Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Surface-enhanced Raman spectroscopy

Abstract

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive technique that enhances the Raman scattering of molecules supported by some nanostructured materials. SERS allows for the structural fingerprinting of low-concentration analytes through the plasmon-mediated amplification of electrical fields or chemical enhancement. Owing to its ultra-high sensitivity and selectivity, SERS has a vast array of applications in surface and interface chemistry, catalysis, nanotechnology, biology, biomedicine, food science, environmental analysis and other areas. This Primer aims to provide interdisciplinary readers with key points regarding SERS methods. We briefly introduce the basic theories of SERS enhancement mechanisms. Details about SERS equipment, SERS-active material preparation and SERS measurements are summarized, followed by results and typical methods for data analysis. Recent applications of SERS in multiple research fields are then highlighted, including probing surface reactions and interfacial charge transfer, structural characterization and chemical/biological sensing. Furthermore, spectral reproducibility, SERS technical limitations and possible optimizations are discussed to provide readers with methodological guidance for the rational design of related studies. The Primer ends with a discussion of promising opportunities for SERS-based research in the future.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: SERS and its mechanisms.
Fig. 2: Schematic of the Raman instrumental set-up.
Fig. 3: Schematic of common surface-enhanced Raman spectroscopy nanostructure fabrication strategies.
Fig. 4: SERS data analysis.
Fig. 5: Multivariate analysis of SERS data.
Fig. 6: Application of SERS to DSSCs.
Fig. 7: Intrinsic SERS for the investigation of biomolecule structures.

References

  1. Keresztury, G. in Handbook of Vibrational Spectroscopy Raman Spectroscopy: Theory (eds Chalmers, J. M. & Griffiths, P.) (Wiley, 2006).

  2. Siebert, F. & Hildebrandt, P. Theory of Infrared Absorption and Raman Spectroscopy (Wiley, 2007).

  3. Kneipp, K., Ozaki, Y. & Tian, Z.-Q. Recent Developments in Plasmon-Supported Raman Spectroscopy (45 Years of Enhanced Raman Signals) (World Scientific, 2017).

  4. Zong, C. et al. Surface-enhanced raman spectroscopy for bioanalysis: reliability and challenges. Chem. Rev. 118, 4946–4980 (2018).

    Google Scholar 

  5. Li, J.-F., Anema, J. R., Wandlowski, T. & Tian, Z.-Q. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Chem. Soc. Rev. 44, 8399–8409 (2015).

    Google Scholar 

  6. Alessandri, I. & Lombardi, J. R. Enhanced Raman scattering with dielectrics. Chem. Rev. 116, 14921–14981 (2016).

    Google Scholar 

  7. Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974). This article is the first demonstration of the observation of SERS.

    ADS  Google Scholar 

  8. Jeanmaire, D. L. R. & Duyne, R. P. V. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84, 1–20 (1977). This article is one of two demonstrating the discovery of SERS.

    Google Scholar 

  9. Albrecht, M. G. & Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977). This article is one of two demonstrating the discovery of SERS.

    Google Scholar 

  10. Ding, S.-Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).

    ADS  Google Scholar 

  11. Itoh, T., Yoshida, K. I., Tamaru, H., Biju, V. & Ishikawa, M. Experimental demonstration of the electromagnetic mechanism underlying surface enhanced Raman scattering using single nanoparticle spectroscopy. J. Photoch. Photobio. Chem. A 219, 167–179 (2011).

    Google Scholar 

  12. Moskovits, M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys. 69, 4159–4161 (1978). This article is the first demonstration of the role of surface plasmons in SERS.

    ADS  Google Scholar 

  13. Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    ADS  Google Scholar 

  14. Zhan, C. et al. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2, 216–230 (2018).

    Google Scholar 

  15. Hutter, E. & Fendler, J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004).

    Google Scholar 

  16. Verma, P. Tip-enhanced Raman spectroscopy: technique and recent advances. Chem. Rev. 117, 6447–6466 (2017).

    Google Scholar 

  17. Han, X. X., Ji, W., Zhao, B. & Ozaki, Y. Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Nanoscale 9, 4847–4861 (2017).

    Google Scholar 

  18. Chowdhury, J. How the charge transfer (CT) contributions influence the SERS spectra of molecules? A retrospective from the view of albrecht’s “A” and Herzberg–Teller contributions. Appl. Spectrosc. Rev. 50, 240–260 (2015).

    ADS  Google Scholar 

  19. Gersten, J. I., Birke, R. L. & Lombardi, J. R. Theory of enhance I light scattering from molecules adsorbed at the metal-solution interface. Phys. Rev. Lett. 43, 147–150 (1979). This article is the first demonstration of CT contribution to SERS.

    ADS  Google Scholar 

  20. Lombardi, J. R. & Birke, R. L. A unified view of surface-enhanced raman scattering. Acc. Chem. Res. 42, 734–742 (2009).

    Google Scholar 

  21. Lombardi, J. R. & Birke, R. L. The theory of surface-enhanced Raman scattering. J. Chem. Phys. 136, 144704 (2012).

    ADS  Google Scholar 

  22. Lombardi, J. R. & Birke, R. L. Theory of surface-enhanced raman scattering in semiconductors. J. Phys. Chem. C. 118, 11120–11130 (2014).

    Google Scholar 

  23. Liu, Y., Ma, H., Han, X. X. & Zhao, B. Metal–semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Mater. Horiz. 8, 370–382 (2021).

    ADS  Google Scholar 

  24. Sharma, B., Frontiera, R. R., Henry, A.-I., Ringe, E. & Van Duyne, R. P. SERS: materials, applications, and the future. Mater. Today 15, 16–25 (2012).

    Google Scholar 

  25. Pérez-Jiménez, A. I., Lyu, D., Lu, Z., Liu, G. & Ren, B. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. 11, 4563–4577 (2020).

    Google Scholar 

  26. Willets, K. A. Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 43, 3854–3864 (2014).

    Google Scholar 

  27. Yang, Z., Li, Q., Fang, Y. & Sun, M. Deep ultraviolet tip-enhanced Raman scattering. Chem. Commun. 47, 9131–9133 (2011).

    Google Scholar 

  28. Palonpon, A. F. et al. Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 8, 677–692 (2013).

    Google Scholar 

  29. Schlücker, S., Schaeberle, M. D., Huffman, S. W. & Levin, I. W. Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies. Anal. Chem. 75, 4312–4318 (2003).

    Google Scholar 

  30. Smith, R., Wright, K. L. & Ashton, L. Raman spectroscopy: an evolving technique for live cell studies. Analyst 141, 3590–3600 (2016).

    ADS  Google Scholar 

  31. Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000). This article presents the first conceptual demonstration of TERS.

    ADS  Google Scholar 

  32. Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. App. Phys. Lett. 76, 3130–3132 (2000).

    ADS  Google Scholar 

  33. Zhang, Z., Sheng, S., Wang, R. & Sun, M. Tip-enhanced raman spectroscopy. Anal. Chem. 88, 9328–9346 (2016).

    Google Scholar 

  34. Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Comm. 183, 333–336 (2000).

    ADS  Google Scholar 

  35. Yeo, B.-S., Stadler, J., Schmid, T., Zenobi, R. & Zhang, W. Tip-enhanced Raman spectroscopy–its status, challenges and future directions. Chem. Phys. Lett. 472, 1–13 (2009).

    ADS  Google Scholar 

  36. Jiang, N. et al. Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy. Nano Lett. 12, 5061–5067 (2012).

    ADS  Google Scholar 

  37. Kurouski, D., Zaleski, S., Casadio, F., Van Duyne, R. P. & Shah, N. C. Tip-enhanced raman spectroscopy (TERS) for in situ identification of indigo and iron gall ink on paper. J. Am. Chem. Soc. 136, 8677–8684 (2014).

    Google Scholar 

  38. Tian, Z. Q., Ren, B. & Mao, B. W. Extending surface raman spectroscopy to transition metal surfaces for practical applications. 1. Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces. J. Phys. Chem. B 101, 1338–1346 (1997). This article is the first demonstration of SERS on a transition metal.

    Google Scholar 

  39. Pilot, R. et al. A review on surface-enhanced Raman scattering. Biosensors 9, 57 (2019).

    Google Scholar 

  40. Yamada, H., Yamamoto, Y. & Tani, N. Surface-enhanced Raman scattering (SERS) of adsorbed molecules on smooth surfaces of metals and a metal oxide. Chem. Phys. Lett. 86, 397–400 (1982). This article is the first demonstration of SERS on a semiconducting material.

    ADS  Google Scholar 

  41. Lin, X.-M., Cui, Y., Xu, Y.-H., Ren, B. & Tian, Z.-Q. Surface-enhanced Raman spectroscopy: substrate-related issues. Anal. Bioanal. Chem. 394, 1729–1745 (2009).

    Google Scholar 

  42. Halas, N. J. & Moskovits, M. Surface-enhanced Raman spectroscopy: substrates and materials for research and applications. MRS Bull. 38, 607–611 (2013).

    Google Scholar 

  43. Slepička, P., Slepičková Kasálková, N., Siegel, J., Kolská, Z. & Švorčík, V. Methods of gold and silver nanoparticles preparation. Materials 13, 1 (2019).

    ADS  Google Scholar 

  44. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20–22 (1973).

    ADS  Google Scholar 

  45. Lee, P. C. & Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. C. 86, 3391–3395 (1982).

    Google Scholar 

  46. Kang, H. et al. Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem. Rev. 119, 664–699 (2019).

    Google Scholar 

  47. Guerrini, L., Alvarez-Puebla, R. A. & Pazos-Perez, N. Surface modifications of nanoparticles for stability in biological fluids. Materials 11, 1154 (2018).

    ADS  Google Scholar 

  48. Liebig, F. et al. Spiked gold nanotriangles: formation, characterization and applications in surface-enhanced Raman spectroscopy and plasmon-enhanced catalysis. RSC Adv. 10, 8152–8160 (2020).

    ADS  Google Scholar 

  49. Garcia-Leis, A., Garcia-Ramos, J. V. & Sanchez-Cortes, S. Silver nanostars with high SERS performance. J. Phys. Chem. C. 117, 7791–7795 (2013).

    Google Scholar 

  50. Kundu, S. A new route for the formation of Au nanowires and application of shape-selective Au nanoparticles in SERS studies. J. Mater. Chem. C. 1, 831–842 (2012).

    Google Scholar 

  51. Roy, S., Ajmal, C. M., Baik, S. & Kim, J. Silver nanoflowers for single-particle SERS with 10 pM sensitivity. Nanotechnology 28, 465705 (2017).

    Google Scholar 

  52. Chang, H.-H. & Murphy, C. J. Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm. Chem. Mater. 30, 1427–1435 (2018).

    Google Scholar 

  53. Cohen-Pope, S. et al. Morphology control of SERS-active 2D gold nanosnowflakes. J. Mater. Chem. C. 8, 12427–12436 (2020).

    Google Scholar 

  54. Rodriguez, R. D. et al. Aluminum and copper nanostructures for surface-enhanced Raman spectroscopy: a one-to-one comparison to silver and gold. Sens. Actuators B Chem 262, 922–927 (2018).

    Google Scholar 

  55. Yang, B. et al. Recent development of SERS technology: semiconductor-based study. ACS Omega 4, 20101–20108 (2019).

    Google Scholar 

  56. Xu, L., Liang, H.-W., Yang, Y. & Yu, S.-H. Stability and reactivity: positive and negative aspects for nanoparticle processing. Chem. Rev. 118, 3209–3250 (2018).

    Google Scholar 

  57. Dick, L. A., McFarland, A. D., Haynes, C. L. & Van Duyne, R. P. Metal film over nanosphere (MFON) electrodes for surface-enhanced raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 106, 853–860 (2002).

    Google Scholar 

  58. Wang, J. F., Wu, X. Z., Xiao, R., Dong, P. T. & Wang, C. G. Performance-enhancing methods for au film over nanosphere surface-enhanced raman scattering substrate and melamine detection application. PLoS ONE 9, e97976 (2014).

    ADS  Google Scholar 

  59. Styles, M. J. et al. Optimization of film over nanosphere substrate fabrication for SERS sensing of the allergen soybean agglutinin. J. Raman. Spectrosc. 52, 482–490 (2021).

    ADS  Google Scholar 

  60. Liao, P. F. in Surface Enhanced Raman Scattering (eds Chang, R. K. & Furtak, T. E.) 379–390 (Springer, 1982).

  61. Petti, L. et al. A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications. Vib. Spectrosc. 82, 22–30 (2016).

    Google Scholar 

  62. Dhawan, A. et al. Methodologies for developing surface-enhanced raman scattering (SERS) substrates for detection of chemical and biological molecules. IEEE Sens. J. 10, 608–616 (2010).

    ADS  Google Scholar 

  63. Abu Hatab, N. A., Oran, J. M. & Sepaniak, M. J. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2, 377–385 (2008).

    Google Scholar 

  64. Haynes, C. L. & Van Duyne, R. P. Plasmon-sampled surface-enhanced raman excitation spectroscopy. J. Phys. Chem. B 107, 7426–7433 (2003).

    Google Scholar 

  65. Guo, Y. et al. Molecular sensitivities of substrate-supported gold nanocrystals. J. Phys. Chem. C 123, 7336–7346 (2019).

    Google Scholar 

  66. Szlag, V. M. et al. Molecular affinity agents for intrinsic surface-enhanced raman scattering (SERS) sensors. ACS Appl. Mater. Interfaces 10, 31825–31844 (2018).

    Google Scholar 

  67. Rodriguez, R. S. et al. Sensing food contaminants: advances in analytical methods and techniques. Anal. Chem. 93, 23–40 (2021).

    Google Scholar 

  68. Tripp, R. A., Dluhy, R. A. & Zhao, Y. Novel nanostructures for SERS biosensing. Nano Today 3, 31–37 (2008).

    Google Scholar 

  69. Bantz, K. C. et al. Recent progress in SERS biosensing. Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).

    Google Scholar 

  70. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997). This article is one of two presenting the first conceptual demonstration of single-molecule SERS.

    Google Scholar 

  71. Kneipp, K. et al. Single molecule detection using surface-enhanced raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997). This article is one of two presenting the first conceptual demonstration of single-molecule SERS.

    ADS  Google Scholar 

  72. Scott, B. L. & Carron, K. T. Dynamic surface enhanced raman spectroscopy (SERS): extracting SERS from normal raman scattering. Anal. Chem. 84, 8448–8451 (2012).

    Google Scholar 

  73. Scott, B. L. & Carron, K. T. Dynamic raman scattering studies of coated gold nanoparticles: 4-mercaptopyridine, 4-mercaptophenol, and benzenethiol. J. Phys. Chem. C. 120, 20905–20913 (2016).

    Google Scholar 

  74. Zong, C. et al. Single-molecule level rare events revealed by dynamic surface-enhanced raman spectroscopy. Anal. Chem. 92, 15806–15810 (2020).

    Google Scholar 

  75. Lindquist, N. C. & Brolo, A. G. Ultra-high-speed dynamics in surface-enhanced raman scattering. J. Phys. Chem. C. 125, 7523–7532 (2021).

    Google Scholar 

  76. Song, J. E., Kim, H., Lee, S. W. & Cho, E. C. Nanoscale structural switching of plasmonic nanograin layers on hydrogel colloidal monolayers for highly sensitive and dynamic SERS in water with areal signal reproducibility. Anal. Chem. 89, 11259–11268 (2017).

    Google Scholar 

  77. He, Y., Yang, X., Yuan, R. & Chai, Y. Switchable target-responsive 3D DNA hydrogels as a signal amplification strategy combining with SERS technique for ultrasensitive detection of miRNA 155. Anal. Chem. 89, 8538–8544 (2017).

    Google Scholar 

  78. Zhang, C., Liu, X., Xu, Z. & Liu, D. Multichannel stimulus-responsive nanoprobes for H2O2 sensing in diverse biological milieus. Anal. Chem. 92, 12639–12646 (2020).

    Google Scholar 

  79. Zheng, Y. et al. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection. Nat. Commun. 6, 8797 (2015).

    ADS  Google Scholar 

  80. Jahn, I. J. et al. Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications. Analyst 142, 1022–1047 (2017).

    ADS  Google Scholar 

  81. Jeon, J. et al. SERS-based droplet microfluidics for high-throughput gradient analysis. Lab. Chip 19, 674–681 (2019).

    Google Scholar 

  82. Kim, D. et al. Microfluidic-SERS devices for one shot limit-of-detection. Analyst 139, 3227–3234 (2014).

    ADS  Google Scholar 

  83. Bai, S., Serien, D., Hu, A. & Sugioka, K. 3D microfluidic surface-enhanced raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances. Adv. Funct. Mater. 28, 1706262 (2018).

    Google Scholar 

  84. Wang, Z., Ye, S., Zhang, N., Liu, X. & Wang, M. Triggerable mutually amplified signal probe based SERS-microfluidics platform for the efficient enrichment and quantitative detection of miRNA. Anal. Chem. 91, 5043–5050 (2019).

    Google Scholar 

  85. Zhu, J. et al. Highly sensitive and label-free determination of thiram residue using surface-enhanced Raman spectroscopy (SERS) coupled with paper-based microfluidics. Anal. Methods 9, 6186–6193 (2017).

    Google Scholar 

  86. Almehmadi, L. M., Curley, S. M., Tokranova, N. A., Tenenbaum, S. A. & Lednev, I. K. Surface enhanced Raman spectroscopy for single molecule protein detection. Sci. Rep. 9, 12356 (2019).

    ADS  Google Scholar 

  87. Lussier, F. et al. Dynamic SERS nanosensor for neurotransmitter sensing near neurons. Faraday Discuss. 205, 387–407 (2017).

    ADS  Google Scholar 

  88. Ofner, J. et al. Tip-enhanced Raman spectroscopy of atmospherically relevant aerosol nanoparticles. Anal. Chem. 88, 9766–9772 (2016).

    Google Scholar 

  89. Park, K.-D. et al. Hybrid tip-enhanced nanospectroscopy and nanoimaging of monolayer WSe2 with local strain control. Nano Lett. 16, 2621–2627 (2016).

    ADS  Google Scholar 

  90. Faucett, A. C. & Mativetsky, J. M. Nanoscale reduction of graphene oxide under ambient conditions. Carbon 95, 1069–1075 (2015).

    Google Scholar 

  91. Picardi, G. et al. Exchange of methyl- and azobenzene-terminated alkanethiols on polycrystalline gold studied by tip-enhanced raman mapping. ChemPhysChem 15, 276–282 (2014).

    Google Scholar 

  92. Xie, W. & Schlücker, S. Hot electron-induced reduction of small molecules on photorecycling metal surfaces. Nat. Commun. 6, 7570 (2015).

    ADS  Google Scholar 

  93. Zhang, Z., Deckert-Gaudig, T. & Deckert, V. Label-free monitoring of plasmonic catalysis on the nanoscale. Analyst 140, 4325–4335 (2015).

    ADS  Google Scholar 

  94. Lu, G. et al. Live-cell SERS endoscopy using plasmonic nanowire waveguides. Adv. Mater. 26, 5124–5128 (2014).

    ADS  Google Scholar 

  95. Schlücker, S. et al. Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering. J. Raman. Spectrosc. 37, 719–721 (2006).

    ADS  Google Scholar 

  96. Lutz, B. R. et al. Spectral analysis of multiplex raman probe signatures. ACS Nano 2, 2306–2314 (2008).

    Google Scholar 

  97. Du, Z., Qi, Y., He, J., Zhong, D. & Zhou, M. Recent advances in applications of nanoparticles in SERS in vivo imaging. WIRES Nanomed. Nanobi. 13, e1672 (2021).

    Google Scholar 

  98. Olson, A. P., Spies, K. B., Browning, A. C., Soneral, P. A. G. & Lindquist, N. C. Chemically imaging bacteria with super-resolution SERS on ultra-thin silver substrates. Sci. Rep. 7, 9135 (2017).

    ADS  Google Scholar 

  99. Stranahan, S. M. & Willets, K. A. Super-resolution optical imaging of single-molecule SERS hot spots. Nano Lett. 10, 3777–3784 (2010).

    ADS  Google Scholar 

  100. Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts (John Wiley & Sons, 2004).

  101. Procházka, M. Surface-Enhanced Raman Spectroscopy (Springer, 2016).

  102. Bell, S. E. J. & Sirimuthu, N. M. S. Quantitative surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 37, 1012–1024 (2008).

    Google Scholar 

  103. Ji, W., Li, L., Zhang, Y., Wang, X. & Ozaki, Y. Recent advances in surface-enhanced Raman scattering-based sensors for the detection of inorganic ions: sensing mechanism and beyond. J. Raman. Spectrosc. 52, 468–481 (2021).

    ADS  Google Scholar 

  104. Schlücker, S. Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications (Wiley, 2010).

  105. Ma, H. et al. Surface-enhanced Raman scattering for direct protein function investigation: controlled immobilization and orientation. Anal. Chem. 91, 8767–8771 (2019).

    Google Scholar 

  106. Mao, Z. et al. Multiphonon resonant Raman scattering and photoinduced charge-transfer effects at ZnO–molecule interfaces. J. Phys. Chem. C. 116, 26908–26918 (2012).

    Google Scholar 

  107. Kitahama, Y., Egashira, M., Suzuki, T., Tanabe, I. & Ozaki, Y. Sensitive marker bands for the detection of spin states of heme in surface-enhanced resonance Raman scattering spectra of metmyoglobin. Analyst 139, 6421–6425 (2014).

    ADS  Google Scholar 

  108. Kitagawa, T. & Ozaki, Y. in Metal Complexes with Tetrapyrrole Ligands volume I (ed. Buchler, J. W.) 71–114 (Springer, 1987).

  109. Kang, B., Austin, L. A. & El-Sayed, M. A. Real-time molecular imaging throughout the entire cell cycle by targeted plasmonic-enhanced Rayleigh/Raman spectroscopy. Nano Lett. 12, 5369–5375 (2012).

    ADS  Google Scholar 

  110. Vantasin, S. et al. 3D SERS imaging using chemically synthesized highly symmetric nanoporous silver microparticles. Angew. Chem. Int. Ed. 55, 8391–8395 (2016).

    Google Scholar 

  111. Jarvis, R. M. & Goodacre, R. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal. Chem. 76, 40–47 (2004).

    Google Scholar 

  112. Lin, J. et al. Label-free optical detection of type II diabetes based on surface-enhanced Raman spectroscopy and multivariate analysis. J. Raman. Spectrosc. 45, 884–889 (2014).

    ADS  Google Scholar 

  113. Phyo, J. B. et al. Label-free SERS Analysis of urine using a 3D-stacked AgNW-glass fiber filter sensor for the diagnosis of pancreatic cancer and prostate cancer. Anal. Chem. 93, 3778–3785 (2021).

    Google Scholar 

  114. Zong, M. et al. Comparison of surface-enhanced Raman scattering properties of serum and urine for the detection of chronic kidney disease in patients. Appl. Spectrosc. 75, 412–421 (2021).

    ADS  Google Scholar 

  115. Yasukuni, R. et al. Quantitative analysis of SERS spectra of MnSOD over fluctuated aptamer signals using multivariate statistics. Nanophotonics 8, 1477–1483 (2019).

    Google Scholar 

  116. Sricharoen, N. et al. MCR-ALS with sample insertion constraint to enhance the sensitivity of surface-enhanced Raman scattering detection. Analyst 146, 3251–3262 (2021).

    ADS  Google Scholar 

  117. Wang, Y., Kang, S., Doerksen, J. D., Glaser, A. K. & Liu, J. T. C. Surgical guidance via multiplexed molecular imaging of fresh tissues labeled with SERS-coded nanoparticles. IEEE J. Quantum Electron. 22, 154–164 (2015).

    Google Scholar 

  118. Mamián-López, M. B. & Poppi, R. J. SERS hyperspectral imaging assisted by MCR-ALS for studying polymeric microfilms loaded with paracetamol. Microchem. J. 123, 243–251 (2015).

    Google Scholar 

  119. Wójcik M. J., Nakatsuji, H., Kirtman, B. & Ozaki, Y. Frontiers of Quantum Chemistry (Springer, 2017).

  120. Ozaki, Y., Wójcik, M. J., Popp, J. Molecular Spectroscopy: A Quantum Chemistry Approach (Wiley, 2019).

  121. Pang, R., Wu, D.-Y. & Tian, Z.-Q. in Frontiers of Quantum Chemistry (eds Wójcik, M. J., Nakatsuji, H., Kirtman, B. & Ozaki, Y.) 455–482 (Springer, 2018).

  122. Wu, D. Y., Chen, Y. L., Wu, Y. F. & Tian, Z. Q. in Molecular Spectroscopy: A Quantum Chemistry Approach Vol. 2 (eds Wójcik, M. J., Ozaki, Y. & Popp, J.) 537–573 (Wiley-VCH, 2019).

  123. Mueller, C. M., Gieseking, L. M. & Schatz, G. C. Molecular Spectroscopy: A Quantum Chemistry Approach (John Wiley & Sons, 2019).

  124. Li, J.-F. et al. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles. Phys. Chem. Chem. Phys. 12, 2493–2502 (2010).

    Google Scholar 

  125. Zhan, C., Chen, X.-J., Huang, Y.-F., Wu, D.-Y. & Tian, Z.-Q. Plasmon-mediated chemical reactions on nanostructures unveiled by surface-enhanced raman spectroscopy. Acc. Chem. Res. 52, 2784–2792 (2019).

    Google Scholar 

  126. Han, X. X. et al. Magnetic titanium dioxide nanocomposites for surface-enhanced resonance Raman spectroscopic determination and degradation of toxic anilines and phenols. Angew. Chem. Int. Ed. 53, 2481–2484 (2014).

    Google Scholar 

  127. Zhan, C. et al. Interfacial construction of plasmonic nanostructures for the utilization of the plasmon-excited electrons and holes. J. Am. Chem. Soc. 141, 8053–8057 (2019).

    Google Scholar 

  128. Li, Y. et al. C−H arylation on nickel nanoparticles monitored by in situ surface-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 58, 9049–9053 (2019).

    Google Scholar 

  129. Zhang, K. et al. Synthesis of a gold–metal oxide core–satellite nanostructure for in situ SERS study of CuO-catalyzed photooxidation. Angew. Chem. Int. Ed. 59, 18003–18009 (2020).

    Google Scholar 

  130. Wei, J. et al. Probing single-atom catalysts and catalytic reaction processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 60, 9306–9310 (2021).

    Google Scholar 

  131. Wu, D.-Y., Li, J.-F., Ren, B. & Tian, Z.-Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008).

    Google Scholar 

  132. Ze, H. J. et al. Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy. J. Am. Chem. Soc. 143, 1318–1322 (2021).

    Google Scholar 

  133. Wang, Y.-H. et al. Spectroscopic verification of adsorbed hydroxy intermediates in the bifunctional mechanism of the hydrogen oxidation reaction. Angew. Chem. Int. Ed. 60, 5708–5711 (2021).

    Google Scholar 

  134. Hess, C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem. Soc. Rev. 50, 3519–3564 (2021).

    Google Scholar 

  135. Du, L. et al. Plasmon-promoted electrocatalytic water splitting on metal–semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites. Chem. Sci. 10, 9605–9612 (2019).

    Google Scholar 

  136. Mao, Z. et al. Direct dynamic evidence of charge separation in a dye-sensitized solar cell obtained under operando conditions by Raman spectroscopy. Angew. Chem. Int. Ed. 59, 10780–10784 (2020).

    Google Scholar 

  137. Liu, X. et al. Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 10, 402–434 (2017).

    Google Scholar 

  138. Wang, X., Zhao, B., Li, P., Han, X. X. & Ozaki, Y. Charge transfer at the TiO2/N3/Ag interface monitored by surface-enhanced Raman spectroscopy. J. Phys. Chem. C 121, 5145–5153 (2017).

    Google Scholar 

  139. Wang, X. et al. Investigation of charge transfer in Ag/N719/TiO2 interface by surface-enhanced raman spectroscopy. J. Phys. Chem. C 120, 13078–13086 (2016).

    Google Scholar 

  140. Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632 (2015).

    ADS  Google Scholar 

  141. Wang, Y., Liu, J., Ozaki, Y., Xu, Z. & Zhao, B. Effect of TiO2 on altering direction of interfacial charge transfer in a TiO2-Ag-MPY-FePc system by SERS. Angew. Chem. Int. Ed. 58, 8172–8176 (2019).

    Google Scholar 

  142. Xu, L.-J. et al. Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity. J. Am. Chem. Soc. 137, 5149–5154 (2015).

    Google Scholar 

  143. Li, Y. et al. Structural features of DNA G-quadruplexes revealed by surface-enhanced raman spectroscopy. J. Phys. Chem. Lett. 9, 3245–3252 (2018).

    Google Scholar 

  144. Li, Y. et al. Label-free detection of tetramolecular i-motifs by surface-enhanced Raman spectroscopy. Anal. Chem. 90, 2996–3000 (2018).

    Google Scholar 

  145. Li, Y. et al. Direct approach toward label-free DNA detection by surface-enhanced Raman spectroscopy: discrimination of a single-base mutation in 50 base-paired double helixes. Anal. Chem. 91, 7980–7984 (2019).

    Google Scholar 

  146. Chen, C. et al. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat. Commun. 9, 1733 (2018).

    ADS  Google Scholar 

  147. Murgida, D. H. & Hildebrandt, P. Disentangling interfacial redox processes of proteins by SERR spectroscopy. Chem. Soc. Rev. 37, 937–945 (2008).

    Google Scholar 

  148. Öner, I. H. et al. High electromagnetic field enhancement of TiO2 nanotube electrodes. Angew.Chem. Int. Ed. 57, 7225–7229 (2018).

    Google Scholar 

  149. Kielb, P. et al. Spectroscopic observation of calcium-induced reorientation of cellobiose dehydrogenase immobilized on electrodes and its effect on electrocatalytic activity. ChemPhysChem 16, 1960–1968 (2015).

    Google Scholar 

  150. Kruse, F. et al. A resonance Raman marker band characterizes the slow and fast form of cytochrome c oxidase. J. Am. Chem. Soc. 143, 2769–2776 (2021).

    Google Scholar 

  151. Han, X. X., Huang, G. G., Zhao, B. & Ozaki, Y. Label-free highly sensitive detection of proteins in aqueous solutions using surface-enhanced Raman scattering. Anal. Chem. 81, 3329–3333 (2009).

    Google Scholar 

  152. Bao, Y. et al. Label-free and highly sensitive detection of native proteins by Ag IANPs via surface-enhanced Raman spectroscopy. Anal. Chem. 92, 14325–14329 (2020).

    Google Scholar 

  153. Ma, H. et al. In-situ fingerprinting phosphorylated proteins via surface-enhanced Raman spectroscopy: single-site discrimination of Tau biomarkers in Alzheimer’s disease. Biosens. Bioelectron. 171, 112748 (2021).

    Google Scholar 

  154. Han, X. X. et al. Nickel electrodes as a cheap and versatile platform for studying structure and function of immobilized redox proteins. Anal. Chim. Acta 941, 35–40 (2016).

    Google Scholar 

  155. Zhu, J. et al. Redox-state-mediated regulation of cytochrome c release in apoptosis revealed by surface-enhanced Raman scattering on nickel substrates. Angew. Chem. Int. Ed. 58, 16499–16503 (2019).

    Google Scholar 

  156. Han, X. X., Pienpinijtham, P., Zhao, B. & Ozaki, Y. Coupling reaction-based ultrasensitive detection of phenolic estrogens using surface-enhanced resonance Raman scattering. Anal. Chem. 83, 8582–8588 (2011).

    Google Scholar 

  157. Li, Z., Huang, X. & Lu, G. Recent developments of flexible and transparent SERS substrates. J. Mater. Chem. C 8, 3956–3969 (2020).

    Google Scholar 

  158. Fu, C. et al. DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced Raman scattering detection of lead ions via a particle-on-a-film hot spot construction. Anal. Chem. 86, 11494–11497 (2014).

    Google Scholar 

  159. Lane, L. A., Qian, X. & Nie, S. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem. Rev. 115, 10489–10529 (2015).

    Google Scholar 

  160. Qian, X. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008).

    Google Scholar 

  161. Ma, H. et al. Multiplex immunochips for high-accuracy detection of AFP-L3% based on surface-enhanced Raman scattering: implications for early liver cancer diagnosis. Anal. Chem. 89, 8877–8883 (2017).

    Google Scholar 

  162. Ma, H. et al. Antibody-free discrimination of protein biomarkers in human serum based on surface-enhanced Raman spectroscopy. Analy. Chem. 90, 12342–12346 (2018).

    Google Scholar 

  163. Navas-Moreno, M. et al. Nanoparticles for live cell microscopy: a surface-enhanced Raman scattering perspective. Sci. Rep. 7, 4471 (2017).

    ADS  Google Scholar 

  164. Shen, Y. et al. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing. Nanoscale 10, 1622–1630 (2018).

    Google Scholar 

  165. Han, G. et al. Label-free surface-enhanced Raman scattering imaging to monitor the metabolism of antitumor drug 6-mercaptopurine in living cells. Anal. Chem. 86, 11503–11507 (2014).

    Google Scholar 

  166. Sun, C., Chen, T., Ruan, W., Zhao, B. & Cong, Q. Controlling the orientation of probe molecules on surface-enhanced Raman scattering substrates: A novel strategy to improve sensitivity. Anal. Chim. Acta 994, 65–72 (2017).

    Google Scholar 

  167. Han, X. X. et al. Potential-dependent surface-enhanced resonance Raman spectroscopy at nanostructured TiO2: a case study on cytochrome b5. Small 9, 4175–4181 (2013).

    Google Scholar 

  168. Zhang, Y., Gu, Y., He, J., Thackray, B. D. & Ye, J. Ultrabright gap-enhanced Raman tags for high-speed bioimaging. Nat. Commun. 10, 3905 (2019).

    ADS  Google Scholar 

  169. Ma, H. et al. Frequency shifts in surface-enhanced Raman spectroscopy-based immunoassays: mechanistic insights and application in protein carbonylation detection. Anal. Chem. 91, 9376–9381 (2019).

    Google Scholar 

  170. Kneipp, K., Moskovits, M. & Kneipp, H. Surface-Enhanced Raman Scattering: Physics and Applications (Springer, 2006).

  171. Han, X. X., Ozaki, Y. & Zhao, B. Label-free detection in biological applications of surface-enhanced Raman scattering. Trends Anal. Chem. 38, 67–78 (2012).

    Google Scholar 

  172. Filipec, S. V. et al. Influence of sample matrix on determination of histamine in fish by surface enhanced Raman spectroscopy coupled with chemometric modelling. Foods 10, 1767 (2021).

    Google Scholar 

  173. Han, X. X. et al. Analytical technique for label-free multi-protein detection based on Western blot and surface-enhanced Raman scattering. Anal. Chem. 80, 2799–2804 (2008).

    Google Scholar 

  174. Trachta, G., Schwarze, B., Sägmüller, B., Brehm, G. & Schneider, S. Combination of high-performance liquid chromatography and SERS detection applied to the analysis of drugs in human blood and urine. J. Mol. Struct. 693, 175–185 (2004).

    ADS  Google Scholar 

  175. Takei, H. et al. TLC-SERS plates with a built-In SERS layer consisting of cap-shaped noble metal nanoparticles intended for environmental monitoring and food safety assurance. J. Nanomater. 2015, 316189 (2015).

    Google Scholar 

  176. Pu, H., Xiao, W. & Sun, D.-W. SERS-microfluidic systems: a potential platform for rapid analysis of food contaminants. Trends Food Sci. Technol. 70, 114–126 (2017).

    Google Scholar 

  177. Wang, H.-X., Zhao, Y.-W., Li, Z., Liu, B.-S. & Zhang, D. Development and application of aptamer-based surface-enhanced Raman spectroscopy sensors in quantitative analysis and biotherapy. Sensors 19, 3806 (2019).

    ADS  Google Scholar 

  178. Zavaleta, C. L. et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl Acad. Sci. USA 106, 13511 (2009).

    ADS  Google Scholar 

  179. Ji, W., Kitahama, Y., Xue, X., Zhao, B. & Ozaki, Y. Generation of pronounced resonance profile of charge-transfer contributions to surface-enhanced Raman scattering. J. Phys. Chem. C 116, 2515–2520 (2012).

    Google Scholar 

  180. Das, G. et al. Nano-patterned SERS substrate: application for protein analysis vs. temperature. Biosens. Bioelectron. 24, 1693–1699 (2009).

    Google Scholar 

  181. Yilmaz, M. et al. Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nat. Mater. 16, 918–924 (2017). This article is the first conceptual demonstration of SERS-active organic semiconductor films.

    ADS  Google Scholar 

  182. Demirel, G. et al. Molecular engineering of organic semiconductors enables noble metal-comparable SERS enhancement and sensitivity. Nat. Commun. 10, 5502 (2019).

    ADS  Google Scholar 

  183. Hu, W. et al. Machine learning protocol for surface-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 10, 6026–6031 (2019).

    Google Scholar 

  184. Leong, Y. X. et al. Surface-enhanced Raman scattering (SERS) taster: a machine-learning-driven multireceptor platform for multiplex profiling of wine flavors. Nano Lett. 21, 2642–2649 (2021).

    ADS  Google Scholar 

  185. Han, Z. Z. et al. SERS and MALDI-TOF MS based plasma exosome profiling for rapid detection of osteosarcoma. Analyst 146, 6496–6505 (2021).

    ADS  Google Scholar 

  186. Chen, L. et al. High-efficiency charge transfer on SERS-active semiconducting K2Ti6O13 nanowires enables direct transition of photoinduced electrons to protein redox centers. Biosens. Bioelectron. 191, 113452 (2021).

    Google Scholar 

  187. Pettinger, B., Schambach, P., Villagómez, C. J. & Scott, N. Tip-enhanced raman spectroscopy: near-fields acting on a few molecules. Annu. Rev. Phys. Chem. 63, 379–399 (2012).

    ADS  Google Scholar 

  188. Lindquist, N. C., de Albuquerque, C. D. L., Sobral-Filho, R. G., Paci, I. & Brolo, A. G. High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. Nat. Nanotechnol. 14, 981–987 (2019).

    ADS  Google Scholar 

  189. Kim, J., Nam, S. H., Lim, D.-K. & Suh, Y. D. SERS-based particle tracking and molecular imaging in live cells: toward the monitoring of intracellular dynamics. Nanoscale 11, 21724–21727 (2019).

    Google Scholar 

  190. Futamata, M. Surface-enhanced vibrational spectroscopy: SERS and SEIRA. Isr. J. Chem. 46, 265–281 (2006).

    Google Scholar 

  191. Mueller, N. S. et al. Surface-enhanced Raman scattering and surface-enhanced infrared absorption by plasmon polaritons in three-dimensional nanoparticle supercrystals. ACS Nano 15, 5523–5533 (2021).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (grant nos. 21773079 (X.X.H.), 21773080 (B.Z.) and 21974054 (X.X.H.)) of P. R. China.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (B.Z.); Experimentation (R.S.R. and C.L.H.); Results (Y.O.); Applications (X.X.H.); Reproducibility and data deposition (X.X.H.); Limitations and optimizations (B.Z.); Outlook (B.Z.); Overview of the Primer (B.Z.).

Corresponding authors

Correspondence to Xiao Xia Han, Christy L. Haynes, Yukihiro Ozaki or Bing Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Methods Primers thanks L. He, who co-reviewed with H. Dai, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Surface-enhanced Raman scattering

The Raman scattering of a molecule is significantly enhanced when the molecule is either attached to or in proximity to a nanostructured surface.

Surface plasmons

A collective oscillation of conduction band electrons at the interface of two materials that occurs upon stimulation by incident light.

CT resonance

The charge transfer (CT) contribution to surface-enhanced Raman spectroscopy reaches the maximum when the incident laser energy matches the CT excitation energy.

Raman cross-sections

Dimensionally represents an effective area that is proportional to the Raman scattering rate at which a radiation–target interaction occurs.

Matrix effect

Complex matrices usually interfere with the surface-enhanced Raman spectroscopy signals of target molecules, reducing sensitivity and accuracy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, X.X., Rodriguez, R.S., Haynes, C.L. et al. Surface-enhanced Raman spectroscopy. Nat Rev Methods Primers 1, 87 (2021). https://doi.org/10.1038/s43586-021-00083-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-021-00083-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing