4: End of life of sustainable polymers.
Fig. 5: Schematic of output properties and sustainability measurement.
Fig. 6: 3D printing of sustainable polymers and their applications.
Fig. 7: Successful commercial and emerging application examples of sustainable polymers.
Fig. 8: The future of sustainable polymers.

Similar content being viewed by others

References

  1. Schneiderman, D. K. & Hillmyer, M. A. 50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules 50, 3733–3749 (2017).

    Article  ADS  Google Scholar 

  2. Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016). This review article provides a comprehensive view of sustainable polymers synthesized from renewable feedstocks.

    Article  ADS  Google Scholar 

  3. Hong, M. & Chen, E. Y. X. Future directions for sustainable polymers. Trends Chem. 1, 148–151 (2019).

    Article  Google Scholar 

  4. United Nations Conference on Trade and Development. Circular economy (UNCTAD, 2022).

  5. Gibb, B. C. Plastics are forever. Nat. Chem. 11, 394–395 (2019).

    Article  Google Scholar 

  6. Pabortsava, K. & Lampitt, R. S. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat. Commun. 11, 4073 (2020).

    Article  ADS  Google Scholar 

  7. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  ADS  Google Scholar 

  8. Peng, Y., Wu, P., Schartup, A. T. & Zhang, Y. Plastic waste release caused by COVID-19 and its fate in the global ocean. Proc. Natl Acad. Sci. USA 118, e2111530118 (2021). This article quantifies the impact of the COVID-19 pandemic on the plastic waste generation.

    Article  Google Scholar 

  9. Eagan, J. M. et al. Combining polyethylene and polypropylene: enhanced performance with PE/iPP multiblock polymers. Science 355, 814–816 (2017). This article discusses using a copolymer designed to function as a compatibilizer to mechanically recycle mixed PE and PP waste.

    Article  ADS  Google Scholar 

  10. Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021). This article demonstrates bio-based and closed-loop recycling plastics with performance comparable with PE.

    Article  ADS  Google Scholar 

  11. Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    Article  ADS  Google Scholar 

  12. Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    Article  ADS  Google Scholar 

  13. Abd-El-Aziz, A. S. et al. The next 100 years of polymer science. Macromol. Chem. Phys. 221, 2000216 (2020).

    Article  Google Scholar 

  14. Giaveri, S. et al. Nature-inspired circular-economy recycling for proteins: proof of concept. Adv. Mater. 33, 2104581 (2021). This article presents nature’s approach to recycling proteins.

    Article  Google Scholar 

  15. Miller, S. A. Sustainable polymers: opportunities for the next decade. ACS Macro Lett. 2, 550–554 (2013).

    Article  Google Scholar 

  16. Wang, Z., Ganewatta, M. S. & Tang, C. Sustainable polymers from biomass: bridging chemistry with materials and processing. Prog. Polym. Sci. 101, 101197 (2020).

    Article  Google Scholar 

  17. Cywar, R. M., Rorrer, N. A., Hoyt, C. B., Beckham, G. T. & Chen, E. Y. X. Bio-based polymers with performance-advantaged properties. Nat. Rev. Mater. 7, 83–103 (2021).

    Article  ADS  Google Scholar 

  18. Law, K. L. & Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat. Rev. Mater. 7, 104–116 (2022).

    Article  ADS  Google Scholar 

  19. Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 1–11 (2017).

    Article  Google Scholar 

  20. Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  ADS  Google Scholar 

  21. Kakadellis, S. & Rosetto, G. Achieving a circular bioeconomy for plastics. Science 373, 49–50 (2021).

    Article  ADS  Google Scholar 

  22. Dodds, D. R. & Gross, R. A. Chemicals from biomass. Science 318, 1250–1251 (2007).

    Article  Google Scholar 

  23. Kamada, A. et al. Controlled self-assembly of plant proteins into high-performance multifunctional nanostructured films. Nat. Commun. 12, 3529 (2021).

    Article  ADS  Google Scholar 

  24. Osswald, T. A. & García-Rodríguez, S. in A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications (eds Sharma, S. K. and Mudhoo, A.) 1–21 (Royal Society of Chemistry, 2011).

  25. Mülhaupt, R. Green polymer chemistry and bio-based plastics: dreams and reality. Macromol. Chem. Phys. 214, 159–174 (2013).

    Article  Google Scholar 

  26. Hernández, N., Williams, R. C. & Cochran, E. W. The battle for the “green” polymer. Different approaches for biopolymer synthesis: bioadvantaged vs. bioreplacement. Org. Biomol. Chem. 12, 2834–2849 (2014).

    Article  Google Scholar 

  27. Papageorgiou, G. Z. Thinking green: sustainable polymers from renewable resources. Polymers 10, E952 (2018).

    Article  Google Scholar 

  28. Vert, M. et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 84, 377–410 (2012).

    Article  Google Scholar 

  29. Mathuriya, A. S., Yakhmi, J., Martínez, L., Kharissova, O. & Kharisov, B. in Handbook of Ecomaterials (eds Martínez, L. M. T., Kharissova, O. V. & Kharisov, B. I.) 1–29 (Springer, 2017).

  30. RameshKumar, S., Shaiju, P. & O’Connor, K. E. Bio-based and biodegradable polymers — state-of-the-art, challenges and emerging trends. Curr. Opin. Green Sust. Chem. 21, 75–81 (2020).

    Google Scholar 

  31. Watkins, E. et al. Policy approaches to incentivise sustainable plastic design (OECD, 2019).

  32. Dornburg, V., Lewandowski, I. & Patel, M. Comparing the land requirements, energy savings, and greenhouse gas emissions reduction of bio-based polymers and bioenergy: an analysis and system extension of life-cycle assessment studies. J. Ind. Ecol. 7, 93–116 (2003).

    Article  Google Scholar 

  33. Talon, O. in Environmental Impact of Polymers (eds Hamaide, T., Deterre R. & Feller, J.-F.) 91–107 (Wiley, 2014).

  34. Shen, L., Worrell, E. & Patel, M. K. Environmental impact assessment of man-made cellulose fibres. Resour. Conserv. Recycl. 55, 260–274 (2010).

    Article  Google Scholar 

  35. Iji, M., Toyama, K. & Tanaka, S. Mechanical and other characteristics of cellulose ester bonded with modified cardanol from cashew nut shells and additional aliphatic and aromatic components. Cellulose 20, 559–569 (2013).

    Article  Google Scholar 

  36. Xie, F., Pollet, E., Halley, P. J. & Avérous, L. Starch-based nano-biocomposites. Prog. Polym. Sci. 38, 1590–1628 (2013).

    Article  Google Scholar 

  37. Yan, N. & Chen, X. Sustainability: don’t waste seafood waste. Nature 524, 155–157 (2015).

    Article  ADS  Google Scholar 

  38. Kumaraswamy et al. Engineered chitosan based nanomaterials: bioactivities, mechanisms and perspectives in plant protection and growth. Inter. J. Biol. Macromol. 113, 494–506 (2018).

    Article  Google Scholar 

  39. Morganti, P. & Coltelli, M.-B. A new carrier for advanced cosmeceuticals. Cosmetics 6, 10 (2019).

    Article  Google Scholar 

  40. Ahmed, S., Annu, Sheikh, J. & Ali, A. A review on chitosan centred scaffolds and their applications in tissue engineering. Int. J. Biol. Macromol. 116, 849–862 (2018).

    Article  Google Scholar 

  41. Kim, S. H. et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat. Commun. 9, 1620 (2018).

    Article  ADS  Google Scholar 

  42. Iwata, T. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew. Chem. Int. Ed. 54, 3210–3215 (2015).

    Article  Google Scholar 

  43. Xie, Y. et al. Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. Int. J. Biol. Macromol. 150, 480–491 (2020).

    Article  Google Scholar 

  44. Werpy, T. & Petersen, G. Top value added chemicals from biomass: volume I — Results of screening for potential candidates from sugars and synthesis gas (US Department of Energy, 2004).

  45. Bozell, J. J. & Petersen, G. R. Technology development for the production of bio-based products from biorefinery carbohydrates — the US Department of Energy’s “Top 10” revisited. Green Chem. 12, 539–554 (2010). This article reviews sugar platforms to produce bio-based plastics.

    Article  Google Scholar 

  46. Poveda-Giraldo, J. A., Solarte-Toro, J. C. & Cardona Alzate, C. A. The potential use of lignin as a platform product in biorefineries: a review. Renew. Sust. Energ. Rev. 138, 110688 (2021).

    Article  Google Scholar 

  47. Holladay, J., Bozell, J., White, J. & Johnson, D. Top value-added chemicals from biomass: volume II — Results of screening for potential candidates from biorefinery lignin (US Department of Energy, 2007).

  48. Montero de Espinosa, L. & Meier, M. A. R. Plant oils: the perfect renewable resource for polymer science?! Eur. Polym. J. 47, 837–852 (2011).

    Article  Google Scholar 

  49. Sehlinger, A., Dannecker, P.-K., Kreye, O. & Meier, M. A. R. Diversely substituted polyamides: macromolecular design using the Ugi four-component reaction. Macromolecules 47, 2774 (2014).

    Article  ADS  Google Scholar 

  50. Grignard, B., Gennen, S., Jérôme, C., Kleij, A. W. & Detrembleur, C. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers. Chem. Soc. Rev. 48, 4466–4514 (2019). This review article provides a comprehensive discussion of the CO2 platform to produce bio-based plastics.

    Article  Google Scholar 

  51. E4tech, RE-CORD and WUR. From the sugar platform to biofuels and biochemicals: final report for the European Commission Directorate-General Energy (E4tech, 2015).

  52. Abhilash, M. & Thomas, D. in Biopolymer Composites in Electronics (eds Sadasivuni, K. K. et al.) 405–435 (Elsevier, 2017).

  53. Costa, C. A. E. D. Vanillin and Syringaldehyde from Side Streams of Pulp and Paper Industries and Biorefineries. Thesis, Univ. of Porto (2017).

  54. Sternberg, J., Sequerth, O. & Pilla, S. Green chemistry design in polymers derived from lignin: review and perspective. Prog. Polym. Sci. 113, 101344 (2021).

    Article  Google Scholar 

  55. Nguyen, H. T. H., Qi, P., Rostagno, M., Feteha, A. & Miller, S. A. The quest for high glass transition temperature bioplastics. J. Mater. Chem. A 6, 9298–9331 (2018).

    Article  Google Scholar 

  56. Fadlallah, S., Sinha Roy, P., Garnier, G., Saito, K. & Allais, F. Are lignin-derived monomers and polymers truly sustainable? An in-depth green metrics calculations approach. Green Chem. 23, 1495–1535 (2021).

    Article  Google Scholar 

  57. Talebi Amiri, M., Dick, G. R., Questell-Santiago, Y. M. & Luterbacher, J. S. Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin. Nat. Protoc. 14, 921–954 (2019).

    Article  Google Scholar 

  58. Parsell, T. et al. A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chem. 17, 1492–1499 (2015).

    Article  Google Scholar 

  59. Van den Bosch, S. et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ. Sci. 8, 1748–1763 (2015).

    Article  Google Scholar 

  60. Shuai, L. et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354, 329–333 (2016). This article presents a stratagem to produce a high yield of lignin monomer from biomass depolymerization via formaldehyde stabilization.

    Article  ADS  Google Scholar 

  61. Gong, R. et al. Terminal hydrophilicity-induced dispersion of cationic waterborne polyurethane from CO2-based polyol. Macromolecules 53, 6322–6330 (2020).

    Article  ADS  Google Scholar 

  62. Ye, S., Wang, S., Lin, L., Xiao, M. & Meng, Y. CO2 derived biodegradable polycarbonates: synthesis, modification and applications. Adv. Ind. Eng. Polym. Res. 2, 143–160 (2019).

    Google Scholar 

  63. Winnacker, M. Pinenes: abundant and renewable building blocks for a variety of sustainable polymers. Angew. Chem. Int. Ed. 57, 14362–14371 (2018).

    Article  Google Scholar 

  64. Williams, C. K. & Gregory, G. L. High-performance plastic made from renewable oils is chemically recyclable by design. Nature 590, 391–392 (2021).

    Article  ADS  Google Scholar 

  65. Fried, J. R. Polymer Science and Technology 3rd edn (Pearson Education, 2014).

  66. Chavan, S., Yadav, B., Tyagi, R. & Drogui, P. A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks. Bioresour. Technol. 341, 125900 (2021).

    Article  Google Scholar 

  67. Chung, H. et al. Bio-based production of monomers and polymers by metabolically engineered microorganisms. Curr. Opin. Biotech. 36, 73–84 (2015).

    Article  Google Scholar 

  68. Zhang, X. et al. Ugi reaction of natural amino acids: a general route toward facile synthesis of polypeptoids for bioapplications. ACS Macro Lett. 5, 1049–1054 (2016).

    Article  Google Scholar 

  69. Bauri, K., Nandi, M. & De, P. Amino acid-derived stimuli-responsive polymers and their applications. Polym. Chem. 9, 1257–1287 (2018).

    Article  Google Scholar 

  70. Lu, H. & Cheng, J. Hexamethyldisilazane-mediated controlled polymerization of α-amino acid N-carboxyanhydrides. J. Am. Chem. Soc. 129, 14114–14115 (2007).

    Article  Google Scholar 

  71. Sheldon, R. A. Metrics of green chemistry and sustainability: past, present, and future. ACS Sustain Chem. Eng. 6, 32–48 (2018).

    Article  Google Scholar 

  72. Trost, B. M. The atom economy — a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  ADS  Google Scholar 

  73. Romain, C. & Williams, C. K. Chemoselective polymerization control: from mixed-monomer feedstock to copolymers. Angew. Chem. Int. Ed. 53, 1607–1610 (2014).

    Article  Google Scholar 

  74. Li, M. et al. Tailor-made polyhydroxyalkanoates by reconstructing Pseudomonas entomophila. Adv. Mater. 33, 2102766 (2021). This research reports polymerization of a series of PHAs with 3HA ranging from 9 to 18 carbon atoms based on a high-performing bacterial platform.

    Article  Google Scholar 

  75. García, J. M. Catalyst: design challenges for the future of plastics recycling. Chem 1, 813–815 (2016). This review article summarizes the design challenge of catalysts for future plastic recycling.

    Article  Google Scholar 

  76. Dove, A. P. Organic catalysis for ring-opening polymerization. ACS Macro Lett. 1, 1409–1412 (2012).

    Article  Google Scholar 

  77. Fukushima, K. & Nozaki, K. Organocatalysis: a paradigm shift in the synthesis of aliphatic polyesters and polycarbonates. Macromolecules 53, 5018–5022 (2020).

    Article  ADS  Google Scholar 

  78. Zhang, X., Fevre, M., Jones, G. O. & Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 118, 839–885 (2018).

    Article  Google Scholar 

  79. Egorova, K. S. & Ananikov, V. P. Which metals are green for catalysis? Comparison of the toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au salts. Angew. Chem. Int. Ed. 55, 12150–12162 (2016).

    Article  Google Scholar 

  80. Idris, A. & Bukhari, A. Immobilized Candida antarctica lipase B: hydration, stripping off and application in ring opening polyester synthesis. Biotechnol. Adv. 30, 550–563 (2012).

    Article  Google Scholar 

  81. Fèvre, M., Pinaud, J., Gnanou, Y., Vignolle, J. & Taton, D. N-Heterocyclic carbenes (NHCs) as organocatalysts and structural components in metal-free polymer synthesis. Cheml Soc. Rev. 42, 2142–2172 (2013).

    Article  Google Scholar 

  82. Douka, A., Vouyiouka, S., Papaspyridi, L.-M. & Papaspyrides, C. D. A review on enzymatic polymerization to produce polycondensation polymers: the case of aliphatic polyesters, polyamides and polyesteramides. Prog. Polym. Sci. 79, 1–25 (2018).

    Article  Google Scholar 

  83. Liras, M., Verde-Sesto, E., Iglesias, M. & Sánchez, F. Synthesis of polyesters by an efficient heterogeneous phosphazene (P1)-porous polymeric aromatic framework catalyzed-ring opening pPolymerization of lactones. Eur. Polym. J. 95, 775–784 (2017).

    Article  Google Scholar 

  84. Cai, Q. et al. Catalyst-free synthesis of polyesters via conventional melt polycondensation. Mater. Today 51, 155–164 (2021). This research reports a method to polymerize polyester via a catalyst-free stratagem.

    Article  Google Scholar 

  85. Ellis, L. D. et al. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4, 539–556 (2021). This review provides an overview of chemical and biological catalysis for polymer recycling and upcycling.

    Article  Google Scholar 

  86. Bell, E. L. et al. Biocatalysis. Nat. Rev. Methods Primers 1, 46 (2021).

    Article  Google Scholar 

  87. Anastas, P. T. & Zimmerman, J. B. Design through the 12 principles of green engineering. Env. Sci. Technol. 37, 94A–101A (2003).

    Article  Google Scholar 

  88. Jessop, P. G., Trakhtenberg, S. & Warner, J. in Innovations in Industrial and Engineering Chemistry Vol. 1000 Ch. 12 401–436 (American Chemical Society, 2008)

  89. Zia, K. M., Akram, N., Tabasum, S., Noreen, A. & Akbar, M. U. in Processing Technology for Bio-Based Polymers (eds Zia, K. M. et al.) 151–189 (Elsevier, 2021).

  90. Beyer, G., and Christian H. Reactive Extrusion: Principles and Applications (Wiley, 2018).

  91. Raquez, J.-M., Narayan, R. & Dubois, P. Recent advances in reactive extrusion processing of biodegradable polymer-based compositions. Macromol. Mater. Eng. 293, 447–470 (2008).

    Article  Google Scholar 

  92. Xu, E. et al. Advances in conversion of natural biopolymers: a reactive extrusion (REX)–enzyme-combined strategy for starch/protein-based food processing. Trends Food Sci. Tech. 99, 167–180 (2020).

    Article  Google Scholar 

  93. Yang, X., Clénet, J., Xu, H., Odelius, K. & Hakkarainen, M. Two step extrusion process: from thermal recycling of PHB to plasticized PLA by reactive extrusion grafting of PHB degradation products onto PLA chains. Macromolecules 48, 2509–2518 (2015).

    Article  ADS  Google Scholar 

  94. Long, Y. et al. Retroreflection in binary bio-based PLA/PBF blends. Polymer 125, 138–143 (2017).

    Article  Google Scholar 

  95. Gao, Y. et al. Preparation and properties of novel thermoplastic vulcanizate based on bio-based polyester/polylactic acid, and its application in 3D printing. Polymers 9, 694 (2017).

    Article  Google Scholar 

  96. Yang, E. et al. Bio-based polymers for 3D printing of bioscaffolds. Polym. Rev. 58, 668–687 (2018).

    Article  Google Scholar 

  97. Rios, O. et al. 3D printing via ambient reactive extrusion. Mater. Today Commun. 15, 333–336 (2018).

    Article  Google Scholar 

  98. Gerbehaye, C., Bernaerts, K. V., Mincheva, R. & Raquez, J. M. Solid-state modification of poly(butylene terephthalate): design of process from calorimetric methods for catalyst investigation to reactive extrusion. Eur. Polym. J. 166, 111010 (2022). This article reports the solid-state polymerization of PBT copolymer with a bio-based monomer for the first time.

    Article  Google Scholar 

  99. Dubey, S. P. et al. Microwave energy assisted synthesis of poly lactic acid via continuous reactive extrusion: modelling of reaction kinetics. RSC Adv. 7, 18529–18538 (2017).

    Article  ADS  Google Scholar 

  100. Velmathi, S., Nagahata, R., Sugiyama, J.-i. & Takeuchi, K. A rapid eco-friendly synthesis of poly(butylene succinate) by a direct polyesterification under microwave irradiation. Macromol. Rapid Commun. 26, 1163–1167 (2005).

    Article  Google Scholar 

  101. Mohanty, A. K., Vivekanandhan, S., Pin, J.-M. & Misra, M. Composites from renewable and sustainable resources: challenges and innovations. Science 362, 536–542 (2018).

    Article  ADS  Google Scholar 

  102. Rahman, M. M. & Netravali, A. N. Advanced green composites using liquid crystalline cellulose fibers and waxy maize starch based resin. Compos. Sci. Technol. 162, 110–116 (2018).

    Article  Google Scholar 

  103. Rahman, M. M. & Netravali, A. N. High-performance green nanocomposites using aligned bacterial cellulose and soy protein. Compos. Sci. Technol. 146, 183–190 (2017).

    Article  Google Scholar 

  104. Yano, H. et al. Optically transparent composites reinforced with networks of bacterial nanofibers. Adv. Mater. 17, 153–155 (2005).

    Article  Google Scholar 

  105. Nakagaito, A. N., Ishikura, Y. & Takagi, H. in Advanced Green Composites (ed. Netravali, A. N.) 187–210 (Wiley, 2018).

  106. Stadler, B. M., Wulf, C., Werner, T., Tin, S. & de Vries, J. G. Catalytic approaches to monomers for polymers based on renewables. ACS Catal. 9, 8012–8067 (2019). This article summarizes various catalytic approaches used to produce sustainable polymers from select renewable building block platforms.

    Article  Google Scholar 

  107. Martin, R. T., Camargo, L. P. & Miller, S. A. Marine-degradable polylactic acid. Green Chem. 16, 1768–1773 (2014).

    Article  Google Scholar 

  108. Choi, D., Jang, D., Joh, H.-I., Reichmanis, E. & Lee, S. High performance graphitic carbon from waste polyethylene: thermal oxidation as a stabilization pathway revisited. Chem. Mater. 29, 9518–9527 (2017).

    Article  Google Scholar 

  109. Bäckström, E., Odelius, K. & Hakkarainen, M. Trash to treasure: microwave-assisted conversion of polyethylene to functional chemicals. Ind. Eng. Chem. Res. 56, 14814–14821 (2017).

    Article  Google Scholar 

  110. Tennakoon, A. et al. Catalytic upcycling of high-density polyethylene via a processive mechanism. Nat. Catal. 3, 893–901 (2020).

    Article  Google Scholar 

  111. Baur, M., Lin, F., Morgen, T. O., Odenwald, L. & Mecking, S. Polyethylene materials with in-chain ketones from nonalternating catalytic copolymerization. Science 374, 604–607 (2021). This article discusses introducing carbonyl groups into PE chains to promote the photodegradation of PE.

    Article  ADS  Google Scholar 

  112. Korley, L. T. J., Epps, T. H., Helms, B. A. & Ryan, A. J. Toward polymer upcycling — adding value and tackling circularity. Science 373, 66–69 (2021).

    Article  ADS  Google Scholar 

  113. Zhao, X. et al. Upcycling to sustainably reuse plastics. Adv. Mater. https://doi.org/10.1002/adma.202100843 (2021).

  114. Vogt, B. D., Stokes, K. K. & Kumar, S. K. Why is recycling of postconsumer plastics so challenging? ACS Appl. Polym. Mater. 3, 4325–4346 (2021). This review provides deep thinking on why recycling of post-consumer plastics is so challenging and provides pathways for chemical upcycling of mixed plastic wastes.

    Article  Google Scholar 

  115. Hopewell, J., Dvorak, R. & Kosior, E. Plastics recycling: challenges and opportunities. Phil. Trans. R. Soc. B 364, 2115–2126 (2009).

    Article  Google Scholar 

  116. European Bioplastics. Mechanical recycling (European Bioplastics, 2020).

  117. Schyns, Z. O. G. & Shaver, M. P. Mechanical recycling of packaging plastics: a review. Macromol. Rapid Commun. 42, 2000415 (2021). This review article provides a progressive summary of mechanical recycling of mainstream plastics.

    Article  Google Scholar 

  118. Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).

    Article  Google Scholar 

  119. Worch, J. C. & Dove, A. P. 100th Anniversary of macromolecular science viewpoint: toward catalytic chemical recycling of waste (and future) plastics. ACS Macro Lett. 9, 1494–1506 (2020).

    Article  Google Scholar 

  120. Diaz-Silvarrey, L. S., Zhang, K. & Phan, A. N. Monomer recovery through advanced pyrolysis of waste high density polyethylene (HDPE). Green Chem. 20, 1813–1823 (2018).

    Article  Google Scholar 

  121. Jehanno, C. & Sardon, H. Dynamic polymer network points the way to truly recyclable plastics. Nature 568, 467–468 (2019).

    Article  ADS  Google Scholar 

  122. Christensen, P. R., Scheuermann, A. M., Loeffler, K. E. & Helms, B. A. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 11, 442–448 (2019). This work polymerizes chemical recyclable poly(diketoenamine)s using dynamic covalent diketoenamine bonds.

    Article  Google Scholar 

  123. Hong, M. & Chen, E. Y.-X. Towards truly sustainable polymers: a metal-free recyclable polyester from biorenewable non-strained γ-butyrolactone. Angew. Chem. Int. Ed. 55, 4188–4193 (2016).

    Article  Google Scholar 

  124. Zhu, J. B., Watson, E. M., Tang, J. & Chen, Y. X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    Article  ADS  Google Scholar 

  125. Sathe, D. et al. Olefin metathesis-based chemically recyclable polymers enabled by fused-ring monomers. Nat. Chem. 13, 743–750 (2021). This article reports chemically recyclable polymers derived from trans-ring fusion γ-butyrolactone, which exhibit quantitative recyclability and useful material properties.

    Article  Google Scholar 

  126. Getzler, Y. Low strain, more gain. Nat. Chem. 13, 719–721 (2021).

    Article  Google Scholar 

  127. Abel, B. A., Snyder, R. L. & Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789 (2021).

    Article  ADS  Google Scholar 

  128. Kang, P., Yang, S., Bai, S. & Wang, Q. Novel application of mechanochemistry in waste epoxy recycling via solid-state shear milling. ACS Sustain. Chem. Eng. 9, 11778–11789 (2021).

    Article  Google Scholar 

  129. Cagnetta, G., Zhang, K., Zhang, Q., Huang, J. & Yu, G. Mechanochemical pre-treatment for viable recycling of plastic waste containing haloorganics. Waste Manag. 75, 181–186 (2018).

    Article  Google Scholar 

  130. Albertsson, A.-C. & Hakkarainen, M. Designed to degrade. Science 358, 872–873 (2017).

    Article  ADS  Google Scholar 

  131. Jiao, W. A., Chu, P. B., Hl, A., Pz, C. & Xl, A. The impact of microplastic–microbe interactions on animal health and biogeochemical cycles: a mini-review. Sci. Total. Env. 773, 145697 (2021).

    Article  Google Scholar 

  132. Narancic, T. et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Env. Sci. Technol. 52, 10441–10452 (2018).

    Article  Google Scholar 

  133. Zumstein, M. T. et al. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci. Adv. 4, eaas9024 (2018). This research article tracks the conversion of carbon into CO2 and biomass during soil biodegradation studies using 13C isotope labelling.

    Article  ADS  Google Scholar 

  134. DelRe, C. et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 592, 558–563 (2021). This article reports biodegradability of PLA and PCL in days via nano-dispersed enzyme design.

    Article  ADS  Google Scholar 

  135. Magnin, A. et al. Enzymatic recycling of thermoplastic polyurethanes: synergistic effect of an esterase and an amidase and recovery of building blocks. Waste Manag. 85, 141–150 (2019).

    Article  Google Scholar 

  136. Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    Article  ADS  Google Scholar 

  137. Leitner, W. Green Chemistry: Theory and Practice (Oxford Univ. Press, 1999).

  138. Kunioka, M., Masuda, T., Tachibana, Y., Funabashi, M. & Oishi, A. Highly selective synthesis of biomass-based 1,4-butanediol monomer by alcoholysis of 1,4-diacetoxybutane derived from furan. Polym. Degrad. Stab. 109, 393–397 (2014).

    Article  Google Scholar 

  139. Quarta, G., Calcagnile, L., Giffoni, M., Braione, E. & D’Elia, M. Determination of the bio-based content in plastics by radiocarbon. Radiocarbon 55, 1834–1844 (2016).

    Article  Google Scholar 

  140. Tachibana, Y., Masuda, T., Funabashi, M. & Kunioka, M. Chemical synthesis of fully biomass-based poly(butylene succinate) from inedible-biomass-based furfural and evaluation of its biomass carbon rRatio. Biomacromolecules 11, 2760–2765 (2010).

    Article  Google Scholar 

  141. Hajdas, I. et al. Radiocarbon dating. Nat. Rev. Methods Primers 1, 62 (2021).

    Article  Google Scholar 

  142. Norton, G. A. & Devlin, S. L. Determining the modern carbon content of bio-based products using radiocarbon analysis. Bioresour. Technol. 97, 2084–2090 (2006).

    Article  Google Scholar 

  143. Ruggero, F., Gori, R. & Lubello, C. Methodologies to assess biodegradation of bioplastics during aerobic composting and anaerobic digestion: a review. Waste Manag. Res. 37, 959–975 (2019).

    Article  Google Scholar 

  144. Kim, H., Choi, J., Park, J. & Won, W. Production of a sustainable and renewable biomass-derived monomer: conceptual process design and techno-economic analysis. Green Chem. 22, 7071–7079 (2020).

    Article  Google Scholar 

  145. Santos, J., Pham, A., Stasinopoulos, P. & Giustozzi, F. Recycling waste plastics in roads: a life-cycle assessment study using primary data. Sci. Total. Environ. 751, 141842 (2021).

    Article  ADS  Google Scholar 

  146. Iswara, A. P. et al. A comparative study of life cycle impact assessment using different software programs. IOP Conf. Series Earth Environ. Sci. 506, 012002 (2020).

    Article  Google Scholar 

  147. Lopes Silva, D. A. et al. Why using different life cycle assessment software tools can generate different results for the same product system? A cause–effect analysis of the problem. Sustain. Prod. Consum. 20, 304–315 (2019).

    Article  Google Scholar 

  148. Silva, D., Nunes, A. O., da Silva Moris, A., Moro, C. & Piekarski, T. O. R. in Proc. Int. Conf. Life Cycle Anal. Latin Am. (CILCA, 2017).

  149. Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374–378 (2019). This article compiles a data set covering ten conventional and five bio-based plastics and their life cycle greenhouse gas emissions under various mitigation strategies.

    Article  ADS  Google Scholar 

  150. Dusselier, M., Wouwe, P. V., Dewaele, A., Jacobs, P. A. & Sels, B. F. Shape-selective zeolite catalysis for bioplastics production. Science 349, 78–80 (2015).

    Article  ADS  Google Scholar 

  151. Gibson, W. & Patterson, J. P. Liquid phase electron microscopy provides opportunities in polymer synthesis and manufacturing. Macromolecules 54, 4986–4996 (2021).

    Article  ADS  Google Scholar 

  152. Pin, J. M., Misra, M. & Mohanty, A. K. Cross-linkable liquid-crystalline biopolyesteramide as a multifunctional polymeric platform designed from corn oil side-stream product of bioethanol industry. Macromol. Rapid Commun. 40, 1900093 (2019).

    Article  Google Scholar 

  153. [No authors listed] The future of plastic. Nat. Commun. 9, 2157 (2018).

    Article  ADS  Google Scholar 

  154. Ricciardi, F., Romanchick, W. A. & Joullié, M. M. Mechanism of imidazole catalysis in the curing of epoxy resins. J. Polym. Sci. 21, 1475–1490 (1983).

    Google Scholar 

  155. Fortman, D. J. et al. Approaches to sustainable and continually recyclable cross-linked polymers. ACS Sustain. Chem. Eng. 6, 11145–11159 (2018).

    Article  Google Scholar 

  156. Elling, B. R. & Dichtel, W. R. Reprocessable cross-linked polymer networks: are associative exchange mechanisms desirable? ACS Cent. Sci. 6, 1488–1496 (2020).

    Article  Google Scholar 

  157. Röttger, M. et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 356, 62–65 (2017). This article reports the synthesis, processing and properties of vitrimers from rapid and thermally robust metathesis of dioxaborolanes.

    Article  ADS  Google Scholar 

  158. Feghali, E., van de Pas, D. J. & Torr, K. M. Toward bio-based epoxy thermoset polymers from depolymerized native lignins produced at the pilot scale. Biomacromolecules 21, 1548–1559 (2020).

    Article  Google Scholar 

  159. Feghali, E., van de Pas, D. J., Parrott, A. J. & Torr, K. M. Bio-based epoxy thermoset polymers from depolymerized native hardwood lignin. ACS Macro Lett. 9, 1155–1160 (2020).

    Article  Google Scholar 

  160. Duval, A., Couture, G., Caillol, S. & Avérous, L. Bio-based and aromatic reversible thermoset networks from condensed tannins via the Diels−Alder reaction. ACS Sustain. Chem. Eng. 5, 1199–1207 (2017).

    Article  Google Scholar 

  161. Fache, M., Auvergne, R., Boutevin, B. & Caillol, S. New vanillin-derived diepoxy monomers for the synthesis of bio-based thermosets. Eur. Polym. J. 67, 527–538 (2015).

    Article  Google Scholar 

  162. Ke, Y. et al. Recyclable and fluorescent epoxy polymer networks from cardanol via solvent-free epoxy-thiol chemistry. ACS Appl. Polym. Mater. 3, 3082–3092 (2021).

    Article  Google Scholar 

  163. Galià, M., de Espinosa, L. M., Ronda, J. C., Lligadas, G. & Cádiz, V. Vegetable oil-based thermosetting polymers. Eur. J. Lipid Sci. Tech. 112, 87–96 (2010).

    Article  Google Scholar 

  164. Dotan, A. in Handbook of Thermoset Plastics 3rd edn (eds Dodiuk, H. & Goodman, S. H.) 577–622 (William Andrew, 2014).

  165. Di Mauro, C., Malburet, S., Genua, A., Graillot, A. & Mija, A. Sustainable series of new epoxidized vegetable oil-based thermosets with chemical recycling properties. Biomacromolecules 21, 3923–3935 (2020).

    Article  Google Scholar 

  166. Di Mauro, C., Malburet, S., Graillot, A. & Mija, A. Recyclable, repairable, and reshapable (3R) thermoset materials with shape memory properties from bio-based epoxidized vegetable oils. ACS Appl. Bio Mater. 3, 8094–8104 (2020).

    Article  Google Scholar 

  167. Tran, T.-N., Di Mauro, C., Malburet, S., Graillot, A. & Mija, A. Dual cross-linking of epoxidized linseed oil with combined aliphatic/aromatic diacids containing dynamic S−S bonds generating recyclable thermosets. ACS Appl. Bio Mater. 3, 7550–7561 (2020).

    Article  Google Scholar 

  168. Gallastegui, A. et al. Chemically recyclable glycerol-bio-based polyether thermosets. Eur. Polym. J. 143, 110174 (2021).

    Article  Google Scholar 

  169. Xu, Y., Odelius, K. & Hakkarainen, M. Photocurable, thermally reprocessable, and chemically recyclable vanillin-based imine thermosets. ACS Sustain. Chem. Eng. 8, 17272–17279 (2020).

    Article  Google Scholar 

  170. Geng, H. et al. Vanillin-based polyschiff vitrimers: reprocessability and chemical recyclability. ACS Sustain. Chem. Eng. 6, 15463–15470 (2018).

    Article  Google Scholar 

  171. Xie, W., Huang, S., Liu, S. & Zhao, J. Imine-functionalized biomass-derived dynamic covalent thermosets enabled by heat-induced self-crosslinking and reversible structures. Chem. Eng. J. 404, 126598 (2021).

    Article  ADS  Google Scholar 

  172. Wang, B. et al. Facile synthesis of “digestible”, rigid-and-flexible, bio-based building block for high-performance degradable thermosetting plastics. Green Chem. 22, 1275–1290 (2020).

    Article  Google Scholar 

  173. Post, W., Susa, A., Blaauw, R., Molenveld, K. & Knoop, R. J. I. A review on the potential and limitations of recyclable thermosets for structural applications. Polym. Rev. 60, 359–388 (2020).

    Article  Google Scholar 

  174. Wang, S. et al. Vanillin-derived high-performance flame retardant epoxy resins: facile synthesis and properties. Macromolecules 50, 1892–1901 (2017).

    Article  ADS  Google Scholar 

  175. Zhao, S., Huang, X., Whelton, A. J. & Abu-Omar, M. M. Renewable epoxy thermosets from fully lignin-derived triphenols. ACS Sustain. Chem. Eng. 6, 7600–7608 (2018).

    Article  Google Scholar 

  176. Qi, Y. et al. Synthesize and introduce bio-based aromatic s-triazine in epoxy resin: enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers. Chem. Eng. J. 406, 126881 (2021).

    Article  Google Scholar 

  177. Ma, S. et al. Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. J. Mater. Chem. A 7, 1233–1243 (2019).

    Article  Google Scholar 

  178. Park, S.-A. et al. Sustainable and recyclable super engineering thermoplastic from biorenewable monomer. Nat. Commun. 10, 2601 (2019).

    Article  ADS  Google Scholar 

  179. Miao, J.-T., Yuan, L., Liang, G. & Gu, A. Bio-based bismaleimide resins with high renewable carbon content, heat resistance and flame retardancy via a multi-functional phosphate from clove oil. Mater. Chem. Front. 3, 78–85 (2019).

    Article  Google Scholar 

  180. Jing, F. & Hillmyer, M. A. A bifunctional monomer derived from lactide for toughening polylactide. J. Am. Chem. Soc. 130, 13826–13827 (2008).

    Article  Google Scholar 

  181. Fiore, G. L., Jing, F., Young, V. G. Jr, Cramer, C. J. & Hillmyer, M. A. High Tg aliphatic polyesters by the polymerization of spirolactide derivatives. Polym. Chem. 1, 870–877 (2010).

    Article  Google Scholar 

  182. Huang, W., Hu, X., Zhai, J., Zhu, N. & Guo, K. Biorenewable furan-containing polyamides. Mater. Today Sust. 10, 100049 (2020).

    Google Scholar 

  183. Cureton, L. T., Napadensky, E., Annunziato, C. & La Scala, J. J. The effect of furan molecular units on the glass transition and thermal degradation temperatures of polyamides. J. Appl. Polym. Sci. 134, 45514 (2017).

    Article  Google Scholar 

  184. Sanchez-Rexach, E., Johnston, T. G., Jehanno, C., Sardon, H. & Nelson, A. Sustainable materials and chemical processes for additive manufacturing. Chem. Mater. 32, 7105–7119 (2020).

    Article  Google Scholar 

  185. Meyer, S. C. 3D printing of protein models in an undergraduate laboratory: leucine zippers. J. Chem. Educ. 92, 2120–2125 (2015).

    Article  Google Scholar 

  186. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    Article  Google Scholar 

  187. Liu, Z. et al. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manu Tech. 102, 2877–2889 (2019).

    Article  Google Scholar 

  188. Ukobitz, D. & Faullant, R. Leveraging 3D printing technologies: the case of Mexico’s footwear industry. Res. Technol. Manag. 64, 20–30 (2021).

    Article  Google Scholar 

  189. Dolphin Board of Awesome. Heart contract . DBOA https://www.dolphinboardofawesome.com (2019).

  190. DUS Architects. Urban cabin. DUS https://houseofdus.com/#project-urban-cabin (2021).

  191. Julia Daviy. Innovating fashion & consumer tech for deep sustainability. Julia Daviy https://juliadaviy.com/projects%26collections-1 (2022).

  192. Zhang, M. et al. Printable smart pattern for multifunctional energy-management e-textile. Matter 1, 168–179 (2019).

    Article  Google Scholar 

  193. Chen, Y. et al. Superelastic, hygroscopic, and ionic conducting cellulose nanofibril monoliths by 3D printing. ACS nano 15, 1869–1879 (2021).

    Article  Google Scholar 

  194. Wang, G. et al. in Proc. 31st Annu. ACM Symp. User Interface Software Technol. 623–635 (ACM, 2018).

  195. Mirdamadi, E., Tashman, J. W., Shiwarski, D. J., Palchesko, R. N. & Feinberg, A. W. FRESH 3D bioprinting a full-size model of the human heart. ACS Biomater. Sci. Eng. 6, 6453–6459 (2020).

    Article  Google Scholar 

  196. Markstedt, K. et al. 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16, 1489–1496 (2015).

    Article  Google Scholar 

  197. Ojansivu, M. et al. Wood-based nanocellulose and bioactive glass modified gelatin–alginate bioinks for 3D bioprinting of bone cells. Biofabrication 11, 035010 (2019).

    Article  ADS  Google Scholar 

  198. Shahbazi, M. & Jäger, H. Current status in the utilization of bio-based polymers for 3D printing process: a systematic review of the materials, processes, and challenges. ACS Appl. Bio Mater. 4, 325–369 (2020).

    Article  Google Scholar 

  199. Weems, A. C., Delle Chiaie, K. R., Worch, J. C., Stubbs, C. J. & Dove, A. P. Terpene-and terpenoid-based polymeric resins for stereolithography 3D printing. Polym. Chem. 10, 5959–5966 (2019).

    Article  Google Scholar 

  200. Ding, R., Du, Y., Goncalves, R. B., Francis, L. F. & Reineke, T. M. Sustainable near UV-curable acrylates based on natural phenolics for stereolithography 3D printing. Polym. Chem. 10, 1067–1077 (2019).

    Article  Google Scholar 

  201. Bassett, A. W. et al. Vanillin-based resin for additive manufacturing. ACS Sustain. Chem. Eng. 8, 5626–5635 (2020).

    Article  Google Scholar 

  202. Guit, J. et al. Photopolymer resins with bio-based methacrylates based on soybean oil for stereolithography. ACS Appl. Polym. Mater. 2, 949–957 (2020).

    Article  Google Scholar 

  203. Voet, V. S. D. et al. Bio-based acrylate photocurable resin formulation for stereolithography 3D printing. ACS Omega 3, 1403–1408 (2018).

    Article  Google Scholar 

  204. Cosola, A. et al. Multiacrylated cyclodextrin: a bio-derived photocurable macromer for VAT 3D printing. Macromol. Mater. Eng. 305, 2000350 (2020).

    Article  Google Scholar 

  205. Wu, B. et al. Direct conversion of McDonald’s waste cooking oil into a biodegradable high-resolution 3D-printing resin. ACS Sustain. Chem. Eng. 8, 1171–1177 (2019).

    Article  Google Scholar 

  206. Yeh, Y.-C., Ouyang, L., Highley, C. B. & Burdick, J. A. Norbornene-modified poly(glycerol sebacate) as a photocurable and biodegradable elastomer. Polym. Chem. 8, 5091–5099 (2017).

    Article  Google Scholar 

  207. Bagheri, A. & Jin, J. Photopolymerization in 3D printing. ACS Appl. Polym. Mater. 1, 593–611 (2019).

    Article  Google Scholar 

  208. Gao, H. et al. Mechanically robust and reprocessable acrylate vitrimers with hydrogen-bond-integrated networks for photo-3D printing. ACS Appl. Mater. Inter. 13, 1581–1591 (2021).

    Article  Google Scholar 

  209. Davidson, J. R., Appuhamillage, G. A., Thompson, C. M., Voit, W. & Smaldone, R. A. Design paradigm utilizing reversible Diels–Alder reactions to enhance the mechanical properties of 3D printed materials. ACS Appl. Mater. Inter. 8, 16961–16966 (2016).

    Article  Google Scholar 

  210. Shi, Q. et al. Recyclable 3D printing of vitrimer epoxy. Mater. Horiz. 4, 598–607 (2017).

    Article  Google Scholar 

  211. Niu, W., Zhang, Z., Chen, Q., Cao, P.-F. & Advincula, R. C. Highly recyclable, mechanically isotropic and healable 3D-printed elastomers via polyurea vitrimers. ACS Mater. Lett. 3, 1095–1103 (2021).

    Article  Google Scholar 

  212. Zhao, Z., Wang, C., Yan, H. & Liu, Y. Soft robotics programmed with double crosslinking DNA hydrogels. Adv. Funct. Mater. 29, 1905911 (2019).

    Article  Google Scholar 

  213. Mu, X. et al. Recent advances in 3D printing with protein-based inks. Prog. Polym. Sci. 115, 101375 (2021).

    Article  Google Scholar 

  214. Inzana, J. A. et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35, 4026–4034 (2014).

    Article  Google Scholar 

  215. Smith, P. T. et al. Additive manufacturing of bovine serum albumin-based hydrogels and bioplastics. Biomacromolecules 21, 484–492 (2019).

    Article  ADS  Google Scholar 

  216. Sridharan, S., Meinders, M. B. J., Sagis, L. M., Bitter, J. H. & Nikiforidis, C. V. Jammed emulsions with adhesive pea protein particles for elastoplastic edible 3D printed materials. Adv. Funct. Mater. 31, 2101749 (2021).

    Article  Google Scholar 

  217. Mohan, T., Maver, T., Štiglic, A. D., Stana-Kleinschek, K. & Kargl, R. in Fundamental Biomaterials: Polymers (eds Thomas, S., Balakrishnan, P. & Sreekala, M. S.) 105–141 (Woodhead, 2018).

  218. Wu, Q., Therriault, D. & Heuzey, M.-C. Processing and properties of chitosan inks for 3D printing of hydrogel microstructures. ACS Biomater. Sci. Eng. 4, 2643–2652 (2018).

    Article  Google Scholar 

  219. Siqueira, G. et al. Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv. Funct. Mater. 27, 1604619 (2017).

    Article  MathSciNet  Google Scholar 

  220. Chen, H., Xie, F., Chen, L. & Zheng, B. Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors. J. Food Eng. 244, 150–158 (2019).

    Article  Google Scholar 

  221. Jiang, B. et al. Lignin-based direct ink printed structural scaffolds. Small 16, 1907212 (2020).

    Article  Google Scholar 

  222. European Bioplastics. Applications for bioplastics. European Bioplastics https://www.european-bioplastics.org/market/applications-sectors/ (2021).

  223. Coca-Cola Company. What is PlantBottle packaging? Coca-Cola https://www.coca-colacompany.com/faqs/what-is-plantbottle-packaging (2022).

  224. Fei, X., Wang, J., Zhu, J., Wang, X. & Liu, X. Biobased poly(ethylene 2,5-furancoate): no longer an alternative, but an irreplaceable polyester in the polymer industry. ACS Sustain. Chem. Eng. 8, 8471–8485 (2020).

    Article  Google Scholar 

  225. Japan Chemical Daily. Total Corbion to commercialize highly heat-resistant PLA. Japan Chemical Daily https://www.japanchemicaldaily.com/2018/08/24/total-corbion-to-commercialize-highly-heat-resistant-pla/ (2018).

  226. LEGO. Sustainable materials. LEGO https://www.lego.com/sv-se/sustainability/environment/sustainable-materials/ (2022).

  227. Alexander, G. The search for petroleum-free LEGO. LEGO https://earth911.com/eco-tech/petroleum-free-legos/ (2018).

  228. Avantium. PEF: the polymer for the future. Avantium https://www.avantium.com/publication/pef-the-polymer-for-the-future/ (2019).

  229. Sintim, H. Y. & Flury, M. Is biodegradable plastic mulch the solution to agriculture’s plastic problem? Environ. Sci. Technol. 51, 1068–1069 (2017).

    Article  ADS  Google Scholar 

  230. Briassoulis, D. & Giannoulis, A. Evaluation of the functionality of bio-based plastic mulching films. Polym. Test. 67, 99–109 (2018).

    Article  Google Scholar 

  231. Barrett, A. First car made completely from bioplastics. Bioplastics News https://bioplasticsnews.com/2018/07/09/bioplastics-car/ (2018).

  232. Joshi, S. V., Drzal, L., Mohanty, A. & Arora, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites, Part. A 35, 371–376 (2004).

    Article  Google Scholar 

  233. nova-Institut. Biocomposites. Renewable Carbon News https://renewable-carbon.eu/news/biocomposites-350000-production-of-wood-and-natural-fibre-composites/ (2012).

  234. Hermens, J. G. H., Freese, T., van den Berg, K. J., van Gemert, R. & Feringa, B. L. A coating from nature. Sci. Adv. 6, eabe0026 (2020). This article reports a high-performance coating from natural alkoxybutenolides, which could be a bio-based alternative for acrylates.

    Article  ADS  Google Scholar 

  235. Bayer, I. S. Superhydrophobic coatings from ecofriendly materials and processes: a review. Adv. Mater. Inter. 7, 2000095 (2020).

    Article  Google Scholar 

  236. Li, Z., Rabnawaz, M. & Khan, B. Response surface methodology design for biobased and sustainable coatings for water- and oil-resistant paper. ACS Appl. Polym. Mater. 2, 1378–1387 (2020).

    Article  Google Scholar 

  237. SSAB. Henning Stummel’s tin house. SSAB https://www.ssab.co.uk/products/brands/greencoat/award-architecture/henning-stummels-tin-house (2021).

  238. DuPont. The Sorona story. Sorona https://sorona.com/our-story (2021).

  239. Cirino, E. The environment’s new clothes: biodegradable textiles grown from live organisms. Scientific American https://www.scientificamerican.com/article/the-environments-new-clothes-biodegradable-textiles-grown-from-live-organisms/ (2018).

  240. Time. Clothes made out of clothes. Time https://time.com/collection/best-inventions-2020/5911418/renewcell-circulose (2020).

  241. Adidas. Our sustainability initiatives. Adidas https://report.adidas-group.com/2020/en/at-a-glance/2020-stories/our-sustainability-initiatives.html (2020).

  242. Zhao, D. et al. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33, 2000619 (2021).

    Article  Google Scholar 

  243. Yoon, J. H. et al. Extremely fast self-healable bio-based supramolecular polymer for wearable real-time sweat-monitoring sensor. ACS Appl. Mater. Inter. 11, 46165–46175 (2019).

    Article  Google Scholar 

  244. Montanari, C., Ogawa, Y., Olsén, P. & Berglund, L. A. High performance, fully bio-based, and optically transparent wood biocomposites. Adv. Sci. 8, 2100559 (2021).

    Article  Google Scholar 

  245. Li, Y., Vasileva, E., Sychugov, I., Popov, S. & Berglund, L. Optically transparent wood: recent progress, opportunities, and challenges. Adv. Opt. Mater. 6, 1800059 (2018).

    Article  Google Scholar 

  246. Grobert, N et al. Biodegradability of plastics in the open environment (European Commission, 2020).

  247. Haider, T. P., Völker, C., Kramm, J., Landfester, K. & Wurm, F. R. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 58, 50–62 (2019).

    Article  ADS  Google Scholar 

  248. Qin, M. et al. A review of biodegradable plastics to biodegradable microplastics: another ecological threat to soil environments? J. Clean. Prod. 312, 127816 (2021).

    Article  Google Scholar 

  249. Degli Innocenti, F. & Breton, T. Intrinsic biodegradability of plastics and ecological risk in the case of leakage. ACS Sustain. Chem. Eng. 8, 9239–9249 (2020).

    Article  Google Scholar 

  250. Zumstein, M. T., Narayan, R., Kohler, H.-P. E., McNeill, K. & Sander, M. Dos and do nots when assessing the biodegradation of plastics. Env. Sci. Technol. 53, 9967–9969 (2019). This mini-review article summarizes the fundamental principles of plastic biodegradation.

    Article  Google Scholar 

  251. Gan, Z. & Zhang, H. PMBD: a comprehensive Plastics Microbial Biodegradation Database. Database 2019, 1–11 (2019). This article reports a database related to plastics microbial biodegradation, used for identifying and predicting the enzyme for plastic biodegradation.

    Article  Google Scholar 

  252. UniProt Consortium. UniProtKB: protein knowledgebase. UniProt https://www.uniprot.org/ (2022).

  253. Tan, D., Wang, Y., Tong, Y. & Chen, G.-Q. Grand challenges for industrializing polyhydroxyalkanoates (PHAs). Trends Biotechnol. 39, 953–963 (2021).

    Article  Google Scholar 

  254. Nature Research Custom Media. Catalysing the search for catalysts. Nature https://www.nature.com/articles/d42473-021-00152-0 (2021).

  255. Wei, R. et al. Possibilities and limitations of biotechnological plastic degradation and recycling. Nat. Catal. 3, 867–871 (2020).

    Article  Google Scholar 

  256. Fabbri, P. et al. Top emerging bio-based products, their properties and industrial applications (Ecologic Institute, 2018).

  257. Zhang, W. et al. High-rate lactic acid production from food waste and waste activated sludge via interactive control of pH adjustment and fermentation temperature. Chem. Eng. J. 328, 197–206 (2017).

    Article  Google Scholar 

  258. Algozeeb, W. A. et al. Flash graphene from plastic waste. ACS Nano 14, 15595–15604 (2020).

    Article  Google Scholar 

  259. European Commission. Cricular economy action plan (Directorate-General for Environment, 2020).

  260. Intergovernmental Panel on Climate Change. Climate change 2021: the physical science basis (IPCC, 2021).

  261. IBM. IBM researchers develop radical new recycling process to transform old plastic. IBM Newsroom https://newsroom.ibm.com/2019-02-11-IBM-Researchers-Develop-Radical-New-Recycling-Process-to-Transform-Old-Plastic (2021).

  262. BASF. Circular economy at BASF. BASF https://www.basf.com/global/en/who-we-are/sustainability/we-drive-sustainable-solutions/circular-economy.html (2021).

  263. Meng, M. D. & Leary, R. B. It might be ethical, but I won’t buy it: perceived contamination of, and disgust towards, clothing made from recycled plastic bottles. Psychol. Mark. 38, 298–312 (2021).

    Article  Google Scholar 

  264. Raquez, J. M., Mincheva, R., Coulembier, O. & Dubois, P. in Polymer Science: A Comprehensive Reference (eds Matyjaszewski, K. & Möller, M.) 761–778 (Elsevier, 2012).

  265. Nikolić, M., Poleti, D. & A, Đ. J. Biodegradable polyesters based on succinic acid. Hemijska Industrija 57, 526–535 (2003).

    Article  Google Scholar 

  266. Han, L. et al. Diisocyanate free and melt polycondensation preparation of bio-based unsaturated poly(ester-urethane)s and their properties as UV curable coating materials. RSC Adv. 4, 49471–49477 (2014).

    Article  ADS  Google Scholar 

  267. Cooper, T. A. in Trends in Packaging of Food, Beverages and Other Fast-Moving Consumer Goods (FMCG) (ed. Farmer, N.) 58–107 (Woodhead, 2013).

  268. Gonçalves de Moura, I., Vasconcelos de Sá, A., Lemos Machado Abreu, A. S. & Alves Machado, A. V. in Food Packaging (ed. Grumezescu, A. M.) 223–263 (Academic, 2017).

  269. Zhou, J. H., Shen, G. Z., Zhu, J. & Yuan, W. K. in Studies in Surface Science and Catalysis Vol. 159 (eds Rhee, J.-K., Nam, I.-S. & Park, J. M.) 293–296 (Elsevier, 2006).

  270. Guigo, N., Forestier, E. & Sbirrazzuoli, N. in Thermal Properties of Bio-based Polymers (eds Di Lorenzo, M. L. & Androsch, R.) 189–217 (Springer, 2019).

  271. Wang, G., Jiang, M., Zhang, Q., Wang, R. & Zhou, G. Bio-based copolyesters: synthesis, crystallization behavior, thermal and mechanical properties of poly(ethylene glycol sebacate-co-ethylene glycol 2,5-furan dicarboxylate). RSC Adv. 7, 13798–13807 (2017).

    Article  ADS  Google Scholar 

  272. Kluge, M., Pérocheau Arnaud, S. & Robert, T. 1,3-Propanediol and its application in bio-based polyesters for resin applications. Chem. Afr. 2, 215–221 (2019).

    Article  Google Scholar 

  273. Wang, G. et al. New bio-based copolyesters derived from 1,4-butanediol, terephthalic acid and 2,5-thiophenedicarboxylic acid: synthesis, crystallization behavior, thermal and mechanical properties. Polym. Test. 75, 213–219 (2019).

    Article  Google Scholar 

  274. Sastri, V. R. in Plastics in Medical Devices 2nd edn (ed. Sastri, V. R.) 121–172 (William Andrew, 2014).

  275. Fuessl, A., Yamamoto, M. & Schneller, A. in Polymer Science: A Comprehensive Reference (eds Matyjaszewski, K. & Möller, M.) 49–70 (Elsevier, 2012).

  276. Rorrer, N. A. et al. Renewable unsaturated polyesters from muconic acid. ACS Sustain. Chem. Eng. 4, 6867–6876 (2016).

    Article  Google Scholar 

  277. Adjaoud, A., Trejo-Machin, A., Puchot, L. & Verge, P. Polybenzoxazines: a sustainable platform for the design of fast responsive and catalyst-free vitrimers based on trans-esterification exchanges. Polym. Chem. 12, 3276–3289 (2021).

    Article  Google Scholar 

  278. Liu, Z. et al. CO2-based poly(propylene carbonate) with various carbonate linkage content for reactive hot-melt polyurethane adhesives. Int. J. Adhes. Adhes 96, 102456 (2020).

    Article  Google Scholar 

  279. Song, P., Xu, H., Mao, X., Liu, X. & Wang, L. A one-step strategy for aliphatic poly(carbonate-ester)s with high performance derived from CO2, propylene oxide and l-lactide. Polym. Adv. Technols 28, 736–741 (2017).

    Article  Google Scholar 

  280. Gennen, S., Grignard, B., Jérôme, C. & Detrembleur, C. CO2-sourced non-isocyanate poly(urethane)s with pH-sensitive imine linkages. Adv. Synth. Catal. 361, 355–365 (2019).

    Article  Google Scholar 

  281. Zubair, M., Pradhan, R. A., Arshad, M. & Ullah, A. Recent advances in lipid derived bio-based materials for food packaging applications. Macromol. Mater. Eng. 306, 2000799 (2021).

    Article  Google Scholar 

  282. Coles, S. in Bio-Based Plastics (ed. Kabasci, S.) 117–135 (Wiley, 2013).

  283. Petrović, Z. S., Milić, J., Xu, Y. & Cvetković, I. A chemical route to high molecular weight vegetable oil-based polyhydroxyalkanoate. Macromolecules 43, 4120–4125 (2010).

    Article  ADS  Google Scholar 

  284. Lu, J. & Wool, R. P. Novel thermosetting resins for SMC applications from linseed oil: synthesis, characterization, and properties. J. Appl. Polym. Sci. 99, 2481–2488 (2006).

    Article  Google Scholar 

  285. Thompson, M. & Scholz, C. Highly branched polymers based on poly(amino acid)s for biomedical application. Nanomaterials 11, 1119 (2021).

    Article  Google Scholar 

  286. Peterson, G. I., Childers, E. P., Li, H., Dobrynin, A. V. & Becker, M. L. Tunable shape memory polymers from α-amino acid-based poly(ester urea)s. Macromolecules 50, 4300–4308 (2017).

    Article  ADS  Google Scholar 

  287. Kan, X.-W., Deng, X.-X., Du, F.-S. & Li, Z.-C. Concurrent oxidation of alcohols and the passerini three-component polymerization for the synthesis of functional poly(ester amide)s. Macromol. Chem. Phys. 215, 2221–2228 (2014).

    Article  Google Scholar 

  288. Zhang, J., Deng, X.-X., Du, F.-S. & Li, Z.-C. in Sequence-Controlled Polymers: Synthesis, Self-Assembly, and Properties Vol. 1170 223–234 (American Chemical Society, 2014).

  289. Zeng, H., Little, H. C., Tiambeng, T. N., Williams, G. A. & Guan, Z. Multifunctional dendronized peptide polymer platform for safe and effective siRNA delivery. J. Am. Chem. Soc. 135, 4962–4965 (2013).

    Article  Google Scholar 

  290. Yuan, J., Shi, D., Zhang, Y., Lu, J. & Lu, H. 4-Hydroxy-l-proline as a general platform for stereoregular aliphatic polyesters: controlled ring-opening polymerization, facile functionalization, and site-specific bioconjugation. CCS Chem. 2, 236–244 (2020).

    Article  Google Scholar 

  291. He, W., Tao, Y. & Wang, X. Functional polyamides: a sustainable access via lysine cyclization and organocatalytic ring-opening polymerization. Macromolecules 51, 8248–8257 (2018).

    Article  ADS  Google Scholar 

  292. Suzuki, M., Makimura, K. & Matsuoka, S.-i. Thiol-mediated controlled ring-opening polymerization of cysteine-derived β-thiolactone and unique features of product polythioester. Biomacromolecules 17, 1135–1141 (2016).

    Article  Google Scholar 

  293. Benner, N. L. et al. Oligo(serine ester) charge-altering releasable transporters: organocatalytic ring-opening polymerization and their use for in vitro and in vivo mRNA delivery. J. Am. Chem. Soc. 141, 8416–8421 (2019).

    Article  Google Scholar 

  294. Behrendt, F. N., Hess, A., Lehmann, M., Schmidt, B. & Schlaad, H. Polymerization of cystine-derived monomers. Polym. Chem. 10, 1636–1641 (2019).

    Article  Google Scholar 

  295. Hong, M. & Chen, E. Y. X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 8, 42–49 (2016). Thid article presents a stratagem to synthesize high performance and completely recyclable biopolymers from γ-butyrolactone.

    Article  Google Scholar 

  296. Walker, T. W. et al. Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Sci. Adv. 6, eaba7599 (2020).

    Article  ADS  Google Scholar 

  297. Jehanno, C. et al. Selective chemical upcycling of mixed plastics guided by a thermally stable organocatalyst. Angew. Chem. Int. Ed. 60, 6710–6717 (2021).

    Article  Google Scholar 

  298. Peng, F. et al. 3D Printing with core–shell filaments containing high or low density polyethylene shells. ACS Appl. Polym. Mater. 1, 275–285 (2019).

    Article  Google Scholar 

  299. Jung, Y. H. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015). This article reports a novel and fully bio-based transparent wood biocomposite based on green synthesis of a new limonene acrylate monomer from renewable resources.

    Article  ADS  Google Scholar 

  300. Simon, E., Grabowski, A., Goldberg, K., Kuhn, D. & Zeuner, J. L. Methodology for the Assessment of Bioplastic Feedstocks (Bioplastic Feedstock Alliance, 2022).

  301. Zhou, X., Broadbelt, L. J. & Vinu, R. in Advances in Chemical Engineering Vol. 49 (ed. Van Geem, K. M.) 95–198 (Academic, 2016).

  302. Helmer Pedersen, T. & Conti, F. Improving the circular economy via hydrothermal processing of high-density waste plastics. Waste Manag. 68, 24–31 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of the Ontario Research Fund, Research Excellence Program; Round 9 (ORF-RE09) Ontario Ministry of Colleges and Universities; the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA)/University of Guelph — Ontario Agri-Food Innovation Alliance; the Natural Sciences and Engineering Research Council of Canada (NSERC); and the Agriculture and Agri-Food Canada (AAFC) through Bioindustrial Innovation Canada (BIC) Bioproducts AgSci Cluster Program. The Université de Mons (UMONS) is grateful to the European Commission and Wallonia for the financial support in the frame of the FEDER-LCFM project.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.K.M., D.F.M., F.W. and R.N.); Experimentation (R.M., J.-M.R., M.H., F.W. and A.N.N.); Results (F.W., M.M., R.M. and J.-M.R.); Applications (M.H., D.F.M., R.M., J.-M.R., A.K.M. and A.N.N.); Reproducibility and data deposition (R.N. and M.M.); Limitations and optimizations (M.M. and F.W); Outlook (A.K.M., F.W., D.F.M., M.H., R.N. and A.N.N.); Overview of the Primer (all authors).

Corresponding author

Correspondence to Amar K. Mohanty.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Arantxa Eceiza, who co-reviewed with Ainara Saralegi, Martin Koller and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Circular economy: https://unctad.org/topic/trade-and-environment/circular-economy

GaBi: https://gabi.sphera.com/international/index/

LCA database: https://nexus.openlca.org/

OpenLCA: https://www.openlca.org/

Plastics Microbial Biodegradation Database (PMBD): http://pmbd.genome-mining.cn/home/

Plastic pollution: https://ourworldindata.org/plastic-pollution

SimaPro: https://simapro.com/

Sustainable Development Goals: https://sdg-tracker.org/

Supplementary information

Glossary

Sustainable

Meeting the needs of the present without compromising the ability of future generations to meet their own needs.

Circular economy

A closed-loop economic system that targets zero waste and pollution throughout material life cycles.

Chemical recycling

Relates to technologies that convert polymeric waste back to monomers, oligomers or other functional chemicals that can be used as raw materials for manufacturing new plastic articles.

Bioeconomy

An economy where goods are made from responsibly produced biomass.

Life cycle assessment

(LCA). A methodology to assess the environmental impacts associated with each stage of a product’s life.

Thermoset

A specific class of polymers that form well-defined, irreversible, chemical crosslinked 3D networks.

Glass transition temperature

(Tg). The temperature at or above which the molecular segments start to move.

Ugi reaction

A multicomponent reaction in organic chemistry involving a ketone or aldehyde, an amine, an isocyanide and a carboxylic acid to form a bis-amide (named after Ivar Karl Ugi).

Mass-based metric

A measurement of the atom efficiency of chemical reactions comparing the mass of desired product with the mass of waste.

E-factor

The ratio of the mass of waste per mass of product in a chemical reaction.

Reactive extrusion

A manufacturing method carried out in an extruder, which combines chemical polymerization and extrusion processing into a single step.

Upcycling

A recycling system in which the recycled material is of higher quality and functionality than the original material.

Downcycling

A recycling system in which the recycled material is of lower quality and functionality than the original material.

Ergoneutral

A reaction in which Gibbs free energy is zero under a defined set of reactive conditions.

Linear economic model

An economic system consisting of the ‘take, make, dispose’ model in which most goods end up discarded as waste.

Radiocarbon dating

A method that uses the level of radioactive carbon (14C) to determine the age of carbonaceous materials, as 14C decays over time — older artefacts have less 14C than younger (newer) ones.

Biogenic carbon

The organic and inorganic carbon originating from renewable plant-biomass carbon feedstock.

Vat polymerization

A photopolymerization method in 3D printing based on light irradiation through a reservoir (vat) filled with photocurable materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, A.K., Wu, F., Mincheva, R. et al. Sustainable polymers. Nat Rev Methods Primers 2, 46 (2022). https://doi.org/10.1038/s43586-022-00124-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-022-00124-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing