Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cosmogenic nuclide techniques

Abstract

Cosmogenic nuclide techniques have advanced the geosciences by providing tools for exposure age dating, burial dating, quantification of denudation rates and more. Advances in geochemistry, accelerator mass spectrometry and atom trap trace analyses are ushering in a new cosmogenic nuclide era, by improving the sensitivity of measurements to ultra-trace levels that now allow new applications of these techniques to numerous Earth surface processes. The advances in cosmogenic nuclide techniques have equipped the next generation of geoscientists with invaluable tools for understanding the planet, but addressing pressing needs requires rising to an even greater challenge: imbuing within the cosmogenic community, and the geosciences as a whole, a commitment to justice, equity, diversity and inclusion that matches our dedication to scientific research. In this Primer, we review the state of the art and recent exciting breakthroughs in the use of cosmogenic nuclide techniques, focusing on erosion factories over space and time, and new perspectives on ice sheet stability. We also highlight promising ways forward in enhancing inclusion in the field, as well as obstacles that remain to be overcome.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Cosmogenic nuclide production systematics.
Fig. 2: Experimental procedure.
Fig. 3: Instrumental set-up for AMS and ATTA.
Fig. 4: Representative results.
Fig. 5: Applications of cosmogenic nuclides to studying source-to-sink processes and the history of the Greenland Ice Sheet.
Fig. 6: Precision and accuracy of cosmogenic nuclide determinations.
Fig. 7: Metadata reported in basin-wide cosmogenic 10Be studies published between 1995 and 2020.
Fig. 8: Timeline of gender parity in cosmogenic nuclide geosciences.

References

  1. Davis, R. J. & Schaeffer, O. A. Chlorine-36 in nature. Ann. N.Y. Acad. Aci. 62, 105–122 (1955).

    ADS  Google Scholar 

  2. Suter, M. et al. Precision-measurements of C-14 in AMS — some results and prospects. Nucl Instrum Methods Phys Res B 5, 117–122 (1984).

    ADS  Google Scholar 

  3. Graf, T., Kohl, C. P., Marti, K. & Nishiizumi, K. Cosmic-ray produced neon in antarctic rocks. Geophys. Res. Lett. 18, 203–206 (1991).

    ADS  Google Scholar 

  4. Kurz, M. D. Cosmogenic helium in a terrestrial igneous rock. Nature 320, 435–439 (1986).

    ADS  Google Scholar 

  5. Lal, D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet. Sci. Lett. 104, 424–439 (1991).

    ADS  Google Scholar 

  6. Nishiizumi, K., Lal, D., Klein, R., Middleton, R. & Arnold, J. R. Production of 10Be and 26Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates. Nature 319, 134–136 (1986).

    ADS  Google Scholar 

  7. Phillips, F. M., Leavy, B. D., Jannik, N. O., Elmore, D. & Kubik, P. W. The accumulation pf cosmogenic Cl-36 in rocks — a method for surface exposure dating. Science 231, 41–43 (1986).

    ADS  Google Scholar 

  8. Balco, G. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quat. Sci. Rev. 30, 3–27 (2011).

    ADS  Google Scholar 

  9. Balco, G. Glacier change and paleoclimate applications of cosmogenic-nuclide exposure dating. Annu. Rev. Earth Planet. Sci. 48, 21–48 (2020).

    ADS  Google Scholar 

  10. Cerling, T. E. & Craig, H. Geomorphology and in-situ cosmogenic isotopes. Annu. Rev. Earth Planet. Sci. 22, 273–317 (1994).

    ADS  Google Scholar 

  11. Gosse, J. C. & Phillips, F. M. Terrestrial in situ cosmogenic nuclides: theory and application. Quat. Sci. Rev. 20, 1475–1560 (2001).

    ADS  Google Scholar 

  12. Kurz, M. D. & Brook, E. J. in Dating in Exposed and Surface Contexts (ed. Beck, C.) 139–159 (Univ. New Mexico Press, 1994).

  13. Blard, P. H., Bourles, D., Lave, J. & Pik, R. Applications of ancient cosmic-ray exposures: theory, techniques and limitations. Quat. Geochronol. 1, 59–73 (2006).

    Google Scholar 

  14. Brown, L., Klein, J., Middleton, R., Sacks, I. S. & Tera, F. BE-10 in island-arc volcanos and implications for subduction. Nature 299, 718–720 (1982).

    ADS  Google Scholar 

  15. Ivy-Ochs, S., Schlüchter, C., Prentice, M., Kubik, P. W. & Beer, J. 10Be and 26Al exposure ages for the Sirius Group at Mt. Fleming, Mt. Feather and the plateau surface at Table Mt. The Antarctic Region: Geological Evolution and Processes https://www.dora.lib4ri.ch/eawag/islandora/object/eawag:4487 (1997).

  16. Balco, G. Technical note: A prototype transparent-middle-layer data management and analysis infrastructure for cosmogenic-nuclide exposure dating. Geochronology 2, 169–175 (2020).

    ADS  Google Scholar 

  17. Putnam, A. E., Bromley, G. R. M., Rademaker, K. & Schaefer, J. M. In situ Be-10 production-rate calibration from a C-14-dated late-glacial moraine belt in Rannoch Moor, central Scottish Highlands. Quat. Geochronol. 50, 109–125 (2019).

    Google Scholar 

  18. Granger, D. E. & Muzikar, P. F. Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations. Earth Planet. Sci. Lett. 188, 269–281 (2001).

    ADS  Google Scholar 

  19. Corbett, L. B. et al. Cosmogenic Al-26/Be-10 surface production ratio in Greenland. Geophys. Res. Lett. 44, 1350–1359 (2017).

    ADS  Google Scholar 

  20. Balco, G. & Shuster, D. L. Al-26–Be-10–Ne-21 burial dating. Earth Planet. Sci. Lett. 286, 570–575 (2009).

    ADS  Google Scholar 

  21. Granger, D. E. A review of burial dating methods using Al-26 and Be-10. Geol. Soc. Am. https://doi.org/10.1130/2006.2415(01) (2006).

    Article  Google Scholar 

  22. Nishiizumi, K. Preparation of Al-26 AMS standards. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 223, 388–392 (2004).

    ADS  Google Scholar 

  23. Chmeleff, J., von Blanckenburg, F., Kossert, K. & Jakob, D. Determination of the Be-10 half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268, 192–199 (2010).

    ADS  Google Scholar 

  24. Korschinek, G. et al. A new value for the half-life of Be-10 by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268, 187–191 (2010).

    ADS  Google Scholar 

  25. von Blanckenburg, F. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Lett. 237, 462–479 (2005).

    ADS  Google Scholar 

  26. Willenbring, J. K. & von Blanckenburg, F. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 465, 211–214 (2010).

    ADS  Google Scholar 

  27. Willenbring, J. K. & von Blanckenburg, F. Meteoric cosmogenic beryllium-10 adsorbed to river sediment and soil: applications for Earth-surface dynamics. Earth Sci. Rev. 98, 105–122 (2010).

    ADS  Google Scholar 

  28. Wittmann, H., Malusa, M. G., Resentini, A., Garzanti, E. & Niedermann, S. The cosmogenic record of mountain erosion transmitted across a foreland basin: source-to-sink analysis of in situ Be-10, Al-26 and Ne-21 in sediment of the Po river catchment. Earth Planet. Sci. Lett. 452, 258–271 (2016).

    ADS  Google Scholar 

  29. Wittmann, H., von Blanckenburg, F., Maurice, L., Guyot, J. L. & Kubik, P. W. Recycling of Amazon floodplain sediment quantified by cosmogenic Al-26 and Be-10. Geology 39, 467–470 (2011).

    ADS  Google Scholar 

  30. Beer, J. et al. Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core. Nature 331, 675–679 (1988).

    ADS  MathSciNet  Google Scholar 

  31. Loosli, H. H. & Oeschger, H. 37Ar and 81Kr in the atmosphere. Earth Planet. Sci. Lett. 7, 67–78 (1969).

    ADS  Google Scholar 

  32. Loosli, H. H. A dating method with Ar-39. Earth Planet. Sci. Lett. 63, 51–62 (1983).

    ADS  Google Scholar 

  33. Lu, Z. T. et al. Tracer applications of noble gas radionuclides in the geosciences. Earth Sci. Rev. 138, 196–214 (2014).

    ADS  Google Scholar 

  34. Tian, L. et al. Kr-81 dating at the guliya ice cap, Tibetan Plateau. Geophys. Res. Lett. 46, 6636–6643 (2019).

    ADS  Google Scholar 

  35. Buizert, C. et al. Greenland temperature response to climate forcing during the last deglaciation. Science 345, 1177–1180 (2014).

    ADS  Google Scholar 

  36. Broecker, W. S. & Peng, T.-H. Comparison of 39Ar and 14C ages for waters in the deep ocean. Nucl. Instrum. Methods Phys. Res. B 172, 473–478 (2000).

    ADS  Google Scholar 

  37. Moore, A. K., Granger, D. E. & Conyers, G. Beryllium cycling through deciduous trees and implications for meteoric 10Be systematics. Chem. Geol. 571, 120174 (2021).

    ADS  Google Scholar 

  38. Phillips, F. M. et al. The CRONUS-Earth Project: a synthesis. Quat. Geochronol. 31, 119–154 (2016).

    Google Scholar 

  39. Kurz, M. D. In situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochim. Cosmochim. Acta 50, 2855–2862 (1986).

    ADS  Google Scholar 

  40. Butler, R. Destructive sampling ethics. Nat. Geosci. 8, 817–818 (2015).

    ADS  Google Scholar 

  41. Mogk, D. W. & Bruckner, M. Z. Geoethics training in the Earth and environmental sciences. Nat. Rev. Earth Environ. 1, 81–83 (2020).

    ADS  Google Scholar 

  42. David-Chavez, D. M. & Gavin, M. C. A global assessment of Indigenous community engagement in climate research. Environ. Res. Lett. 13, 123005 (2018).

    Google Scholar 

  43. Reano, D. Using Indigenous research frameworks in the multiple contexts of research, teaching, mentoring, and leading. Qual. Rep. 25, 3902–3926 (2020).

    Google Scholar 

  44. Carroll, S. R. et al. The CARE principles for Indigenous Data Governance. Data Sci. J. 19, 43 (2020).

    Google Scholar 

  45. Kohl, C. P. & Nishiizumi, K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim. Cosmochim. Acta 56, 3583–3587 (1992).

    ADS  Google Scholar 

  46. Mifsud, C., Fujioka, T. & Fink, D. Extraction and purification of quartz in rock using hot phosphoric acid for in situ cosmogenic exposure dating. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 294, 203–207 (2013).

    ADS  Google Scholar 

  47. Stone, J. A rapid fusion method for separation of beryllium-10 from soils and silicates. Geochem. Cosmochem. Acta 62, 555–561 (1998).

    ADS  Google Scholar 

  48. Schaefer, J. M. et al. High frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. Science 324, 622 (2009).

    ADS  Google Scholar 

  49. Synal, H.-A. Developments in accelerator mass spectrometry. Int. J. Mass. Spectrom. 349, 192–202 (2013).

    Google Scholar 

  50. Wilcken, K. M. et al. SIRIUS performance: 10Be, 26Al and 36Cl measurements at ANSTO. Nucl. Instrum. Methods Phys. Res. B 455, 300–304 (2019).

    ADS  Google Scholar 

  51. Kober, F. et al. In situ cosmogenic 10Be and 21Ne in sanidine and in situ cosmogenic 3He in Fe–Ti-oxide minerals. Earth Planet. Sci. Lett. 236, 404–418 (2005).

    ADS  Google Scholar 

  52. Eaves, S. R. et al. Further constraint of the in situ cosmogenic Be-10 production rate in pyroxene and a viability test for late Quaternary exposure dating. Quat. Geochronol. 48, 121–132 (2018).

    Google Scholar 

  53. Braucher, R., Blard, P. H., Benedetti, L. & Bourles, D. L. in In Situ-Produced Cosmogenic Nuclides and Quantification of Geological Processes Vol. 415 Geological Society of America Special Papers (eds AlonsoZarza, A. M. & Tanner, L. H.) 17–28 (Geological Society of America, 2006).

  54. Stone, J. O., Allan, G. L., Fifield, L. K. & Cresswell, R. G. Cosmogenic chlorine-36 from calcium spallation. Geochim.Cosmochim. Acta 60, 679–692 (1996).

    ADS  Google Scholar 

  55. Schimmelpfennig, I. et al. Calibration of cosmogenic 36Cl production rates from Ca and K spallation in lava flows from Mt. Etna (38° N, Italy) and Payun-Matru (36° S, Argentina). Geochim. Cosmochim. Acta 75, 2611–2632 (2011).

    ADS  Google Scholar 

  56. Schimmelpfennig, I. et al. Cl-36 production rate from K-spallation in the European Alps (Chironico landslide, Switzerland). J. Quat. Sci. 29, 407–413 (2014).

    Google Scholar 

  57. Stone, J. O. H., Evans, J. M., Fifield, L. K., Allan, G. L. & Cresswell, R. G. Cosmogenic chlorine-36 production in calcite by muons. Geoch. Cosmochim. Acta 62f, 433–454 (1997).

    ADS  Google Scholar 

  58. Herber, L. J. Separation of feldspar from quartz by flotation. Am. Miner. 54, 1212–1215 (1969).

    Google Scholar 

  59. Sulaymonova, V. A. et al. Feldspar flotation as a quartz-purification method in cosmogenic nuclide dating: a case study of fluvial sediments from the Pamir. MethodsX 5, 717–726 (2018).

    Google Scholar 

  60. Bromley, G. R. M. et al. Pyroxene separation by HF leaching and its impact on helium surface-exposure dating. Quat. Geochronol. 23, 1–8 (2014).

    Google Scholar 

  61. Bruno, L. A. et al. Dating of Sirius Group tillites in the Antarctic Dry Valleys with cosmogenic 3He and 21Ne. Earth Planet. Sci. Lett. 147, 37–54 (1997).

    ADS  Google Scholar 

  62. Balter-Kennedy, A., Bromley, G., Balco, G., Thomas, H. & Jackson, M. S. A 14.5-million-year record of East Antarctic Ice Sheet fluctuations from the central Transantarctic Mountains, constrained with cosmogenic He-3, Be-10, Ne-21, and Al-26. Cryosphere 14, 2647–2672 (2020).

    ADS  Google Scholar 

  63. Moore, A. K. & Granger, D. E. Watershed-averaged denudation rates from cosmogenic 36Cl in detrital magnetite. Earth Planet. Sci. Lett. 527, 115761 (2019).

    Google Scholar 

  64. Moore, A. K. & Granger, D. E. Calibration of the production rate of cosmogenic 36Cl from Fe. Quat. Geochronol. 51, 87–98 (2019).

    Google Scholar 

  65. Lifton, N. A., Jull, A. J. T. & Quade, J. A new extraction technique and production rate estimate for in situ cosmogenic 14C in quartz. Geochim. Cosmochim. Acta 65, 1953–1969 (2001).

    ADS  Google Scholar 

  66. Roman, H. Measurements of in-Situ Production of 14C in SiO2 Production Rates and Cross-Sections. PhD thesis, McMaster University (1989).

  67. Jull, A. J. T., Wilson, A. E., Burr, G. S., Toolin, L. J. & Donahue, D. J. Measurements of cosmogenic C-14 produced by spallation in high-altitude rocks. Radiocarbon 34, 737–744 (1992).

    Google Scholar 

  68. Fülöp, R.-H. et al. Update on the performance of the SUERC in situ cosmogenic C-14 extraction line. Radiocarbon 52, 1288–1294 (2010).

    Google Scholar 

  69. Goehring, B. M., Schimmelpfennig, I. & Schaefer, J. M. Capabilities of the Lamont–Doherty Earth Observatory in situ C-14 extraction laboratory updated. Quat. Geochronol. 19, 194–197 (2014).

    Google Scholar 

  70. Goehring, B. M., Wilson, J. & Nichols, K. A fully automated system for the extraction of in situ cosmogenic carbon-14 in the Tulane University cosmogenic nuclide laboratory. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 455, 284–292 (2019).

    ADS  Google Scholar 

  71. Lifton, N., Goehring, B., Wilson, J., Kubley, T. & Caffee, M. Progress in automated extraction and purification of in situ C-14 from quartz: results from the Purdue in situ C-14 laboratory. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 361, 381–386 (2015).

    ADS  Google Scholar 

  72. Fülöp, R.-H. et al. The ANSTO–University of Wollongong in-situ 14C extraction laboratory. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 438, 207–213 (2019).

    ADS  Google Scholar 

  73. Hippe, K. et al. An update on in situ cosmogenic C-14 analysis at ETH Zurich. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 294, 81–86 (2013).

    ADS  Google Scholar 

  74. Sliz, M. U., Espic, C., Hofmann, B. A., Leya, I. & Szidat, S. An update on the performance of the in situ C-14 extraction line at the University of Bern. Radiocarbon 62, 1371–1388 (2020).

    Google Scholar 

  75. Lupker, M. et al. In-situ cosmogenic C-14 analysis at ETH Zurich: characterization and performance of a new extraction system. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 457, 30–36 (2019).

    ADS  Google Scholar 

  76. Lupker, M. et al. Depth-dependence of the production rate of in situ C-14 in quartz from the Leymon High core, Spain. Quat. Geochronol. 28, 80–87 (2015).

    Google Scholar 

  77. Goehring, B. et al. The Rhone Glacier was smaller than today for most of the Holocene. Geology 39, 679–682 (2011).

    ADS  Google Scholar 

  78. Wirsig, C. et al. Combined cosmogenic Be-10, in situ C-14 and Cl-36 concentrations constrain Holocene history and erosion depth of Grueben glacier (CH). Swiss J. Geosci. 109, 379–388 (2016).

    Google Scholar 

  79. Young, N. E. et al. In situ cosmogenic 10Be–14C–26Al measurements from recently deglaciated bedrock as a new tool to decipher changes in Greenland Ice Sheet size. Clim. Past. 17, 419–450 (2021).

    Google Scholar 

  80. Fülöp, R.-H. et al. Million-year lag times in a post-orogenic sediment conveyor. Sci. Adv. 6, eaaz8845 (2020).

    ADS  Google Scholar 

  81. Hippe, K. et al. Cosmogenic in situ 14C–10Be reveals abrupt Late Holocene soil loss in the Andean Altiplano. Nat. Commun. 12, 2546–2546 (2021).

    ADS  Google Scholar 

  82. Zappala, J. C., McLain, D., Mueller, P. & Steeb, J. L. Enhanced detection limits for radiokrypton analysis. J. Radioanal. Nucl. Chem. 326, 1075–1079 (2020).

    Google Scholar 

  83. Dong, X.-Z. et al. Dual separation of krypton and argon from environmental samples for radioisotope dating. Anal. Chem. 91, 13576–13581 (2019).

    Google Scholar 

  84. Jull, A. J. T. & Burr, G. S. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.) 375–383 (Elsevier, 2014).

  85. Bennett, C. L. et al. Radiocarbon dating using electrostatic accelerators — negative-ions provide key. Science 198, 508–510 (1977).

    ADS  Google Scholar 

  86. Muller, R. A. Radioisotope dating with a cyclotron. Science 196, 489–494 (1977).

    ADS  Google Scholar 

  87. Nelson, D. E., Korteling, R. G. & Stott, W. R. C-14 — direct detection at natural concentrations. Science 198, 507–508 (1977).

    ADS  Google Scholar 

  88. Raisbeck, G. M., Yiou, F., Fruneau, M. & Loiseaux, J. M. BE-10 mass-spectrometry with a cyclotron. Science 202, 215–217 (1978).

    ADS  Google Scholar 

  89. Turekian, K. K. et al. Measurement of BE-10 in manganese nodules using a tandem Van de Graaff accelerator. Geophys. Res. Lett. 6, 417–420 (1979).

    ADS  Google Scholar 

  90. Hidy, A. J. et al. A new Be-7 AMS capability established at CAMS and the potential for large datasets. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 414, 126–132 (2018).

    ADS  Google Scholar 

  91. Rood, D. H., Brown, T. A., Finkel, R. C. & Guilderson, T. P. Poisson and non-Poisson uncertainty estimations of Be-10/Be-9 measurements at LLNL-CAMS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 294, 426–429 (2013).

    ADS  Google Scholar 

  92. Rood, D. H., Hall, S., Guilderson, T. P., Finkel, R. C. & Brown, T. A. Challenges and opportunities in high-precision Be-10 measurements at CAMS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268, 730–732 (2010).

    ADS  Google Scholar 

  93. Fifield, L. K., Tims, S. G., Gladkis, L. G. & Morton, C. R. Al-26 measurements with Be-10 counting statistics. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 259, 178–183 (2007).

    ADS  Google Scholar 

  94. Braumann, S. M. et al. Holocene glacier change in the Silvretta Massif (Austrian Alps) constrained by a new Be-10 chronology, historical records and modern observations. Quat. Sci. Rev. 245, 106493 (2020).

    Google Scholar 

  95. Paul, M. Separation of isobars with a gas-filled magnet. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 52, 315–321 (1990).

    ADS  Google Scholar 

  96. Granger, D. E. et al. New cosmogenic burial ages for Sterkfontein Member 2 Australopithecus and Member 5 Oldowan. Nature 522, 85–88 (2015).

    ADS  Google Scholar 

  97. Argento, D. C., Stone, J. O., Fifield, L. K. & Tims, S. G. Chlorine-36 in seawater. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268, 1226–1228 (2010).

    ADS  Google Scholar 

  98. Ramsey, C. B., Higham, T. & Leach, P. Towards high-precision AMS: progress and limitations. Radiocarbon 46, 17–24 (2004).

    Google Scholar 

  99. Yang, B., Smith, A. M. & Long, S. Second generation laser-heated microfurnace for the preparation of microgram-sized graphite samples. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 361, 363–371 (2015).

    ADS  Google Scholar 

  100. Melchert, J. O. et al. Exploring sample size limits of AMS gas ion source C-14 analysis at CologneAMS. Radiocarbon 61, 1785–1793 (2019).

    Google Scholar 

  101. Wacker, L. et al. A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 294, 315–319 (2013).

    ADS  Google Scholar 

  102. Fujioka, T. et al. In situ cosmogenic 53Mn production rate from ancient low-denudation surface in tropic Brazil. Nucl. Instrum. Methods Phys. Res. B 268, 1209–1213 (2010).

    ADS  Google Scholar 

  103. Schaefer, J. M. et al. Terrestrial 53Mn — a new monitor of Earth surface processes. Earth Planet. Sci. Lett. 251, 334–345 (2006).

    ADS  Google Scholar 

  104. Aldrich, L. T. & Nier, A. O. Variation of He-3 He-4 abundance ratio in natural sources of helium. Phys. Rev. 74, 1225–1225 (1948).

    Google Scholar 

  105. Reynolds, J. H. High sensitivity mass spectrometer for noble gas analysis. Rev. Sci. Instrum. 27, 928–934 (1956).

    ADS  Google Scholar 

  106. Niedermann, S. et al. Cosmic-ray-produced 21Ne in terrestrial quartz: the neon inventory of Sierra Nevada quartz separates. Earth Planet. Sci. Lett. 125, 341–355 (1994).

    ADS  Google Scholar 

  107. Niedermann, S., Graf, T. & Marti, K. Mass spectrometric identification of cosmic-ray-produced neon in terrestrial rocks with multiple neon components. Earth Planet. Sci. Lett. 118, 65–73 (1993).

    ADS  Google Scholar 

  108. Ritter, B., Vogt, A. & Dunai, T. J. Technical Note: Noble gas extraction procedure and performance of the Cologne Helix MC Plus multi-collector noble gas mass spectrometer for cosmogenic neon isotope analysis. Geochronol. Discuss. 2021, 1–16 (2021).

    Google Scholar 

  109. Renne, P. R., Farley, K. A., Becker, T. A. & Sharp, W. D. Terrestrial cosmogenic argon. Earth Planet. Sci. Lett. 188, 435–440 (2001).

    ADS  Google Scholar 

  110. Niedermann, S., Schaefer, J. M., Wieler, R. & Naumann, R. The production rate of cosmogenic 38Ar from calcium in terrestrial pyroxene. Earth Planet. Sci. Lett. 257, 596–608 (2007).

    ADS  Google Scholar 

  111. Raab, E. L., Prentiss, M., Cable, A., Chu, S. & Pritchard, D. E. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631–2634 (1987).

    ADS  Google Scholar 

  112. Granger, D. E., Lifton, N. A. & Willenbring, J. K. A cosmic trip: 25 years of cosmogenic nuclides in geology. Geol. Soc. Am. Bull. 125, 1379–1402 (2013).

    ADS  Google Scholar 

  113. Putnam, A. E. et al. Glacier advance in southern middle-latitudes during the Antarctic Cold Reversal. Nat. Geosci. 3, 700–704 (2010).

    ADS  Google Scholar 

  114. Spector, P. et al. Rapid early-Holocene deglaciation in the Ross Sea, Antarctica. Geophys. Res. Lett. 44, 7817–7825 (2017).

    ADS  Google Scholar 

  115. Ullman, D. J. et al. Southern Laurentide ice-sheet retreat synchronous with rising boreal summer insolation. Geology 43, 23–26 (2015).

    ADS  Google Scholar 

  116. Kelly, M. A. et al. Expanded glaciers during a dry and cold Last Glacial Maximum in equatorial East Africa. Geology 42, 519–522 (2014).

    ADS  Google Scholar 

  117. Levy, L. B. et al. Coeval fluctuations of the Greenland Ice Sheet and a local glacier, central East Greenland, during late glacial and early Holocene time. Geophys. Res. Lett. 43, 1623–1631 (2016).

    ADS  Google Scholar 

  118. Schaefer, J. M. et al. The Southern Glacial Maximum 65,000 years ago and its unfinished termination. Quat. Sci. Rev. 114, 52–60 (2015).

    ADS  Google Scholar 

  119. Strand, P. D. et al. Millennial-scale pulsebeat of glaciation in the Southern Alps of New Zealand. Quat. Sci. Rev. 220, 165–177 (2019).

    ADS  Google Scholar 

  120. Young, N. E. et al. Deglaciation of the Greenland and Laurentide ice sheets interrupted by glacier advance during abrupt coolings. Quat. Sci. Rev. 229, 106091 (2020).

    Google Scholar 

  121. Zhang, Q. et al. Quaternary glaciations in the Lopu Kangri area, central Gangdise Mountains, southern Tibetan Plateau. Quat. Sci. Rev. 201, 470–482 (2018).

    ADS  Google Scholar 

  122. Ivy-Ochs, S. et al. The timing of glacier advances in the northern European Alps based on surface exposure dating with cosmogenic Be-10, Al-26, Cl-36, and Ne-21. GSA Spec. Pap. 415, 43–60 (2006).

    Google Scholar 

  123. Ivy-Ochs, S. et al. Chronology of the last glacial cycle in the European Alps. J. Quat. Sci. 23, 559–573 (2008).

    Google Scholar 

  124. Larsen, N. K. et al. Holocene ice marginal fluctuations of the Qassimiut lobe in South Greenland. Sci. Rep. 6, 22362 (2016).

    ADS  Google Scholar 

  125. Larsen, N. K. et al. Strong altitudinal control on the response of local glaciers to Holocene climate change in southwest Greenland. Quat. Sci. Rev. 168, 69–78 (2017).

    ADS  Google Scholar 

  126. Levy, L. B. et al. Multi-phased deglaciation of south and southeast Greenland controlled by climate and topographic setting. Quat. Sci. Rev. 242, 106454 (2020).

    Google Scholar 

  127. Claude, A. et al. The Chironico landslide (Valle Leventina, southern Swiss Alps): age and evolution. Swiss J. Geosci. 107, 273–291 (2014).

    Google Scholar 

  128. Putnam, A. et al. In situ cosmogenic 10Be production-rate calibration from the Southern Alps, New Zealand. Quat. Geochronol. 5, 392–409 (2010).

    Google Scholar 

  129. Briner, J. P., Young, N. E., Goehring, B. & Schaefer, J. M. Constraining Holocene 10Be production rates in Greenland. J. Quat. Sci. 27, 2–6 (2012).

    Google Scholar 

  130. Fenton, C. R. et al. Regional 10Be production rate calibration for the past 12 ka deduced from the radiocarbon-dated Grotlandsura and Russenes rock avalanches at 69° N, Norway. Quat. Geochronol. 6, 437–452 (2011).

    Google Scholar 

  131. Young, N. E., Schaefer, J. M., Briner, J. P. & Goehring, B. M. A Be-10 production-rate calibration for the Arctic. J. Quat. Sci. 28, 515–526 (2013).

    Google Scholar 

  132. Borchers, B. et al. Geological calibration of spallation production rates in the CRONUS-Earth Project. Quat. Geochronol. 31, 188–198 (2016).

    Google Scholar 

  133. Schimmelpfennig, I. et al. Calibration of the in situ cosmogenic 14C production rate in New Zealand’s Southern Alps. J. Quat. Sci. 27, 671–674 (2012).

    Google Scholar 

  134. Young, N. E. et al. West Greenland and global in situ C-14 production-rate calibrations. J. Quat. Sci. 29, 401–406 (2014).

    Google Scholar 

  135. Fenton, C. R., Niedermann, S., Dunai, T. & Binnie, S. A. The SPICE project: production rates of cosmogenic Ne-21, Be-10, and C-14 in quartz from the 72 ka SP basalt flow, Arizona, USA. Quat. Geochronol. 54, 101019 (2019).

    Google Scholar 

  136. Lal, D., Malhotra, P. K. & Peters, B. On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology. J. Atmos. Terr. Phys. 12, 306–328 (1958).

    ADS  Google Scholar 

  137. Argento, D. C., Stone, J. O., Reedy, R. C. & O’Brien, K. Physics-based modeling of cosmogenic nuclides part I — radiation transport methods and new insights. Quat. Geochronol. 26, 29–43 (2015).

    Google Scholar 

  138. Argento, D. C., Stone, J. O., Reedy, R. C. & O’Brien, K. Physics-based modeling of cosmogenic nuclides part II — key aspects of in-situ cosmogenic nuclide production. Quat. Geochronol. 26, 44–55 (2015).

    Google Scholar 

  139. Lifton, N., Sato, T. & Dunai, T. J. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett. 386, 149–160 (2014).

    ADS  Google Scholar 

  140. Masarik, J. & Reedy, R. C. Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations. Earth Planet. Sci. Lett. 136, 381–395 (1995).

    ADS  Google Scholar 

  141. Balco, G., Stone, J. O., Lifton, N. A. & Dunai, T. J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from Be-10 and Al-26 measurements. Quat. Geochronol. 3, 174–195 (2008).

    Google Scholar 

  142. Marrero, S. M. et al. Cosmogenic nuclide systematics and the CRONUScalc program. Quat. Geochronol. 31, 160–187 (2016).

    Google Scholar 

  143. Akçar, N. et al. The AD 1717 rock avalanche deposits in the upper Ferret Valley (Italy): a dating approach with cosmogenic 10Be. J. Quat. Sci. 27, 383–392 (2012).

    Google Scholar 

  144. Kaplan, M. et al. Patagonian and southern South Atlantic view of Holocene climate. Quat. Sci. Rev. 141, 112–125 (2016).

    ADS  Google Scholar 

  145. Putnam, A. E. et al. Regional climate control of glaciers in New Zealand and Europe during the pre-industrial Holocene. Nat. Geosci. 5, 627–630 (2012).

    ADS  Google Scholar 

  146. Reynhout, S. et al. Holocene glacier fluctuations in Patagonia are modulated by summer insolation intensity and paced by Southern Annular Mode-like variability. Quat. Sci. Rev. 220, 178–187 (2019).

    ADS  Google Scholar 

  147. Schimmelpfennig, I. et al. Holocene glacier culminations in the Western Alps and their hemispheric relevance. Geology 40, 891–894 (2012).

    ADS  Google Scholar 

  148. Eaves, S. R. et al. Late-glacial and Holocene glacier fluctuations in North Island, New Zealand. Quat. Sci. Rev. 223, 105914 (2019).

    Google Scholar 

  149. Schimmelpfennig, I. et al. A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, CentralAlps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth Planet. Sci. Lett. 393, 220–230 (2014).

    ADS  Google Scholar 

  150. Halsted, C. T., Bierman, P. R. & Balco, G. Empirical evidence for latitude and altitude variation of the in situ cosmogenic 26Al/10Be production ratio. Geosciences 11, 402 (2021).

    ADS  Google Scholar 

  151. Balco, G. Chlorine-36∕beryllium-10 burial dating of alluvial fan sediments associated with the Mission Creek strand of the San Andreas Fault system, California, USA. Geochronology 1, 1–16 (2019).

    ADS  Google Scholar 

  152. Goehring, B. M., Muzikar, P. & Lifton, N. A. An in situ 14C–10Be Bayesian isochron approach for interpreting complex glacial histories. Quat. Geochronol. 15, 61–66 (2013).

    Google Scholar 

  153. Brown, L., Pavich, M. J., Hickman, R. E., Klein, J. & Middleton, R. Erosion of the eastern-United-States observed with Be-10. Earth Surf. Process. Landf. 13, 441–457 (1988).

    ADS  Google Scholar 

  154. Codilean, A. T. et al. OCTOPUS: an open cosmogenic isotope and luminescence database. Earth Syst. Sci. Data 10, 2123–2139 (2018).

    ADS  Google Scholar 

  155. Kirchner, J. W. et al. Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales. Geology 29, 591–594 (2001).

    ADS  Google Scholar 

  156. Riebe, C. S., Kirchner, J. W., Granger, D. E. & Finkel, R. C. Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic Al-26 and Be-10 in alluvial sediment. Geology 28, 803–806 (2000).

    ADS  Google Scholar 

  157. Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. & Finkel, R. C. The soil production function and landscape equilibrium. Nature 388, 358–361 (1997).

    ADS  Google Scholar 

  158. Schaller, M. & Ehlers, T. A. Limits to quantifying climate driven changes in denudation rates with cosmogenic radionuclides. Earth Planet. Sci. Lett. 248, 153–167 (2006).

    ADS  Google Scholar 

  159. Allen, P. A. From landscapes into geological history. Nature 451, 274–276 (2008).

    ADS  Google Scholar 

  160. Cyr, A. J. & Granger, D. E. Dynamic equilibrium among erosion, river incision, and coastal uplift in the northern and central Apennines, Italy. Geology 36, 103–106 (2008).

    ADS  Google Scholar 

  161. Grischott, R. et al. Millennial scale variability of denudation rates for the last 15 kyr inferred from the detrital Be-10 record of Lake Stappitz in the Hohe Tauern massif, Austrian Alps. Holocene 27, 1914–1927 (2017).

    ADS  Google Scholar 

  162. Madella, A., Delunel, R., Akcar, N., Schlunegger, F. & Christl, M. Be-10-inferred paleo-denudation rates imply that the mid-Miocene western central Andes eroded as slowly as today. Sci. Rep. 8, 2299 (2018).

    ADS  Google Scholar 

  163. Oskin, M. E. et al. Steady Be-10-derived paleoerosion rates across the Plio-Pleistocene climate transition, Fish Creek-Vallecito basin, California. J. Geophys. Res. Earth Surf. 122, 1653–1677 (2017).

    ADS  Google Scholar 

  164. Gerber, C. et al. Using Kr-81 and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale. Geochim. Cosmochim. Acta 205, 187–210 (2017).

    ADS  Google Scholar 

  165. Weber, N. et al. The circulation of the Dead Sea brine in the regional aquifer. Earth Planet. Sci. Lett. 493, 242–261 (2018).

    ADS  Google Scholar 

  166. Yechieli, Y. et al. Recent seawater intrusion into deep aquifer determined by the radioactive noble-gas isotopes Kr-81 and Ar-39. Earth Planet. Sci. Lett. 507, 21–29 (2019).

    ADS  Google Scholar 

  167. Ram, R. et al. Identifying recharge processes into a vast “fossil” aquifer based on dynamic groundwater Kr-81 age evolution. J. Hydrol. 587, 124946 (2020).

    Google Scholar 

  168. Yokochi, R. et al. Radiokrypton unveils dual moisture sources of a deep desert aquifer. Proc. Natl Acad. Sci. USA 116, 16222–16227 (2019).

    ADS  Google Scholar 

  169. Zhang, J. et al. Inflection points on groundwater age and geochemical profiles along wellbores light up hierarchically nested flow systems. Geophys. Res. Lett. 48, e2020GL092337 (2021).

    ADS  Google Scholar 

  170. Aggarwal, P. K. et al. Continental degassing of He-4 by surficial discharge of deep groundwater. Nat. Geosci. 8, 35–39 (2015).

    ADS  Google Scholar 

  171. Matsumoto, T. et al. Application of combined Kr-81 and He-4 chronometers to the dating of old groundwater in a tectonically active region of the North China Plain. Earth Planet. Sci. Lett. 493, 208–217 (2018).

    ADS  Google Scholar 

  172. Matsumoto, T. et al. Krypton-81 dating of the deep Continental Intercalaire aquifer with implications for chlorine-36 dating. Earth Planet. Sci. Lett. 535, 116120 (2020).

    Google Scholar 

  173. Buizert, C. et al. Radiometric Kr-81 dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica. Proc. Natl Acad. Sci. USA 111, 6876–6881 (2014).

    ADS  Google Scholar 

  174. Crotti, I. et al. An extension of the TALDICE ice core age scale reaching back to MIS 10.1. Quat. Sci. Rev. 266, 107078 (2021).

    Google Scholar 

  175. Crotti, I. et al. New δ18Oatm, δ18Oice and δDice profiles from deep ice of the TALDICE core. EGU General Assembly 2020 https://doi.org/10.5194/egusphere-egu2020-4179 (2020).

  176. Dixon, J. L. & Riebe, C. S. Tracing and pacing soil across slopes. Elements 10, 363–368 (2014).

    Google Scholar 

  177. Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504, 423–419 (2013).

    ADS  Google Scholar 

  178. Hippe, K. Constraining processes of landscape change with combined in situ cosmogenic C-14–Be-10 analysis. Quat. Sci. Rev. 173, 1–19 (2017).

    ADS  Google Scholar 

  179. Mudd, S. M., Harel, M.-A., Hurst, M. D., Grieve, S. W. D. & Marrero, S. M. The CAIRN method: automated, reproducible calculation of catchment-averaged denudation rates from cosmogenic nuclide concentrations. Earth Surf. Dyn. 4, 655–674 (2016).

    ADS  Google Scholar 

  180. Portenga, E. W. & Bierman, P. R. Understanding Earth’s eroding surface with 10Be. GSA Today 21, 4–10 (2011).

    Google Scholar 

  181. Willenbring, J. K., Codilean, A. T. & McElroy, B. Earth is (mostly) flat: apportionment of the flux of continental sediment over millennial time scales. Geology 41, 343–346 (2013).

    ADS  Google Scholar 

  182. Harel, M. A., Mudd, S. M. & Attal, M. Global analysis of the stream power law parameters based on worldwide Be-10 denudation rates. Geomorphology 268, 184–196 (2016).

    ADS  Google Scholar 

  183. Ben-Israel, M., Matmon, A., Hidy, A. J., Avni, Y. & Balco, G. Early-to-mid Miocene erosion rates inferred from pre-Dead Sea rift Hazeva River fluvial chert pebbles using cosmogenic Ne-21. Earth Surf. Dyn. 8, 289–301 (2020).

    ADS  Google Scholar 

  184. Rosenkranz, R., Schildgen, T., Wittmann, H. & Spiegel, C. Coupling erosion and topographic development in the rainiest place on Earth: Reconstructing the Shillong Plateau uplift history with in-situ cosmogenic Be-10. Earth Planet. Sci. Lett. 483, 39–51 (2018).

    ADS  Google Scholar 

  185. Brocard, G. Y., Willenbring, J. K., Miller, T. E. & Scatena, F. N. Relict landscape resistance to dissection by upstream migrating knickpoints. J. Geophys. Res. Earth Surf. 121, 1182–1203 (2016).

    ADS  Google Scholar 

  186. Hewawasam, T., von Blanckenburg, F., Schaller, M. & Kubik, P. Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology 31, 597–600 (2003).

    ADS  Google Scholar 

  187. Bekaddour, T. et al. Paleo erosion rates and climate shifts recorded by Quaternary cut-and-fill sequences in the Pisco Valley, central Peru. Earth Planet. Sci. Lett. 390, 103–115 (2014).

    ADS  Google Scholar 

  188. Fuller, T. K., Perg, L. A., Willenbring, J. K. & Lepper, K. Field evidence for climate-driven changes in sediment supply leading to strath terrace formation. Geology 37, 467–470 (2009).

    ADS  Google Scholar 

  189. Garcin, Y. et al. Short-lived increase in erosion during the African Humid Period: evidence from the northern Kenya Rift. Earth Planet. Sci. Lett. 459, 58–69 (2017).

    ADS  Google Scholar 

  190. Grischott, R. et al. Constant denudation rates in a high alpine catchment for the last 6 kyrs. Earth Surf. Process. Landf. 42, 1065–1077 (2017).

    ADS  Google Scholar 

  191. Marshall, J. A., Roering, J. J., Gavin, D. G. & Granger, D. E. Late Quaternary climatic controls on erosion rates and geomorphic processes in western Oregon, USA. Geol. Soc. Am. Bull. 129, 715–731 (2017).

    ADS  Google Scholar 

  192. Schaller, M. et al. A 30 000 yr record of erosion rates from cosmogenic Be-10 in Middle European river terraces. Earth Planet. Sci. Lett. 204, 307–320 (2002).

    ADS  Google Scholar 

  193. Haeuselmann, P., Granger, D. E., Jeannin, P. Y. & Lauritzen, S. E. Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland. Geology 35, 143–146 (2007).

    ADS  Google Scholar 

  194. Mason, C. C. & Romans, B. W. Climate-driven unsteady denudation and sediment flux in a high-relief unglaciated catchment-fan using Al-26 and Be-10: Panamint Valley, California. Earth Planet. Sci. Lett. 492, 130–143 (2018).

    ADS  Google Scholar 

  195. Pingel, H., Schildgen, T., Strecker, M. R. & Wittmann, H. Pliocene–Pleistocene orographic control on denudation in northwest Argentina. Geology 47, 359–362 (2019).

    ADS  Google Scholar 

  196. Balco, G. & Stone, J. O. H. Measuring middle Pleistocene erosion rates with cosmic-ray-produced nuclides in buried alluvial sediment, Fisher Valley, southeastern Utah. Earth Surf. Process. Landf. 30, 1051–1067 (2005).

    ADS  Google Scholar 

  197. Val, P., Hoke, G. D., Fosdick, J. C. & Wittmann, H. Reconciling tectonic shortening, sedimentation and spatial patterns of erosion from 10Be paleo-erosion rates in the Argentine Precordillera. Earth Planet. Sci. Lett. 450, 173–185 (2016).

    ADS  Google Scholar 

  198. Puchol, N. et al. Limited impact of Quaternary glaciations on denudation rates in Central Asia. Geol. Soc. Am. Bull. 129, 479–499 (2017).

    ADS  Google Scholar 

  199. Charreau, J. et al. Paleo-erosion rates in Central Asia since 9 Ma: a transient increase at the onset of Quaternary glaciations? Earth Planet. Sci. Lett. 304, 85–92 (2011).

    ADS  Google Scholar 

  200. Mariotti, A. et al. Nonlinear forcing of climate on mountain denudation during glaciations. Nat. Geosci. 14, 16–22 (2021).

    ADS  Google Scholar 

  201. Masson-Delmotte, V. et al. in Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty 32 (World Meteorological Organization, 2018).

  202. Tedesco, M. & Fettweis, X. Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland Ice Sheet. Cryosphere 14, 1209–1223 (2020).

    ADS  Google Scholar 

  203. Sasgen, I. et al. Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites. Commun. Earth Environ. 1, 8 (2020).

    ADS  Google Scholar 

  204. Briner, J. P. et al. Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century. Nature 586, 70–74 (2020).

    ADS  Google Scholar 

  205. Larsen, N. K. et al. The response of the southern Greenland Ice Sheet to the Holocene thermal maximum. Geology 43, 291–294 (2015).

    ADS  Google Scholar 

  206. Beel, C. R., Lifton, N. A., Briner, J. P. & Goehring, B. M. Quaternary evolution and ice sheet history of contrasting landscapes in Uummannaq and Sukkertoppen, western Greenland. Quat. Sci. Rev. 149, 248–258 (2016).

    ADS  Google Scholar 

  207. Briner, J. P. et al. Holocene climate change in Arctic Canada and Greenland. Quat. Sci. Rev. 147, 340–364 (2016).

    ADS  Google Scholar 

  208. Kelly, M. A. et al. A 10Be chronology of lateglacial and Holocene mountain glaciation in the Scoresby Sund region, east Greenland: implications for seasonality during lateglacial time. Quat. Sci. Rev. 27, 2273–2282 (2008).

    ADS  Google Scholar 

  209. Bierman, P. R. et al. Preservation of a preglacial landscape under the center of the Greenland Ice Sheet. Science 344, 402–405 (2014).

    ADS  Google Scholar 

  210. Bierman, P. R., Shakun, J. D., Corbett, L. B., Zimmerman, S. R. & Rood, D. H. A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years. Nature 540, 256–260 (2016).

    ADS  Google Scholar 

  211. Yau, A. M., Bender, M. L., Blunier, T. & Jouzel, J. Setting a chronology for the basal ice at Dye-3 and GRIP: implications for the long-term stability of the Greenland Ice Sheet. Earth Planet. Sci. Lett. 451, 1–9 (2016).

    ADS  Google Scholar 

  212. NEEM community members. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493, 489–494 (2013).

    ADS  Google Scholar 

  213. Schaefer, J. M. et al. Greenland was nearly ice-free for extended periods during the Pleistocene. Nature 540, 252–255 (2016).

    ADS  Google Scholar 

  214. Christ, A. J. et al. A multimillion-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century. Proc. Natl Acad. Sci. USA 118, e2021442118 (2021).

    Google Scholar 

  215. Voosen, P. Greenland rock cores to trace ice’s past melting. Science 369, 19 (2020).

    ADS  Google Scholar 

  216. Prush, V. B. & Oskin, M. E. A mechanistic erosion model for cosmogenic nuclide inheritance in single-clast exposure ages. Earth and Planet. Sci. Lett. 535, 116066 (2020).

    Google Scholar 

  217. Balco, G., Purvance, M. D. & Rood, D. H. Exposure dating of precariously balanced rocks. Quat. Geochronol. 6, 295–303 (2011).

    Google Scholar 

  218. Rood, A. H. et al. Earthquake hazard uncertainties improved using precariously balanced rocks. AGU Adv. 1, e2020AV000182 (2020).

    ADS  Google Scholar 

  219. Soldati, M., Barrows, T. T., Prampolini, M. & Fifield, K. L. Cosmogenic exposure dating constraints for coastal landslide evolution on the Island of Malta (Mediterranean Sea). J. Coast. Conserv. 22, 831–844 (2018).

    Google Scholar 

  220. Hurst, M. D., Rood, D. H., Ellis, M. A., Anderson, R. S. & Dornbusch, U. Recent acceleration in coastal cliff retreat rates on the south coast of Great Britain. Proc. Natl Acad. Sci. USA 113, 13336–13341 (2016).

    ADS  Google Scholar 

  221. Ramalho, R. S. et al. Hazard potential of volcanic flank collapses raised by new megatsunami evidence. Sci. Adv. 1, e1500456 (2015).

    ADS  Google Scholar 

  222. Tremblay, M. M., Shuster, D. L., Balco, G. & Cassata, W. S. Neon diffusion kinetics and implications for cosmogenic neon paleothermometry in feldspars. Geochim. Cosmochim. Acta 205, 14–30 (2017).

    ADS  Google Scholar 

  223. Zeitler, P. K. & Tremblay, M. M. Measuring noble gases for thermochronology. Elements 16, 343–345 (2020).

    Google Scholar 

  224. Tremblay, M. M. & Cassata, W. S. Noble gas thermochronology of extraterrestrial materials. Elements 16, 331–336 (2020).

    Google Scholar 

  225. Clarke, R. J., Partridge, T. C., Granger, D. E. & Caffe, M. W. Dating the Sterkfontein fossils. Science 301, 596–597 (2003).

    Google Scholar 

  226. Stuart, F. M. & Dunai, T. J. Editorial. Quat. Geochronol. 4, 435–436 (2009).

    Google Scholar 

  227. Binnie, S. A. et al. Preliminary results of CoQtz-N: a quartz reference material for terrestrial in situ cosmogenic Be-10 and Al-26 measurements. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 456, 203–212 (2019).

    ADS  Google Scholar 

  228. Jull, A. J. T., Scott, E. M. & Bierman, P. The CRONUS-Earth inter-comparison for cosmogenic isotope analysis. Quat. Geochronol. 26, 3–10 (2015).

    Google Scholar 

  229. Vermeesch, P. et al. Interlaboratory comparison of cosmogenic 21Ne in quartz. Quat. Geochronol. 26, 20–28 (2015).

    Google Scholar 

  230. Corbett, L. B., Bierman, P. R., Woodruff, T. E. & Caffee, M. W. A homogeneous liquid reference material for monitoring the quality and reproducibility of in situ cosmogenic 10Be and 26Al analyses. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 456, 180–185 (2019).

    ADS  Google Scholar 

  231. Dunai, T. J. & Stuart, F. M. Reporting of cosmogenic nuclide data for exposure age and erosion rate determinations. Quat. Geochronol. 4, 437–440 (2009).

    Google Scholar 

  232. Frankel, K. L., Finkel, R. C. & Owen, L. A. Terrestrial cosmogenic nuclide geochronology data reporting standards needed. EOS Trans. AGU 91, 31–32 (2010).

    ADS  Google Scholar 

  233. Wilkinson, M. D. et al. Comment: the FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Google Scholar 

  234. Heyman, J. Paleoglaciation of the Tibetan Plateau and surrounding mountains based on exposure ages and ELA depression estimates. Quat. Sci. Rev. 91, 30–41 (2014).

    ADS  Google Scholar 

  235. Blanckenburg, F. V., Belshaw, N. S. & O’Nions, R. K. Separation of Be-9 and cosmogenic Be-10 from environmental materials and SIMS isotope dilution analysis. Chem. Geol. 129, 93–99 (1996).

    ADS  Google Scholar 

  236. Binnie, S. A. et al. Separation of Be and Al for AMS using single-step column chromatography. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 361, 397–401 (2015).

    ADS  Google Scholar 

  237. Corbett, L. B., Bierman, P. R. & Rood, D. H. An approach for optimizing in situ cosmogenic Be-10 sample preparation. Quat. Geochronol. 33, 24–34 (2016).

    Google Scholar 

  238. Keddadouche, K. et al. Design and performance of an automated chemical extraction bench for the preparation of Be-10 and Al-26 targets to be analyzed by accelerator mass spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 456, 230–235 (2019).

    ADS  Google Scholar 

  239. Enge, T. G. et al. An automated chromatography procedure optimized for analysis of stable Cu isotopes from biological materials. J. Anal. At. Spectrom. 31, 2023–2030 (2016).

    Google Scholar 

  240. Retzmann, A., Zimmermann, T., Pröfrock, D., Prohaska, T. & Irrgeher, J. A fully automated simultaneous single-stage separation of Sr, Pb, and Nd using DGA Resin for the isotopic analysis of marine sediments. Anal. Bioanal. Chem. 409, 5463–5480 (2017).

    Google Scholar 

  241. Wefing, A.-M. et al. High precision U-series dating of scleractinian cold-water corals using an automated chromatographic U and Th extraction. Chem. Geol. 475, 140–148 (2017).

    ADS  Google Scholar 

  242. Romaniello, S. J. et al. Fully automated chromatographic purification of Sr and Ca for isotopic analysis. J. Anal. At. Spectrom. 30, 1906–1912 (2015).

    Google Scholar 

  243. Lamp, J. L. et al. Update on the cosmogenic in situ 14C laboratory at the Lamont–Doherty Earth Observatory. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 456, 157–162 (2019).

    ADS  Google Scholar 

  244. Altenkirch, R. et al. Operating the 120° Dipol-Magnet at the CologneAMS in a gas-filled mode. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 438, 184–188 (2019).

    ADS  Google Scholar 

  245. Vockenhuber, C., Miltenberger, K.-U. & Synal, H.-A. 36Cl measurements with a gas-filled magnet at 6 MV. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 455, 190–194 (2019).

    ADS  Google Scholar 

  246. Codilean, A. T. et al. Single-grain cosmogenic Ne-21 concentrations in fluvial sediments reveal spatially variable erosion rates. Geology 36, 159–162 (2008).

    ADS  Google Scholar 

  247. McPhillips, D., Bierman, P. R. & Rood, D. H. Millennial-scale record of landslides in the Andes consistent with earthquake trigger. Nat. Geosci. 7, 925–930 (2014).

    ADS  Google Scholar 

  248. Carretier, S., Regard, V., Leanni, L. & Farias, M. Long-term dispersion of river gravel in a canyon in the Atacama Desert, Central Andes, deduced from their Be-10 concentrations. Sci. Rep. 9, 17763 (2019).

    ADS  Google Scholar 

  249. Muzikar, P. Episodic erosion with a power law probability density, and the accumulation of cosmogenic nuclides. J. Geophys. Res. Earth Surf. 124, 2345–2355 (2019).

    ADS  Google Scholar 

  250. Skov, D. S., Egholm, D. L., Jansen, J. D., Sandiford, M. & Knudsen, M. F. Detecting landscape transience with in situ cosmogenic C-14 and Be-10. Quat. Geochronol. 54, 101008 (2019).

    Google Scholar 

  251. Charreau, J. et al. Basinga: a cell-by-cell GIS toolbox for computing basin average scaling factors, cosmogenic production rates and denudation rates. Earth Surf. Process. Landf. 44, 2349–2365 (2019).

    ADS  Google Scholar 

  252. Dannhaus, N., Wittmann, H., Kram, P., Christl, M. & von Blanckenburg, F. Catchment-wide weathering and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric Be-10/Be-9 ratios. Geochim. Cosmochim. Acta 222, 618–641 (2018).

    ADS  Google Scholar 

  253. Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N. & Rahmstorf, S. Current Atlantic meridional overturning circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021).

    ADS  Google Scholar 

  254. Chafik, L., Nilsen, J. E. Ø., Dangendorf, S., Reverdin, G. & Frederikse, T. North Atlantic Ocean circulation and decadal sea level change during the altimetry era. Sci. Rep. 9, 1041 (2019).

    ADS  Google Scholar 

  255. Carter, B. R. et al. Pacific anthropogenic carbon between 1991 and 2017. Glob. Biogeochem. Cycles 33, 597–617 (2019).

    Google Scholar 

  256. Ebser, S. et al. Ar-39 dating with small samples provides new key constraints on ocean ventilation. Nat. Commun. 9, 5046 (2018).

    ADS  Google Scholar 

  257. Wang, J. S. et al. Optical excitation and trapping of Kr-81. Phys. Rev. Lett. 127, 023201 (2021).

    ADS  Google Scholar 

  258. Yusoff, K. A Billion Black Anthropocenes or None (Univ. Minnesota Press, 2018).

  259. Sahagun, L. Caltech says it regrets drilling holes in sacred Native American petroglyph site. Los Angeles Times https://www.latimes.com/environment/story/2021-07-19/caltech-fined-for-damaging-native-american-cultural-site (2021).

  260. Bacon-Bercey, J. Statistics on Black meteorologists in six organizational units of the Federal Government. Bull. Am. Meteorol. Soc. 59, 576–580 (1978).

    ADS  Google Scholar 

  261. Morris, V. R. Combating racism in the geosciences: reflections from a black professor. AGU Adv. 2, e2020AV000358 (2021).

    ADS  Google Scholar 

  262. Ali, H. N. et al. An actionable anti-racism plan for geoscience organizations. Nat. Commun. 12, 3794 (2021).

    ADS  Google Scholar 

  263. Hofstra, B. et al. The diversity–innovation paradox in science. Proc. Natl Acad. Sci. USA 117, 9284 (2020).

    Google Scholar 

  264. Garcia, A. A., Semken, S. & Brandt, E. The construction of cultural consensus models to characterize ethnogeological knowledge. Geoheritage 12, 59 (2020).

    Google Scholar 

  265. Handley, H. K. et al. In Australasia, gender is still on the agenda in geosciences. Adv. Geosci. 53, 205–226 (2020).

    Google Scholar 

  266. Piccoli, F. & Guidobaldi, G. A report on gender diversity and equality in the geosciences: an analysis of the Swiss Geoscience Meetings from 2003 to 2019. Swiss J. Geosci. 114, 1 (2021).

    Google Scholar 

  267. Stone, J. O. Air pressure and cosmogenic isotope production. J. Geophys. Res. 105, 23753–23759 (2000).

    ADS  Google Scholar 

  268. Heisinger, B. et al. Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons. Earth Planet. Sci. Lett. 200, 357–369 (2002).

    ADS  Google Scholar 

  269. Heisinger, B. et al. Production of selected cosmogenic radionuclides by muons; 1. Fast muons. Earth Planet. Sci. Lett. 200, 345–355 (2002).

    ADS  Google Scholar 

  270. Dunai, T. J. & Lifton, N. A. The nuts and bolts of cosmogenic nuclide production. Elements 10, 347–350 (2014).

    Google Scholar 

  271. Dunai, J. T. Cosmogenic nuclides: principles, concepts and applications in the earth surface sciences (Cambridge Univ. Press, 2010).

  272. Bourles, D., Raisbeck, G. M. & Yiou, F. 10Be and 9Be in marine sediments and their potential for dating. Geochim. Cosmochim. Acta 53, 443–452 (1989).

    ADS  Google Scholar 

  273. Pastuovic, Z. et al. SIRIUS — a new 6 MV accelerator system for IBA and AMS at ANSTO. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 371, 142–147 (2016).

    ADS  Google Scholar 

  274. Synal, H.-A., Stocker, M. & Suter, M. MICADAS: a new compact radiocarbon AMS system. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 259, 7–13 (2007).

    ADS  Google Scholar 

  275. Chen, C. Y. et al. Ultrasensitive isotope trace analyses with a magneto-optical trap. Science 286, 1139–1141 (1999).

    Google Scholar 

  276. von Blanckenburg, F. & Willenbring, J. Cosmogenic nuclides: dates and rates of earth-surface change. Elements 10, 341–346 (2014).

    Google Scholar 

  277. Granger, D. E. & Schaller, M. Cosmogenic nuclides and erosion at the watershed scale. Elements 10, 369–373 (2014).

    Google Scholar 

  278. Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, 153 (2015).

    Google Scholar 

  279. Melles, M. et al. 2.8 Million years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science 337, 315–320 (2012).

    ADS  Google Scholar 

  280. Funder, S. et al. A 10,000-year record of Arctic Ocean sea-ice variability — view from the beach. Science 333, 747–750 (2011).

    ADS  Google Scholar 

  281. Fülöp, R. H., Wacker, L. & Dunai, T. J. Progress report on a novel in situ 14C extraction scheme at the University of Cologne. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 361, 20–24 (2015).

    ADS  Google Scholar 

  282. Blard, P. H. et al. An inter-laboratory comparison of cosmogenic 3He and radiogenic 4He in the CRONUS-P pyroxene standard. Quat. Geochronol. 26, 11–19 (2015).

    Google Scholar 

  283. Mechernich, S. et al. Carbonate and silicate intercomparison materials for cosmogenic Cl-36 measurements. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 455, 250–259 (2019).

    ADS  Google Scholar 

  284. Fraser, B. News in Focus: Daring scientists extract ice from Earth’s highest tropical glacier. Nature 573, 171–172 (2019).

    ADS  Google Scholar 

  285. North, M. A., Hastie, W. W. & Hoyer, L. Out of Africa: The underrepresentation of African authors in high-impact geoscience literature. Earth Sci. Rev. 208, 103262 (2020).

    Google Scholar 

  286. Fiser, R., Lozier, S., Graumlich, L. & White, L. AGU releases 2020 annual DEI report and new DEI dashboard (American Geophysical Union, 2021).

  287. Wadman, M. Disturbing allegations of sexual harassment in Antarctica leveled at noted scientist. Science https://doi.org/10.1126/science.aaq1428 (2017).

  288. Crenshaw, K. Demarginalizing the intersection of race and sex: a black feminist critique of antidiscrimination doctrine, feminist theory, and antiracist politics. Univ. Chic. Leg. Forum 1, 139–167 (1989).

    Google Scholar 

  289. Núñez, A.-M., Rivera, J. & Hallmark, T. Applying an intersectionality lens to expand equity in the geosciences. J. Geosci. Educ. 68, 97–114 (2020).

    ADS  Google Scholar 

Download references

Acknowledgements

J.M.S. acknowledges support by the National Science Foundation (NSF) (NSF-EAR-1933927) and the Vetlesen Foundation; J.K.W. acknowledges funding from grant NSF-EAR-1651243; A.T.C. and R.-H.F. acknowledge and pay respect to the traditional owners of the land on which they live and work; and Z.-T.L. acknowledges support from the National Natural Science Foundation of China (Grant No. 41727901). The authors are grateful to Y.-C. Fu for help in suggesting relevant references.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.M.S., A.T.C., J.K.W. and B.K.); Experimentation (J.M.S., A.T.C., J.K.W., Z.-T.L., R.-H.F. and B.K.); Results (J.M.S., A.T.C., J.K.W., Z.-T.L., R.-H.F., P.V. and B.K.); Applications (J.M.S., A.T.C., J.K.W., Z.-T. L., R.-H.F., P.V. and B.K.); Reproducibility and data deposition (J.M.S., A.T.C., J.K.W., P.V. and B.K.); Limitations and optimizations (J.M.S., A.T.C., J.K.W., Z.-T.L., R.-H.F. and B.K.); Outlook (J.M.S., A.T.C., J.K.W., Z.-T.L., R.-H.F., P.V. and B.K.); Overview of Primer (J.M.S. and J.K.W.).

Corresponding author

Correspondence to Joerg M. Schaefer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Regis Braucher, Derek Fabel, Paula Hilger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Dedication

Dedicated to Didier Bourlès (1955–2021).

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AGI Currents 2020: https://www.americangeosciences.org/sites/default/files/DB_2020-023-DiversityInTheGeosciences.pdf

ATTA method: http://atta.ustc.edu.cn/en-us/events/attaprimer.html

ExpAge: http://expage.github.io/

Froth flotation: https://www.physics.purdue.edu/primelab/MSL/froth_floatation.html

ICE-D: http://ice-d.org/

ICE-D production rate calibration data: http://calibration.ice-d.org/discussion/recent

IPCC SR15: https://www.ipcc.ch/sr15/

OCTOPUS: https://octopusdata.org/

Glossary

Rates of production

The rates at which specific nuclides are produced from a specific element or in a mineral. Production rates for all terrestrial cosmogenic nuclides vary spatially and appear to have varied temporally; they are often reported as normalized to sea level and high latitude.

Cosmogenic accumulation clock

Cosmic ray neutrons and muons produce terrestrial cosmogenic nuclides in near-surface rocks as a function of time.

Cosmogenic decay clock

Terrestrial cosmogenic nuclides in buried rocks decay according to their half-lives or remain constant if the cosmogenic nuclides are stable.

Denudation

The process of erosion, leaching and stripping due to the removal of material from higher to lower areas. The sum of weathering and erosion.

Surface exposure dating

Sampling a surface after an exposure time t and measuring the cosmogenic nuclides on the surface, divided by the production rate of this nuclide at this location and during this exposure time.

Burial dating

Buried samples measured after a burial time, where the terrestrial cosmogenic nuclide ratios reflect the period of burial and constrain the duration.

Basal zone

The lowermost tens of metres of ice, the upper metres of sub-ice bedrock and the potential sediment layer in between.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schaefer, J.M., Codilean, A.T., Willenbring, J.K. et al. Cosmogenic nuclide techniques. Nat Rev Methods Primers 2, 18 (2022). https://doi.org/10.1038/s43586-022-00096-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-022-00096-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing