Abstract
This Primer examines Skilling’s nested sampling algorithm for Bayesian inference and, more broadly, multidimensional integration. The principles of nested sampling are summarized and recent developments using efficient nested sampling algorithms in high dimensions surveyed, including methods for sampling from the constrained prior. Different ways of applying nested sampling are outlined, with detailed examples from three scientific fields: cosmology, gravitational-wave astronomy and materials science. Finally, the Primer includes recommendations for best practices and a discussion of potential limitations and optimizations of nested sampling.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Exploring the configuration space of elemental carbon with empirical and machine learned interatomic potentials
npj Computational Materials Open Access 27 July 2023
-
Forming intracluster gas in a galaxy protocluster at a redshift of 2.16
Nature Open Access 29 March 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$99.00 per year
only $99.00 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Change history
07 June 2022
A Correction to this paper has been published: https://doi.org/10.1038/s43586-022-00138-2
References
Skilling, J. Bayesian Inference and Maximum Entropy Methods in Science and Engineering MAXENT 2004 (eds Fischer, R., Dose, V., Preuss, R. & von Toussaint, U.) 395–405 (AIP, 2004). Nested sampling was first presented at MAXENT 2004 and appeared in these subsequent proceedings.
Skilling, J. Nested sampling for general Bayesian computation. Bayesian. Analysis 1, 833–859 (2006). This landmark publication presents nested sampling and explains it in detail.
Brooks, S., Gelman, A., Jones, G. & Meng, X. L. (eds) Handbooks of Modern Statistical Methods: Handbook of Markov Chain Monte Carlo (CRC Press, 2011).
Hogg, D. W. & Foreman-Mackey, D. Data analysis recipes: using Markov chain Monte Carlo. Astrophys. J. 236, 11 (2018).
AbdusSalam, S. S. et al. Simple and statistically sound recommendations for analysing physical theories. Rep. Prog. Phys. 85, 052201 (2022).
Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995). This work presents a classic modern reference for Bayes factors.
Martin, G. M., Frazier, D. T. & Robert, C. P. Computing Bayes: Bayesian Computation from 1763 to the 21st Century. Preprint at https://arxiv.org/abs/2004.06425 (2020).
Billingsley, P. Wiley Series in Probability and Statistics: Convergence of Probability Measures 3rd edn (Wiley, 2013).
Chopin, N. & Robert, C. P. Properties of nested sampling. Biometrika 97, 741–755 (2010).
Skilling, J. Bayesian Inference and Maximum Entropy Methods in Science and Engineering MAXENT 2009 (eds Goggans, P. M. & Chan, C.-Y.) 277–291 (AIP, 2009).
Evans, M. in Bayesian Statistics Vol. 8 (eds Bernardo, J. M. et al.) 491–524 (Oxford Univ. Press, 2007).
Salomone, R., South, L. F., Drovandi, C. C. & Kroese, D. P. Unbiased and consistent nested sampling via sequential Monte Carlo. Preprint at https://arxiv.org/abs/1805.03924 (2018). This work introduces connections between nested sampling and SMC.
Au, S.-K. & Beck, J. L. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Eng. Mech. 16, 263–277 (2001).
Beck, J. L. & Zuev, K. M. in Handbook of Uncertainty Quantification (eds Ghanem, R., Higdon, D. & Owhadi, H.) 1–26 (Springer International, 2016).
Walter, C. Point process-based Monte Carlo estimation. Stat. Comput. 27, 219–236 (2015).
Birge, J. R., Chang, C. & Polson, N. G. Split sampling: expectations, normalisation and rare events. Preprint at https://arxiv.org/abs/1212.0534 (2013).
Burrows, B. L. A new approach to numerical integration. IMA J. Appl. Math. 26, 151–173 (1980).
McDonald, I. R. & Singer, K. Machine calculation of thermodynamic properties of a simple fluid at supercritical temperatures. J. Chem. Phys. 47, 4766–4772 (1967).
Thin, A. et al. NEO: non equilibrium sampling on the orbit of a deterministic transform. Adv. Neural Inf. Process. Syst. 34, 17060–17071 (2021).
Rotskoff, G. M. & Vanden-Eijnden, E. Dynamical computation of the density of states and Bayes factors using nonequilibrium importance sampling. Phys. Rev. Lett. 122, 150602 (2019).
Polson, N. G. & Scott, J. G. Vertical-likelihood Monte Carlo. Preprint at https://arxiv.org/abs/1409.3601 (2015).
Robert, C. P. & Wraith, D. Computational methods for Bayesian model choice. AIP Conference Proceedings 1193, 251 (2009).
Knuth, K. H., Habeck, M., Malakar, N. K., Mubeen, A. M. & Placek, B. Bayesian evidence and model selection. Digital Signal. Process. 47, 50–67 (2015).
Zhao, Z. & Severini, T. A. Integrated likelihood computation methods. Comput. Stat. 32, 281–313 (2016).
Llorente, F., Martino, L., Delgado, D. & Lopez-Santiago, J. Marginal likelihood computation for model selection and hypothesis testing: an extensive review. Preprint at https://arxiv.org/abs/2005.08334 (2020).
Tierney, L. & Kadane, J. B. Accurate approximations for posterior moments and marginal densities. J. Am. Stat. Assoc. 81, 82–86 (1986).
Chib, S. Marginal likelihood from the Gibbs output. J. Am. Stat. Assoc. 90, 1313–1321 (1995).
Kloek, T. & van Dijk, H. K. Bayesian estimates of equation system parameters: an application of integration by Monte Carlo. Econometrica 46, 1–19 (1978).
Newton, M. A. & Raftery, A. E. Approximate Bayesian inference with the weighted likelihood bootstrap. J. R. Stat. Society: Ser. B 56, 3–26 (1994).
Gelman, A. & Meng, X.-L. Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Stat. Sci. 13, 163–185 (1998). This classic reference work introduces the notion of path sampling.
Cameron, E. & Pettitt, A. N. Recursive pathways to marginal likelihood estimation with prior-sensitivity analysis. Stat. Sci. 29, 397–419 (2014).
Shannon, C. E. A mathematical theory of communication. Bell Syst. Technical J. 27, 379–423 (1948).
Jaynes, E. T. Prior probabilities. IEEE Trans. Syst. Sci. Cybern. 4, 227–241 (1968).
Keeton, C. R. On statistical uncertainty in nested sampling. Mon. Not. R. Astron. Soc. 414, 1418–1426 (2011).
Feroz, F. & Hobson, M. P. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses. Mon. Not. R. Astron. Soc. 384, 449–463 (2008). This work popularizes nested sampling in astrophysics and cosmology by introducing the MultiNest implementation.
Pártay, L. B., Bartók, A. P. & Csányi, G. Efficient sampling of atomic configurational spaces. J. Phys. Chem. B 114, 10502–10512 (2010). This work introduces nested sampling for atomistic modelling.
Sivia, D. & Skilling, J. Data Analysis: A Bayesian Tutorial (Oxford Univ. Press, 2006). This popular textbook includes a chapter on nested sampling.
Higson, E., Handley, W., Hobson, M. & Lasenby, A. Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation. Stat. Comput. 29, 891–913 (2018). This work introduces an important dynamic variant of nested sampling that speeds up parameter inference.
Speagle, J. S. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).
Higson, E. dyPolyChord: dynamic nested sampling with PolyChord. J. Open. Source Softw. 3, 965 (2018).
Buchner, J. Nested sampling methods. Preprint at https://arxiv.org/abs/2101.09675 (2021).
Brewer, B. J., Pártay, L. B. & Csányi, G. Diffusive nested sampling. Stat. Comput. 21, 649–656 (2010).
Buchner, J. A statistical test for nested sampling algorithms. Stat. Comput. 26, 383–392 (2016).
Goodman, J. & Weare, J. Ensemble samplers with affine invariance. communications in applied mathematics and computational. Science 5, 65–80 (2010).
Allison, R. & Dunkley, J. Comparison of sampling techniques for Bayesian parameter estimation. Mon. Not. R. Astron. Soc. 437, 3918–3928 (2014).
Buchner, J. Collaborative nested sampling: big data versus complex physical models. PASP 131, 108005 (2019).
Mukherjee, P., Parkinson, D. & Liddle, A. R. A nested sampling algorithm for cosmological model selection. Ap. J. 638, L51–L54 (2006).
Parkinson, D., Mukherjee, P. & Liddle, A. R. Bayesian model selection analysis of WMAP3. Phys. Rev. D. 73, 123523 (2006).
Shaw, J. R., Bridges, M. & Hobson, M. P. Efficient Bayesian inference for multimodal problems in cosmology. Mon. Not. R. Astron. Soc. 378, 1365–1370 (2007).
Veitch, J. & Vecchio, A. Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network. Phys. Rev. D. 81, 062003 (2010).
Ter Braak, C. J. F. A Markov chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces. Stat. Comput. 16, 239–249 (2006).
Jasa, T. & Xiang, N. Nested sampling applied in Bayesian room-acoustics decay analysis. Acoustical Soc. Am. J. 132, 3251 (2012).
Handley, W. J., Hobson, M. P. & Lasenby, A. N. PolyChord: next-generation nested sampling. Mon. Not. R. Astron. Soc. 453, 4384–4398 (2015).
Smith, R. L. Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Oper. Res. 32, 1296–1308 (1984).
Zabinsky, Z. B. & Smith, R. L. Hit-and-Run Methods 721–729 (Springer US, 2013).
Habeck, M. in Bayesian Inference and Maximum Entropy Methods in Science and Engineering MAXENT 2014 (eds Mohammad-Djafari, A. & Barbaresco, F.) 121–129 (AIP, 2015).
Betancourt, M. in Bayesian Inference and Maximum Entropy Methods in Science and Engineering MAXENT 2010 (eds Mohammad-Djafari, A. & Bessiére, P.) 165–172 (AIP, 2011).
Skilling, J. in Bayesian Inference and Maximum Entropy Methods in Science and Engineering MAXENT 2011 (eds Goyal, P., Giffin, A., Knuth, K. H. & Vrscay, E.) 145–156 (AIP, 2012).
Griffiths, M. & Wales, D. J. Nested basin-sampling. J. Chem. Theory Comput. 15, 6865 (2019).
Olander, J. Constrained Space MCMC Methods for Nested Sampling Bayesian Computations. PhD Thesis, Chalmers Tekniska Högskola, Institutionen för Fysik (2020).
Stokes, B., Tuyl, F. & Hudson, I. New prior sampling methods for nested sampling - development and testing. AIP Conference Proceedings 1853, 110003 (2017).
Higson, E., Handley, W., Hobson, M. & Lasenby, A. nestcheck: diagnostic tests for nested sampling calculations. Mon. Not. R. Astron. Soc. 483, 2044–2056 (2019).
Burkoff, N. S., Várnai, C., Wells, S. A. & Wild, D. L. Exploring the energy landscapes of protein folding simulations with Bayesian computation. Biophys. J. 102, 878–886 (2012).
Henderson, R. W. & Goggans, P. M. in Bayesian Inference and Maximum Entropy Methods in Science and Engineering MAXENT 2013 (eds Niven, R. K., Brewer, B., Paull, D., Shafi, K. & Stokes, B.) 100–105 (AIP, 2014).
Baldock, R. J. N., Pártay, L. B., Bartók, A. P., Payne, M. C. & Csányi, G. Determining the pressure–temperature phase diagrams of materials. Phys. Rev. B 93, 174108 (2016). This work adapts nested sampling for material simulation with periodic boundary conditions.
Handley, W. anesthetic: nested sampling visualisation. J. Open Source Softw. 4, 1414 (2019).
Fowlie, A. & Bardsley, M. H. superplot: a graphical interface for plotting and analysing MultiNest output. Eur. Phys. J. Plus 131, 391 (2016).
Scott, P. pippi — painless parsing, post-processing and plotting of posterior and likelihood samples. Eur. Phys. J. Plus 127, 138 (2012).
Lewis, A. GetDist: a Python package for analysing Monte Carlo samples. Preprint at https://arxiv.org/abs/1910.13970 (2019).
Foreman-Mackey, D. corner.py: scatterplot matrices in Python. J. Open. Source Softw. 1, 24 (2016).
Bocquet, S. & Carter, F. W. pygtc: beautiful parameter covariance plots (aka. giant triangle confusograms). J. Open Source Software https://doi.org/10.21105/joss.00046 (2016).
Feroz, F., Hobson, M. P. & Bridges, M. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).
Feroz, F., Hobson, M. P., Cameron, E. & Pettitt, A. N. Importance nested sampling and the MultiNest algorithm. Open. J. Astrophys. 2, 10 (2019).
Beaujean, F. & Caldwell, A. Initializing adaptive importance sampling with Markov chains. Preprint at https://arxiv.org/abs/1304.7808 (2013).
Rosenbrock, H. H. An automatic method for finding the greatest or least value of a function. Computer J. 3, 175–184 (1960).
Higson, E. nestcheck: error analysis, diagnostic tests and plots for nested sampling calculations. J. Open. Source Softw. 3, 916 (2018).
Fowlie, A., Handley, W. & Su, L. Nested sampling cross-checks using order statistics. Mon. Not. R. Astron. Soc. 497, 5256–5263 (2020). This work identifies a previously unused property of nested sampling and shows how it can be used to test individual nested sampling runs.
Williams, M. J. nessai: nested sampling with artificial intelligence. zenodo https://doi.org/10.5281/zenodo.4550693 (2021).
Williams, M. J., Veitch, J. & Messenger, C. Nested sampling with normalizing flows for gravitational-wave inference. Phys. Rev. D. 103, 103006 (2021).
Stokes, B., Tuyl, F. & Hudson, I. in Bayesian Inference and Maximum Entropy Methods in Science and Engineering MAXENT 2015 (eds Goffin, A. & Knuth, K. H.) (AIP, 2016).
Stokes, B. J. New Prior Sampling Methods and Equidistribution Testing for Nested Sampling. PhD thesis, Univ. Newcastle (2018).
Romero-Shaw, I. M. et al. Bayesian inference for compact binary coalescences with BILBY: validation and application to the first LIGO–Virgo gravitational-wave transient catalogue. Mon. Not. R. Astron. Soc. 499, 3295–3319 (2020).
Henderson, R. W., Goggans, P. M. & Cao, L. Combined-chain nested sampling for efficient Bayesian model comparison. Digit. Signal. Process. 70, 84–93 (2017).
Russel, P. M., Brewer, B. J., Klaere, S. & Bouckaert, R. R. Model selection and parameter inference in phylogenetics using nested sampling. Syst. Biol. 68, 219–233 (2019).
Pullen, N. & Morris, R. J. Bayesian model comparison and parameter inference in systems biology using nested sampling. PLoS ONE 9, e88419 (2014).
Mikelson, J. & Khammash, M. Likelihood-free nested sampling for parameter inference of biochemical reaction networks. PLoS Comput. Biol. 16, e1008264 (2020).
Beaton, D. & Xiang, N. Room acoustic modal analysis using Bayesian inference. J. Acoust. Soc. Am. 141, 4480–4493 (2017).
Van Soom, M. & de Boer, B. Detrending the waveforms of steady-state vowels. Entropy 22, 331 (2020).
Lewis, S., Ireland, D. & Vanderbauwhede, W. Development of Bayesian analysis program for extraction of polarisation observables at CLAS. J. Phys. Conf. Ser. 513, 022020 (2014).
Ozturk, F. C. et al. New test of modulated electron capture decay of hydrogen-like 142Pm ions: precision measurement of purely exponential decay. Phys. Lett. B 797, 134800 (2019).
Trassinelli, M. et al. Measurement of the charged pion mass using X-ray spectroscopy of exotic atoms. Phys. Lett. B 759, 583–588 (2016).
Trassinelli, M. Bayesian data analysis tools for atomic physics. Nucl. Instrum. Meth. B 408, 301–312 (2017).
Covita, D. S. et al. Line shape analysis of the Kβ transition in muonic hydrogen. Eur. Phys. J. D. 72, 72 (2018).
De Anda Villa, M. et al. Assessing the surface oxidation state of free-standing gold nanoparticles produced by laser ablation. Langmuir 35, 11859–11871 (2019).
Machado, J. et al. High-precision measurements of n = 2 → n = 1 transition energies and level widths in He- and Be-like argon ions. Phys. Rev. A 97, 032517 (2018).
Brewer, B. J. & Donovan, C. P. Fast Bayesian inference for exoplanet discovery in radial velocity data. Mon. Not. R. Astron. Soc. 448, 3206–3214 (2015).
Lavie, B. et al. HELIOS-RETRIEVAL: an open-source, nested sampling atmospheric retrieval code; application to the HR 8799 exoplanets and inferred constraints for planet formation. AJ 154, 91 (2017).
Hall, R. D., Thompson, S. J., Handley, W. & Queloz, D. On the feasibility of intense radial velocity surveys for earth-twin discoveries. Mon. Not. R. Astron. Soc. 479, 2968–2987 (2018).
Kitzmann, D. et al. Helios-r2: a new Bayesian, open-source retrieval model for brown dwarfs and exoplanet atmospheres. ApJ 890, 174 (2020).
Ahrer, E. et al. The HARPS search for southern extra-solar planets — XLV. Two Neptune mass planets orbiting HD 13808: a study of stellar activity modelling’s impact on planet detection. Mon. Not. R. Astron. Soc. 503, 1248–1263 (2021).
Elsheikh, A. H., Wheeler, M. F. & Hoteit, I. Nested sampling algorithm for subsurface flow model selection, uncertainty quantification, and nonlinear calibration. Water Resour. Res. 49, 8383–8399 (2013).
Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71–104 (2008).
Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175–194 (2003).
Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astro. J. 116, 1009–1038 (1998).
Perlmutter, S. et al. Measurements of Ω and λ from 42 high-redshift supernovae. Ap. J. 517, 565–586 (1999).
Guth, A. H. Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D. 23, 347–356 (1981).
Liddle, A. R., Parsons, P. & Barrow, J. D. Formalizing the slow-roll approximation in inflation. Phys. Rev. D. 50, 7222–7232 (1994).
Martin, J., Ringeval, C. & Trotta, R. Hunting down the best model of inflation with Bayesian evidence. Phys. Rev. D. 83, 063524 (2011).
Allen, S. W., Schmidt, R. W. & Fabian, A. C. Cosmological constraints from the X-ray gas mass fraction in relaxed lensing clusters observed with chandra. Mon. Not. R. Astron. Soc. 334, L11–L15 (2002).
Allen, S. W., Evrard, A. E. & Mantz, A. B. Cosmological parameters from observations of galaxy clusters. Annu. Rev. Astron. Astrophys. 49, 409–470 (2011).
Feroz, F., Hobson, M. P., Zwart, J. T. L., Saunders, R. D. E. & Grainge, K. J. B. Bayesian modelling of clusters of galaxies from multifrequency-pointed Sunyaev–Zel’dovich observations. Mon. Not. R. Astron. Soc. 398, 2049–2060 (2009).
Hurley-Walker, N. et al. Bayesian analysis of weak gravitational lensing and Sunyaev–Zel’dovich data for six galaxy clusters. Mon. Not. R. Astron. Soc. 419, 2921–2942 (2011).
Joudaki, S. et al. KiDS+VIKING-450 and DES-Y1 combined: cosmology with cosmic shear. AA 638, L1 (2020).
DES Collaboration. Dark Energy Survey year 1 results: cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D. 98, 043526 (2018).
Asgari, M. et al. KiDS-1000 cosmology: cosmic shear constraints and comparison between two point statistics. AA 645, A104 (2021).
Handley, W. & Lemos, P. Quantifying tensions in cosmological parameters: interpreting the DES evidence ratio. Phys. Rev. D 100, 043504 (2019).
Conley, A. et al. Supernova constraints and systematic uncertainties from the first 3 years of the supernova legacy survey. Astrophys. J. 192, 1 (2011).
March, M. C., Trotta, R., Berkes, P., Starkman, G. D. & Vaudrevange, P. M. Improved constraints on cosmological parameters from type Ia supernova data. Mon. Not. R. Astron. Soc. 418, 2308–2329 (2011).
Planck Collaboration. Planck 2013 results. I. Overview of products and scientific results. AA 571, A1 (2014).
Handley, W. J., Hobson, M. P. & Lasenby, A. N. PolyChord: nested sampling for cosmology. Mon. Not. R. Astron. Soc. 450, L61–L65 (2015). This work opens up high-dimensional problems with slice-sampling implementation of nested sampling.
Aitken, S. & Akman, O. E. Nested sampling for parameter inference in systems biology: application to an exemplar circadian model. BMC Syst. Biol. 7, 1–12 (2013).
Planck Collaboration. Planck 2015 results. XX. Constraints on inflation. AA 594, A20 (2016).
Handley, W. J., Lasenby, A. N., Peiris, H. V. & Hobson, M. P. Bayesian inflationary reconstructions from Planck 2018 data. Phys. Rev. D. 100, 103511 (2019).
Hergt, L. T., Handley, W. J., Hobson, M. P. & Lasenby, A. N. Constraining the kinetically dominated universe. Phys. Rev. D. 100, 023501 (2019).
Gessey-Jones, T. & Handley, W. J. Constraining quantum initial conditions before inflation. Phys. Rev. D. 104, 063532 (2021).
Zhao, G.-B. et al. Dynamical dark energy in light of the latest observations. Nat. Astron. 1, 627–632 (2017).
Hee, S., Vázquez, J. A., Handley, W. J., Hobson, M. P. & Lasenby, A. N. Constraining the dark energy equation of state using Bayes theorem and the Kullback–Leibler divergence. Mon. Not. R. Astron. Soc. 466, 369–377 (2017).
Higson, E., Handley, W., Hobson, M. & Lasenby, A. Bayesian sparse reconstruction: a brute-force approach to astronomical imaging and machine learning. Mon. Not. R. Astron. Soc. 483, 4828–4846 (2019).
Renk, J. J. et al. CosmoBit: a GAMBIT module for computing cosmological observables and likelihoods. J. Cosmology Astropart. Phys. https://doi.org/10.1088/1475-7516/2021/02/022 (2021).
Stöcker, P. et al. Strengthening the bound on the mass of the lightest neutrino with terrestrial and cosmological experiments. Phys. Rev. D. 103, 123508 (2021).
Anstey, D., de Lera Acedo, E. & Handley, W. A general Bayesian framework for foreground modelling and chromaticity correction for global 21cm experiments. Mon. Not. R. Astron. Soc. 506, 2041–2058 (2021).
Martin, S. P. A supersymmetry primer. Adv. Ser. Direct. High. Energy Phys. 18, 1–98 (1998).
de Austri, R. R., Trotta, R. & Roszkowski, L. A Markov chain Monte Carlo analysis of the CMSSM. J. High Energy Phys. 05, 002 (2006).
Trotta, R., Feroz, F., Hobson, M. P., Roszkowski, L. & de Austri, R. R. The impact of priors and observables on parameter inferences in the constrained MSSM. J. High Energy Phys. 12, 024 (2008).
Feroz, F., Cranmer, K., Hobson, M., de Austri, R. R. & Trotta, R. Challenges of profile likelihood evaluation in multidimensional SUSY scans. J. High Energy Phys. 06, 042 (2011).
Trotta, R. et al. Constraints on cosmic-ray propagation models from a global Bayesian analysis. Astrophys. J. 729, 106 (2011).
AbdusSalam, S. S., Allanach, B. C., Quevedo, F., Feroz, F. & Hobson, M. Fitting the phenomenological MSSM. Phys. Rev. D. 81, 095012 (2010).
Strege, C. et al. Updated global fits of the cMSSM including the latest LHC SUSY and Higgs searches and XENON100 data. J. Cosmol. Astropart. Phys. 03, 030 (2012).
Buchmueller, O. et al. The CMSSM and NUHM1 after LHC run 1. Eur. Phys. J. C 74, 2922 (2014).
Fowlie, A. et al. The CMSSM favoring new territories: the impact of new LHC limits and a 125 GeV Higgs. Phys. Rev. D. 86, 075010 (2012).
Fowlie, A., Kowalska, K., Roszkowski, L., Sessolo, E. M. & Tsai, Y.-L. S. Dark matter and collider signatures of the MSSM. Phys. Rev. D. 88, 055012 (2013).
Catena, R. & Gondolo, P. Global fits of the dark matter–nucleon effective interactions. J. Cosmol. Astropart. Phys. 09, 045 (2014).
de Vries, K. J. et al. The pMSSM10 after LHC run 1. Eur. Phys. J. C. 75, 422 (2015).
Hernández, P., Kekic, M., López-Pavón, J., Racker, J. & Salvado, J. Testable baryogenesis in seesaw models. J. High Energy Phys. 08, 157 (2016).
Kreisch, C. D., Cyr-Racine, F.-Y. & Doré, O. Neutrino puzzle: anomalies, interactions, and cosmological tensions. Phys. Rev. D. 101, 123505 (2020).
Martinez, G. et al. Comparison of statistical sampling methods with scannerbit, the GAMBIT scanning module. Eur. Phys. J. C 77, 761 (2017).
Balázs, C. et al. A comparison of optimisation algorithms for high-dimensional particle and astrophysics applications. J. High Energy Phys. 05, 108 (2021).
Fowlie, A., Hoof, S. & Handley, W. Nested sampling for frequentist computation: fast estimation of small p-values. Phys. Rev. Lett. 128, 021801 (2022).
Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).
Aasi, J. et al. Advanced LIGO. Class. Quant. Grav. 32, 074001 (2015).
Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quant. Grav. 32, 024001 (2015).
Abbott, R. et al. GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. Preprint at https://arxiv.org/abs/2111.03606 (2021).
Veitch, J. & Vecchio, A. A Bayesian approach to the follow-up of candidate gravitational wave signals. Phys. Rev. D. 78, 022001 (2008).
Abbott, B. P. et al. Model comparison from LIGO–Virgo data on GW170817’s binary components and consequences for the merger remnant. Class. Quant. Grav. 37, 045006 (2020).
Smith, R. J. E., Ashton, G., Vajpeyi, A. & Talbot, C. Massively parallel Bayesian inference for transient gravitational-wave astronomy. Mon. Not. R. Astron. Soc. 498, 4492–4502 (2020).
Pitkin, M., Isi, M., Veitch, J. & Woan, G. A nested sampling code for targeted searches for continuous gravitational waves from pulsars. Preprint at https://arxiv.org/abs/1705.08978 (2017).
Abbott, B. P. et al. Searches for gravitational waves from known pulsars at two harmonics in 2015–2017 LIGO data. Ap. J. 879, 10 (2019).
Lynch, R., Vitale, S., Essick, R., Katsavounidis, E. & Robinet, F. Information-theoretic approach to the gravitational-wave burst detection problem. Phys. Rev. D. 95, 104046 (2017).
Powell, J., Gossan, S. E., Logue, J. & Heng, I. S. Inferring the core-collapse supernova explosion mechanism with gravitational waves. Phys. Rev. D. 94, 123012 (2016).
Smith, R. & Thrane, E. Optimal search for an astrophysical gravitational-wave background. Phys. Rev. X 8, 021019 (2018).
Futamase, T. & Itoh, Y. The post-Newtonian approximation for relativistic compact binaries. Living Rev. Relativ. 10, 2 (2007).
Blanchet, L. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 17, 2 (2014).
Hannam, M. Modelling gravitational waves from precessing black-hole binaries: progress, challenges and prospects. Gen. Relativ. Gravit. 46, 1767 (2014).
Bishop, N. T. & Rezzolla, L. Extraction of gravitational waves in numerical relativity. Living Rev. Relativ. 19, 2 (2016).
Baiotti, L. Gravitational waves from neutron star mergers and their relation to the nuclear equation of state. Prog. Part. Nucl. Phys. 109, 103714 (2019).
Veitch, J. et al. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys. Rev. D 91, 042003 (2015).
Cornish, N. J. et al. BayesWave analysis pipeline in the era of gravitational wave observations. Phys. Rev. D 103, 044006 (2021).
Whittle, P. Curve and periodogram smoothing. J. R. Stat. Society: Ser. B 19, 38–63 (1957).
Vitale, S. et al. Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era. Phys. Rev. D 85, 064034 (2012).
Thrane, E. & Talbot, C. An introduction to Bayesian inference in gravitational-wave astronomy: parameter estimation, model selection, and hierarchical models. PASA 36, e010 (2019).
Callister, T. A. A thesaurus for common priors in gravitational-wave astronomy. Preprint at https://arxiv.org/abs/2104.09508 (2021).
Szekeres, B., Pártay, L. B. & Mátyus, E. Direct computation of the quantum partition function by path-integral nested sampling. J. Chem. Theory Comput. 14, 4353–4359 (2018).
Sciortino, F., Kob, W. & Tartaglia, P. Thermodynamics of supercooled liquids in the inherent-structure formalism: a case study. J. Phys. Condens. Matt. 12, 6525–6534 (2000).
Wales, D. J. Surveying a complex potential energy landscape: overcoming broken ergodicity using basin-sampling. Chem. Phys. Lett. 584, 1–9 (2013).
Wales, D. J. Energy Landscapes (Cambridge Univ. Press, 2003).
Wales, D. J. & Bogdan, T. V. Potential energy and free energy landscapes. J. Phys. Chem. B 110, 20765–20776 (2006).
Becker, O. M. & Karplus, M. The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics. J. Chem. Phys. 106, 1495–1517 (1997).
Wales, D. J., Miller, M. A. & Walsh, T. R. Archetypal energy landscapes. Nature 394, 758–760 (1998).
Krivov, S. V. & Karplus, M. Free energy disconnectivity graphs: application to peptide models. J. Chem. Phys. 117, 10894–10903 (2002).
Evans, D. A. & Wales, D. J. Free energy landscapes of model peptides and proteins. J. Chem. Phys. 118, 3891–3897 (2003).
Li, Z. & Scheraga, H. A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc. Natl Acad. Sci. USA 84, 6611–6615 (1987).
Wales, D. J. & Doye, J. P. K. Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997).
Wales, D. J. & Scheraga, H. A. Global optimization of clusters, crystals and biomolecules. Science 285, 1368–1372 (1999).
Martiniani, S., Stevenson, J. D., Wales, D. J. & Frenkel, D. Superposition enhanced nested sampling. Phys. Rev. X 4, 031034 (2014).
Bolhuis, P. G. & Csányi, G. Nested transition path sampling. Phys. Rev. Lett. 120, 250601 (2018).
Murray, I., MacKay, D. J. C., Ghahramani, Z. & Skilling, J. in Proc. 18th Int. Conf. Neural Information Processing Systems (eds Weiss, Y., Schölkopf, B. & Platt, J.) 947–954 (MIT Press, 2005).
Pfeifenberger, M. J., Rumetshofer, M. & von der Linden, W. Nested sampling, statistical physics and the Potts model. J. Comput. Phys. 375, 368–392 (2018).
Pártay, L. B., Bartók, A. P. & Csányi, G. Nested sampling for materials: the case of hard spheres. Phys. Rev. E 89, 022302 (2014).
Wilson, B. A., Gelb, L. D. & Nielsen, S. O. Nested sampling of isobaric phase space for the direct evaluation of the isothermal–isobaric partition function of atomic systems. J. Chem. Phys. 143, 154108 (2015).
Bartók, A. P., Hantal, G. & Pártay, L. B. Insight into liquid polymorphism from the complex phase behavior of a simple model. Phys. Rev. Lett. 127, 015701 (2021).
Baldock, R. J. N., Bernstein, N., Salerno, K. M., Pártay, L. B. & Csányi, G. Constant-pressure nested sampling with atomistic dynamics. Phys. Rev. E 96, 43311–43324 (2017).
Dorrell, J. & Pártay, L. B. Pressure–temperature phase diagram of lithium, predicted by embedded atom model potentials. J. Phys. Chem. B 124, 6015–6023 (2020).
Pártay, L. B. On the performance of interatomic potential models of iron: comparison of the phase diagrams. Comput. Mater. Sci. 149, 153–157 (2018).
Deringer, V. L. et al. Gaussian process regression for materials and molecules. Chem. Rev. 121, 10073–10141 (2021). PMID: 34398616.
Rosenbrock, C. W. et al. Machine-learned interatomic potentials for alloys and alloy phase diagrams. npj Comp. Mat 7, 24 (2021).
Pártay, L. B., Csányi, G. & Bernstein, N. Nested sampling for materials. Eur. Phys. J. B 94, 159 (2021).
Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Hergt, L. T., Handley, W. J., Hobson, M. P. & Lasenby, A. N. Bayesian evidence for the tensor-to-scalar ratio r and neutrino masses mν: effects of uniform vs logarithmic priors. Phys. Rev. D 103, 123511 (2021).
Alsing, J. & Handley, W. Nested sampling with any prior you like. Mon. Not. R. Astron. Soc. 505, L95–L99 (2021).
Murray, I. Advances in Markov Chain Monte Carlo Methods. PhD Thesis, Univ. College London (2007).
Riley, T. E. Neutron Star Parameter Estimation from a NICER Perspective. PhD Thesis, Anton Pannekoek Institute for Astronomy (2019).
Schittenhelm, D. & Wacker, P. Nested sampling and likelihood plateaus. Preprint at https://arxiv.org/abs/2005.08602 (2020).
Fowlie, A., Handley, W. & Su, L. Nested sampling with plateaus. Mon. Not. R. Astron. Soc. 503, 1199–1205 (2021).
Lewis, A. Efficient sampling of fast and slow cosmological parameters. Phys. Rev. D. 87, 103529 (2013).
Lewis, A. & Bridle, S. Cosmological parameters from CMB and other data: a Monte Carlo approach. Phys. Rev. D. 66, 103511 (2002).
Chen, X., Hobson, M., Das, S. & Gelderblom, P. Improving the efficiency and robustness of nested sampling using posterior repartitioning. Stat. Comput. 29, 835–850 (2019).
Chen, X., Feroz, F. & Hobson, M. Bayesian automated posterior repartitioning for nested sampling. Preprint at https://arxiv.org/abs/1908.04655 (2019).
Akrami, Y., Scott, P., Edsjo, J., Conrad, J. & Bergstrom, L. A profile likelihood analysis of the constrained MSSM with genetic algorithms. J. High Energy Phys. 04, 057 (2010).
Brewer, B. J. & Foreman-Mackey, D. DNest4: diffusive nested sampling in C++ and Python. J. Stat. Softw. 86, 1–33 (2018).
Corsaro, E. & De Ridder, J. DIAMONDS: a new Bayesian nested sampling tool. European Physical Journal Web of Conferences https://doi.org/10.1051/epjconf/201510106019 (2015).
Barbary, K. Nestle: pure Python, MIT-licensed implementation of nested sampling algorithms for evaluating Bayesian evidence. GitHub https://github.com/kbarbary/nestle (2018).
Trassinelli, M. The Nested_fit data analysis program. MDPI Proc. 33, 14 (2019).
Trassinelli, M. & Ciccodicola, P. Mean shift cluster recognition method implementation in the nested sampling algorithm. Entropy 22, 185 (2020).
Veitch, J. et al. johnveitch/cpnest: release 0.10.2. zenodo https://doi.org/10.5281/zenodo.592884 (2017).
Moss, A. Accelerated Bayesian inference using deep learning. Mon. Not. R. Astron. Soc. 496, 328–338 (2020).
Kester, D. & Mueller, M. BayesicFitting, a PYTHON toolbox for Bayesian fitting and evidence calculation: including a nested sampling implementation. Astronomy and Computing 37, 100503 (2021).
Buchner, J. UltraNest — a robust, general purpose Bayesian inference engine. J. Open. Source Softw. 6, 3001 (2021).
Albert, J. G. JAXNS: a high-performance nested sampling package based on JAX. Preprint at https://arxiv.org/abs/2012.15286 (2020).
Handley, W. Curvature tension: evidence for a closed universe. Phys. Rev. D 103, L041301 (2021).
Abbott, B. P. et al. GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016).
Wales, D. J. The energy landscape as a unifying theme in molecular science. Phil. Trans. R. Soc. A 363, 357–377 (2005).
van de Schoot, R. et al. Bayesian statistics and modelling. Nat. Rev. Methods Primers 1, 1 (2021).
D’Agostini, G. Bayesian Reasoning In Data Analysis: A Critical Introduction (World Scientific, 2003).
Gregory, P. Bayesian Logical Data Analysis for the Physical Sciences (Cambridge Univ. Press, 2005).
von der Linden, W., Dose, V. & von Toussaint, U. Bayesian Probability Theory: Applications in the Physical Sciences (Cambridge University Press, 2014).
Bailer-Jones, C. A. L. Practical Bayesian Inference: A Primer for Physical Scientists (Cambridge Univ. Press, 2017).
Embrechts, P. & Hofert, M. A note on generalized inverses. Math. Methods Oper. Res. 77, 423–432 (2013).
de la Fortelle, A. A study on generalized inverses and increasing functions Part I: generalized inverses. HAL https://hal.archives-ouvertes.fr/hal-01255512 (2015).
Cérou, F., Moral, P., Furon, T. & Guyader, A. Sequential Monte Carlo for rare event estimation. Stat. Comput. 22, 795–808 (2012).
Creutz, M. Microcanonical Monte Carlo simulation. Phys. Rev. Lett. 50, 1411 (1983).
Wang, F. & Landau, D. P. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050–2053 (2001).
Acknowledgements
The authors thank J. Skilling for his wonderful algorithm. The success of nested sampling may be that simple beats clever; but the beauty of nested sampling is that it is both simple and clever. They thank K. Barbary for discussions. A.F. was supported by a National Natural Science Foundation of China (NSFC) Research Fund for International Young Scientists (grant 11950410509). L.B.P. acknowledges support from the Engineering and Physical Sciences Research Council (EPSRC) through an Early Career Fellowship (EP/T000163/1). M. Habeck acknowledges support from the Carl Zeiss Foundation. N.B. was funded by the US Naval Research Laboratory’s base 6.1 research program, and CPU time from the US Department of Defence (DoD) High Performance Computing Modernization Program Office (HPCMPO) at the Air Force Research Laboratory (AFRL) and Army Research Laboratory (ARL) DoD Supercomputing Research Centers (DSRCs). M.P. acknowledges support from the Science and Technology Facilities Council (STFC) (ST/V001213/1 and ST/V005707/1). W.H. was supported by a Royal Society University Research Fellowship.
Author information
Authors and Affiliations
Contributions
Introduction (A.F., M. Habeck, D.S., L.S. and P.W.); Experimentation (J.B., E.H. and J.S.S.); Results (A.F.); Applications (G.A., N.B., X.C., G.C., F.a.F., M.G., M. Habeck, M. Hobson, W.H., A.L., L.B.P., M.P., D.P., J. V., D.J.W. and D.Y.); Reproducibility and data deposition (A.F.); Limitations and optimizations (A.F.); Outlook (A.F.); Overview of the Primer (A.F.).
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks Roberto Trotta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
anesthetic: https://github.com/williamjameshandley/anesthetic
dynesty: https://github.com/joshspeagle/dynesty
dyPolyChord: https://github.com/ejhigson/dyPolyChord
MultiNest: https://github.com/farhanferoz/MultiNest
nestcheck: https://github.com/ejhigson/nestcheck
nessai: https://github.com/mj-will/nessai
PolyChord: https://github.com/PolyChord/PolyChordLite
Supplementary information
Glossary
- Markov chain Monte Carlo
-
A class of algorithms for drawing a correlated sequence of samples from a distribution using the states of a Markov chain.
- Multimodal
-
Refers to problems in which the integrand contains more than one mode. In inference problems, modes may correspond to distinct ways in which the model could predict the observed data.
- Integrands
-
Functions that are being integrated.
- Prior
-
A probability density that is not yet conditioned on observed data. In nested sampling, it is a measure in our integral.
- Likelihood
-
The probability of the observed data as a function of a model’s parameters.
- Evidence
-
A factor in Bayes’ theorem that may be written as an integral and that plays an important role in Bayesian model comparison. In nested sampling, this is the multidimensional integral we wish to compute.
- Posterior
-
A probability density conditioned on the observed data found by updating a prior using Bayes’ theorem. In nested sampling, it describes the shape of our integrand.
- Bayesian model comparison
-
A method for comparing models based on computing the change in their relative plausibility in light of data using Bayes’ theorem.
- Curse of dimensionality
-
The phenomenon that the difficulty of a problem often increases dramatically with dimension.
- Unimodal
-
Problems in which the integrand contains only one mode.
- Constrained prior
-
The prior for the parameters restricted to the region in which the likelihood exceeds a threshold.
- Bulk
-
A region with size of order e−H, where H is the Kullback–Leibler divergence, that contains the overwhelming majority of the posterior mass. Closely related to typical sets. Usually, the bulk will not lie near the mode of the posterior, especially in high dimensions.
- Tractable
-
An adjective used to describe problems that are feasible to solve under computational, monetary or time constraints.
- Markov chain
-
A sequence of random states for which the probability of a state depends only on the previous state.
- Measure
-
A probability measure is a function assigning probabilities to events.
- Kullback–Leibler divergence
-
(H). A measure of difference between two distributions that may be interpreted as the information gained by switching from one to the other.
- Modes
-
Peaks in a probability distribution.
- Parameter domain
-
The set of a priori possible parameters, usually the reals Rn or a subset thereof.
- Overloaded
-
A function with a definition that depends on the type of its argument. In nested sampling, the likelihood L is an overloaded function as we consider separate functions L(θ) and L(X).
- Survival function
-
A function F(x) associated with a distribution that returns the probability of obtaining a sample greater than x.
- Super-level sets
-
A λ-super-level set of any function contains all points for which the function value exceeds λ.
- Push-forward measure
-
(Also known as image measure). The distribution of a random variable under a probability measure.
- Transition kernels
-
Functions that describe the likely steps of a Markov chain.
- Iso-likelihood contour
-
The set of points for which the likelihood is equal to a particular constant; in two dimensions, this set forms a contour line.
- Bootstrapping
-
Refers to techniques that estimate statistical variation by repeatedly drawing samples from the true data set with replacement.
- Indicator function
-
A function that takes the value one if a condition holds, and zero otherwise.
- Partition function
-
A normalizing constant that fully characterizes a physical system, because many important thermodynamic variables can be derived from it.
- Insertion indexes
-
The indexes at which the elements of a list must be inserted into an ordered list to maintain ordering.
- Simulation-based calibration
-
Techniques that use simulations from the model to check the correctness of Bayesian computation.
- Microstate
-
The state of all degrees of freedom in a physical system; for example, the microstate of a multi-particle system includes the positions and momenta of all particles.
- Microcanonical ensemble
-
Assigns equal probability to states Θ with E(Θ) = ε and zero probability otherwise, such that the energy level ε rather than the inverse temperature β characterizes a thermodynamic state.
- Pseudo-importance sampling
-
Using algorithms in which an importance sampling density is defined a posteriori.
Rights and permissions
About this article
Cite this article
Ashton, G., Bernstein, N., Buchner, J. et al. Nested sampling for physical scientists. Nat Rev Methods Primers 2, 39 (2022). https://doi.org/10.1038/s43586-022-00121-x
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-022-00121-x
This article is cited by
-
Forming intracluster gas in a galaxy protocluster at a redshift of 2.16
Nature (2023)
-
Exploring the configuration space of elemental carbon with empirical and machine learned interatomic potentials
npj Computational Materials (2023)