Abstract
Remote epitaxy is an emerging technology for producing single-crystalline, free-standing thin films and structures. The method uses 2D van der Waals materials as semi-transparent interlayers that enable epitaxy and release of epitaxial layers at the 2D layer interface. Although the principle of remote epitaxy is simple, it is often challenging to perform owing to stringent requirements for sample preparation and procedure control. This Primer provides extensive guidelines on remote epitaxy techniques, from preparing 2D materials to epitaxy processes and layer transfer methods. Depending on the material of interest, the procedure used can vary, which affects the quality. Consequently, in this Primer, key considerations and characterization techniques are provided for respective families of materials. These are intended as a stepping stone to expand the available material choice and improve the quality of materials grown by remote epitaxy. Lastly, the current limitations, possible solutions and future directions of remote epitaxy and its applications are discussed.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Unveiling the mechanism of remote epitaxy of crystalline semiconductors on 2D materials-coated substrates
Nano Convergence Open Access 30 August 2023
-
Lattice modulation strategies for 2D material assisted epitaxial growth
Nano Convergence Open Access 25 August 2023
-
Applications of remote epitaxy and van der Waals epitaxy
Nano Convergence Open Access 30 April 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$99.00 per year
only $99.00 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout








References
Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019). This review introduces existing techniques for layer transfer of single-crystalline membranes.
Yoon, J. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010).
Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020). This paper shows remote epitaxy and 2DLT of complex oxides, from which artificial heterostructures are formed by directly stacking free-standing membranes.
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Horowitz, K. A., Remo, T. W., Smith, B. & Ptak, A. J. A Techno-Economic Analysis and Cost Reduction Roadmap for III–V Solar Cells. Technical Report NREL/TP-6A20-72103 (National Renewable Energy Laboratory, 2018).
Cheng, C. W. et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat. Commun. 4, 1–7 (2013).
Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).
Bakaul, S. R. et al. Single crystal functional oxides on silicon. Nat. Commun. 7, 1–5 (2016).
Raj, V. et al. Layer transfer by controlled spalling. J. Phys. D Appl. Phys. 46, 152002 (2013).
Bedell, S. W., Lauro, P., Ott, J. A., Fogel, K. & Sadana, D. K. Layer transfer of bulk gallium nitride by controlled spalling. J. Appl. Phys. 122, 025103 (2017).
Wong, W. S., Sands, T. & Cheung, N. W. Damage-free separation of GaN thin films from sapphire substrates. Appl. Phys. Lett. 72, 599 (1998).
Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017). This paper presents the first demonstration of remote epitaxy, proving that epitaxy can remotely occur through graphene.
Novoselov, K. S. et al. Electric field in atomically thin carbon films. Science 306, 666–669 (2004).
Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018). This paper demonstrates the principles of 2DLT and the role of stressor layers, which are theoretically investigated and experimentally shown.
Kong, W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018). This paper investigates the impact of material polarity on the strength of remote interaction, which reveals the limits on the interlayer thickness for remote epitaxy.
Jeong, J. et al. Remote heteroepitaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle. Sci. Adv. 6, eaaz5180 (2020). This paper reports flexible blue LEDs realized by remote epitaxy of GaN micro-rods.
Qu, Y. et al. Long-range orbital hybridization in remote epitaxy: the nucleation mechanism of GaN on different substrates via single-layer graphene. ACS Appl. Mater. Interfaces 14, 2263–2274 (2022).
Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203–207 (2009).
Nguyen, V. L. et al. Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation. Nat. Nanotechnol. 15, 861–867 (2020).
Wang, M. et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 596, 519–524 (2021).
Kong, W. et al. Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 14, 927–938 (2019).
Lee, J. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).
Hwang, J. et al. Van der waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 7, 385–395 (2013).
Chen, Z. et al. Direct growth of wafer-scale highly oriented graphene on sapphire. Sci. Adv. 7, eabk0115 (2021).
Wang, H. et al. Primary nucleation-dominated chemical vapor deposition growth for uniform graphene monolayers on dielectric substrate. J. Am. Chem. Soc. 141, 11004–11008 (2019).
Chen, Z., Qi, Y., Chen, X., Zhang, Y. & Liu, Z. Direct CVD growth of graphene on traditional glass: methods and mechanisms. Adv. Mater. 31, 1803639 (2019).
Toh, C. T. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577, 199–203 (2020).
Hong, S. et al. Ultralow-dielectric-constant amorphous boron nitride. Nature 582, 511–514 (2020).
Kim, H. et al. Impact of 2D–3D heterointerface on remote epitaxial interaction through graphene. ACS Nano 15, 10587–10596 (2021). This paper unveils the impact of graphene transfer methods and interface properties on remote epitaxy.
Kim, H. et al. Role of transferred graphene on atomic interaction of GaAs for remote epitaxy. J. Appl. Phys. 130, 174901 (2021).
Phillips, J. C. Ionicity of the chemical bond in crystals. Rev. Mod. Phys. 42, 317 (1970).
Qiao, K. et al. Graphene buffer layer on SiC as a release layer for high-quality freestanding semiconductor membranes. Nano Lett. 21, 4013–4020 (2021). This paper shows the use of transfer-free graphene and graphene buffer on SiC for remote epitaxy and substrate reuse.
Kim, J. et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 5, 4836 (2014).
Chen, Z. et al. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene. Adv. Mater. 31, 1807345 (2019).
Chang, H. et al. Quasi-2D growth of aluminum nitride film on graphene for boosting deep ultraviolet light-emitting diodes. Adv. Sci. 7, 2001272 (2020).
Morkoç, H. Handbook of Nitride Semiconductors and Devices: Material Properties, Physics and Growth Vol. 1 (Wiley-VCH, 2009).
Tarsa, E. J. et al. Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 82, 5472 (1998).
Hiramatsu, K. et al. Growth mechanism of GaN grown on sapphire with A1N buffer layer by MOVPE. J. Cryst. Growth 115, 628–633 (1991).
Journot, T. et al. Remote epitaxy using graphene enables growth of stress-free GaN. Nanotechnology 30, 505603 (2019).
Jeong, J. et al. Transferable, flexible white light-emitting diodes of GaN p–n junction microcrystals fabricated by remote epitaxy. Nano Energy 86, 106075 (2021).
Wang, P. et al. Graphene-assisted molecular beam epitaxy of AlN for AlGaN deep-ultraviolet light-emitting diodes. Appl. Phys. Lett. 116, 171905 (2020).
Ren, F. et al. Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer. Sci. Adv. 7, eabf5011 (2021).
Chen, Y. et al. Progress and challenges in transfer of large-area graphene films. Adv. Sci. 3, 1500343 (2016).
Park, J.-H. et al. Influence of temperature-dependent substrate decomposition on graphene for separable GaN growth. Adv. Mater. Interfaces 6, 1900821 (2019).
Amano, H., Sawaki, N., Akasaki, I. & Toyoda, Y. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48, 353 (1998).
Kawasaki, M. et al. Atomic control of the SrTiO3 crystal surface. Science 266, 1540–1542 (1994).
Jiang, J. et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat. Commun. 10, 4145 (2019). This paper demonstrates the reduction of dislocations and improvement of optoelectronic properties from remote epitaxy of halide perovskite on NaCl.
Shao, Y. et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 9, 1752–1759 (2016).
Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).
Liu, X. K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2020).
Lei, L. et al. Metal halide perovskites for laser applications. Adv. Funct. Mater. 31, 2010144 (2021).
Wang, L., King, I., Chen, P., Bates, M. & Lunt, R. R. Epitaxial and quasiepitaxial growth of halide perovskites: new routes to high end optoelectronics. APL Mater. 8, 100904 (2020).
Zhou, Z., Qiao, H. W., Hou, Y., Yang, H. G. & Yang, S. Epitaxial halide perovskite-based materials for photoelectric energy conversion. Energy Environ. Sci. 14, 127–157 (2021).
Shi, E. & Dou, L. Halide perovskite epitaxial heterostructures. Acc. Mater. Res. 1, 213–224 (2020).
Wang, Y. et al. High-temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics. Adv. Mater. 29, 1702643 (2017).
Chen, Y. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 577, 209–215 (2020).
Wang, L. et al. Unlocking the single-domain epitaxy of halide perovskites. Adv. Mater. Interfaces 4, 1701003 (2017).
Jeong, J. et al. Remote homoepitaxy of ZnO microrods across graphene layers. Nanoscale 10, 22970–22980 (2018).
Jeong, J. et al. Remote heteroepitaxy across graphene: hydrothermal growth of vertical ZnO microrods on graphene-coated GaN substrate. Appl. Phys. Lett. 113, 233103 (2018).
Choi, J. et al. Facet-selective morphology-controlled remote epitaxy of ZnO microcrystals via wet chemical synthesis. Sci. Rep. 11, 22697 (2021).
Lin, Y. T., Yeh, T. W., Nakajima, Y. & Dapkus, P. D. Catalyst-free GaN nanorods synthesized by selective area growth. Adv. Funct. Mater. 24, 3162–3171 (2014).
Li, S. et al. Dependence of N-polar GaN rod morphology on growth parameters during selective area growth by MOVPE. J. Cryst. Growth 364, 149–154 (2013).
Jeong, J. et al. Selective-area remote epitaxy of ZnO microrods using multilayer-monolayer-patterned graphene for transferable and flexible device fabrications. ACS Appl. Nano Mater. 3, 8920–8930 (2020). This paper demonstrates a method to control the position of microstructures in remote epitaxy.
Jin, D. K. et al. Position-controlled remote epitaxy of ZnO for mass-transfer of as-deployed semiconductor microarrays. APL Mater. 9, 051102 (2021).
Du, D. et al. Epitaxy, exfoliation, and strain-induced magnetism in rippled Heusler membranes. Nat. Commun. 12, 2494 (2021).
Koma, A., Sunouchi, K. & Miyajima, T. Fabrication of ultrathin heterostructures with van der Waals epitaxy. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 3, 724 (1985).
Mohseni, P. K. et al. Monolithic III–V nanowire solar cells on graphene via direct van der Waals epitaxy. Adv. Mater. 26, 3755–3760 (2014).
Lin, Z., Huang, Y. & Duan, X. Van der Waals thin-film electronics. Nat. Electron. 2, 378–388 (2019).
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).
Bae, S. H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).
Li, X. et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009).
Qian, Y. et al. Universal 2D material film transfer using a novel low molecular weight polyvinyl acetate. Appl. Surf. Sci. 534, 147650 (2020).
Rang Lim, Y. et al. Resist- and etching-free patterning mediated by predefined photosensitive polyimide for two-dimensional semiconductor-based photodetectors. Adv. Mater. Interfaces 8, 2001817 (2021).
Manzo, S. et al. Pinhole-seeded lateral epitaxy and exfoliation on graphene-terminated surfaces. Preprint at https://doi.org/10.48550/arXiv.2106.00721 (2021).
Zhao, Z. D. et al. Hydride vapor phase epitaxy of GaN on self-organized patterned graphene masks. Mater. Lett. 153, 152–154 (2015).
Lee, J. Y. et al. Multiple epitaxial lateral overgrowth of GaN thin films using a patterned graphene mask by metal organic chemical vapor deposition. J. Appl. Crystallogr. 53, 1502–1508 (2020).
Ferrari, A. C. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid. State Commun. 143, 47–57 (2007).
Emery, J. D. et al. Chemically resolved interface structure of epitaxial graphene on SiC(0001). Phys. Rev. Lett. 111, 215501 (2013).
Nemes-Incze, P., Osváth, Z., Kamarás, K. & Biró, L. P. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 46, 1435–1442 (2008).
Takahashi, K., Yamada, K., Kato, H., Hibino, H. & Homma, Y. In situ scanning electron microscopy of graphene growth on polycrystalline Ni substrate. Surf. Sci. 606, 728–732 (2012).
Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).
Koh, Y. K., Bae, M. H., Cahill, D. G. & Pop, E. Reliably counting atomic planes of few-layer graphene (n > 4). ACS Nano 5, 269–274 (2011).
Gass, M. H. et al. Free-standing graphene at atomic resolution. Nat. Nanotechnol. 3, 676–681 (2008).
Neubeck, S. et al. Direct determination of the crystallographic orientation of graphene edges by atomic resolution imaging. Appl. Phys. Lett. 97, 053110 (2010).
Wang, G. C. & Lu, T. M. RHEED Transmission Mode and Pole Figures: Thin Film and Nanostructure Texture Analysis (Springer, 2014).
Birkholz, M. Thin Film Analysis by X-Ray Scattering (Wiley, 2006).
Ul-Hamid, A. A Beginners’ Guide to Scanning Electron Microscopy (Springer International, 2018).
Schwartz, A. J., Kumar, M., Adams, B. L. & Field, D. P. Electron Backscatter Diffraction in Materials Science (Springer US, 2009).
Giannuzzi, L. A. & Stevie, F. A. Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (Springer US, 2005).
Williams, D. B. & Carter, C. B. Transmission Electron Microscopy: a Textbook for Materials Science (Springer US, 2009).
Cao, M. C. et al. Theory and practice of electron diffraction from single atoms and extended objects using an EMPAD. Microscopy 67, i150–i161 (2018).
Lu, N., Wang, J., Oviedo, J. P., Lian, G. & Kim, M. J. Atomic resolution scanning transmission electron microscopy of two-dimensional layered transition metal dichalcogenides. Appl. Microsc. 45, 225–229 (2015).
Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).
Bae, S. H. et al. Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy. Nat. Nanotechnol. 15, 272–276 (2020). This paper investigates a spontaneous relaxation mechanism on graphene that can lead to improved material quality in remote heteroepitaxy.
Besnard, A., Ardigo, M. R., Imhoff, L. & Jacquet, P. Curvature radius measurement by optical profiler and determination of the residual stress in thin films. Appl. Surf. Sci. 487, 356–361 (2019).
Moram, M. A. et al. On the origin of threading dislocations in GaN films. J. Appl. Phys. 106, 073513 (2009).
Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).
Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).
Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2018).
García De Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).
Yu, W. et al. Single crystal hybrid perovskite field-effect transistors. Nat. Commun. 9, 5354 (2018).
Shi, J. A structurally unstable semiconductor stabilized and enhanced by strain. Nature 577, 171–172 (2020).
Li, J., Shan, Z. & Ma, E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 39, 108–114 (2014).
Cao, A. et al. Design and fabrication of an artificial compound eye for multi-spectral imaging. Micromachines 10, 208 (2019).
Tang, X., Ackerman, M. M., Chen, M. & Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 13, 277–282 (2019).
Zou, Y. et al. in Proc. SPIE 11703, AI and Optical Data Sciences II Vol. 11703 (eds Jalali, B. & Kitayama, K.) 127–132 (SPIE, 2021).
Ma, J., Yu, W., Liang, P., Li, C. & Jiang, J. FusionGAN: a generative adversarial network for infrared and visible image fusion. Inf. Fusion 48, 11–26 (2019).
Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).
Woźniak, S., Pantazi, A., Bohnstingl, T. & Eleftheriou, E. Deep learning incorporating biologically inspired neural dynamics and in-memory computing. Nat. Mach. Intell. 2, 325–336 (2020).
Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).
Kaspar, C., Ravoo, B. J., van der Wiel, W. G., Wegner, S. V. & Pernice, W. H. P. The rise of intelligent matter. Nature 594, 345–355 (2021).
Gu, L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).
Rao, Z. et al. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nat. Electron. 4, 513–521 (2021).
Yeon, H. et al. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci. Adv. 7, eabg8459 (2021).
Ryu, H., Wu, H., Rao, F. & Zhu, W. Ferroelectric tunneling junctions based on aluminum oxide/zirconium-doped hafnium oxide for neuromorphic computing. Sci. Rep. 9, 20383 (2019).
Huang, J.-L. et al. in Proc. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS) 1188–1191 (Institute of Electrical and Electronics Engineers, 2017).
Guo, Z. et al. Self-powered sound detection and recognition sensors based on flexible polyvinylidene fluoride–trifluoroethylene films enhanced by in-situ polarization. Sens. Actuators A Phys. 306, 111970 (2020).
Deng, J. et al. A tactile sensing textile with bending-independent pressure perception and spatial acuity. Carbon 149, 63–70 (2019).
Zhang, Z., Tian, Z., Mei, Y. & Di, Z. Shaping and structuring 2D materials via kirigami and origami. Mater. Sci. Eng. R Rep. 145, 100621 (2021).
Wang, W. et al. Kirigami/origami-based soft deployable reflector for optical beam steering. Adv. Funct. Mater. 27, 1604214 (2017).
Otoole, M., Lindell, D. B. & Wetzstein, G. Confocal non-line-of-sight imaging based on the light-cone transform. Nature 555, 338–341 (2018).
Alaskar, Y. et al. Towards van der Waals epitaxial growth of GaAs on Si using a graphene buffer layer. Adv. Funct. Mater. 24, 6629–6638 (2014).
Anyebe, E. A. & Kesaria, M. Recent advances in the Van der Waals epitaxy growth of III–V semiconductor nanowires on graphene. Nano Select 2, 688–711 (2021).
Khan, A. et al. Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Adv. Sci. 5, 1800050 (2018).
Zhang, Y. et al. Capillary transfer of soft films. Proc. Natl Acad. Sci. USA 117, 5210–5216 (2020).
Song, S. W. et al. Direct 2D-to-3D transformation of pen drawings. Sci. Adv. 7, eabf3804 (2021).
Yu, J. et al. Van der Waals coherent epitaxy of GaN and InGaN/GaN multi-quantum-well via a graphene inserted layer. Opt. Mater. Express 11, 4118–4129 (2021).
Badokas, K. et al. Remote epitaxy of GaN via graphene on GaN/sapphire templates. J. Phys. D Appl. Phys. 54, 205103 (2021).
Chang, J.-H. et al. MOVPE growth of GaN via graphene layers on GaN/sapphire templates. Nanomaterials 12, 785 (2022).
Guo, Y. et al. A reconfigurable remotely epitaxial VO2 electrical heterostructure. Nano Lett. 20, 33–42 (2020).
Jia, R. et al. Van der Waals epitaxy and remote epitaxy of LiNbO3 thin films by pulsed laser deposition. J. Vac. Sci. Technol. A Vac. Surf. Films 39, 040405 (2021).
Lu, Z. et al. Remote epitaxy of copper on sapphire through monolayer graphene buffer. Nanotechnology 29, 445702 (2018).
Wang, D. et al. Remote heteroepitaxy of atomic layered hafnium disulfide on sapphire through hexagonal boron nitride. Nanoscale 11, 9310–9318 (2019).
Chae, S. et al. Lattice transparency of graphene. Nano Lett. 17, 1711–1718 (2017).
Kim, Y. et al. Fabrication of a microcavity prepared by remote epitaxy over monolayer molybdenum disulfide. ACS Nano 16, 2399–2406 (2022).
Franchi, S., Trevisi, G., Seravalli, L. & Frigeri, P. Quantum dot nanostructures and molecular beam epitaxy. Prog. Cryst. Growth Charact. Mater. 47, 166–195 (2003).
Nakamura, F., Kim, Y. D., Yoon, E., Forbes, D. V. & Coleman, J. J. Thickness monitoring of GaAs growth by surface photoabsorption in metalorganic chemical vapor deposition. J. Appl. Phys. 83, 775–778 (1998).
Gatzen, H. H., Saile, V. & Leuthold, J. in Micro and Nano Fabrication Ch. 6, 313–395 (Springer, 2015).
Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).
Acknowledgements
This work is supported by the Defense Advanced Research Projects Agency Young Faculty Award (award no. 029584-00001), the US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office (award no. DE-EE0008558) and the Air Force Research Laboratory (no. FA9453-21-C-0717). H.S.K. acknowledges support by Yonsei University Research Fund of 2021-22-0338. Y.J.H. and J. Jeong acknowledge support by the National Research Foundation (NRF) of South Korea (NRF-2021R1A5A1032996; 2020R1F1A1074477).
Author information
Authors and Affiliations
Contributions
Introduction (H.K. and J.K.); Experimentation (all authors); Results (C.S.C., S.L., J. Jiang and J.S.); Applications (all authors); Reproducibility and data deposition (Y.M. and S.-H.B.); Limitations and optimizations (M.P., K.L., J. Ji, Y.K. and H.S.K.); Outlook (H.K. and J.K.); Overview of the Primer (all authors).
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks Zhaolong Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Epitaxial layer
-
The thin and planar layer of a film formed by an epitaxy process, often abbreviated as epilayer.
- Van der Waals (vdW) materials
-
Materials with strong in-plane atomic bonds but weak out-of-plane vdW interactions.
- Electrostatic potential
-
The amount of work needed to move an electric charge.
- 2D material-based layer transfer
-
Exfoliation and transfer of layers at the interface formed by 2D materials.
- Wet transfer process
-
Transfer of 2D materials onto a target substrate in liquid.
- Dry transfer process
-
Transfer of 2D materials onto a target substrate without liquid at the interface between the 2D material and the substrate.
- Direct growth
-
The formation of materials directly on the target substrate instead of forming them elsewhere and then transferring them onto the target substrate.
- III–V compound semiconductors
-
Compound semiconductors composed of group III (such as aluminium, gallium, indium) and group V (such as arsenic, phosphorus, antimony), typically forming zinc-blende crystal structures.
- III–N
-
A special form of III–V compound semiconductors with nitrogen as a group V element, typically forming wurtzite crystal structures.
- Pulsed laser deposition
-
An epitaxial growth technique that uses short pulses of high-intensity lasers to ablate a polycrystalline target material onto a single-crystalline substrate.
- Pockels coefficient
-
A coefficient that quantifies the phenomena in which the refractive index of a medium changes proportional to the strength of the applied electric field.
Rights and permissions
About this article
Cite this article
Kim, H., Chang, C.S., Lee, S. et al. Remote epitaxy. Nat Rev Methods Primers 2, 40 (2022). https://doi.org/10.1038/s43586-022-00122-w
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-022-00122-w
This article is cited by
-
Understanding the 2D-material and substrate interaction during epitaxial growth towards successful remote epitaxy: a review
Nano Convergence (2023)
-
Unveiling the mechanism of remote epitaxy of crystalline semiconductors on 2D materials-coated substrates
Nano Convergence (2023)
-
Applications of remote epitaxy and van der Waals epitaxy
Nano Convergence (2023)
-
Lattice modulation strategies for 2D material assisted epitaxial growth
Nano Convergence (2023)
-
Photonic van der Waals integration from 2D materials to 3D nanomembranes
Nature Reviews Materials (2023)