Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Tissue clearing

Abstract

Tissue clearing of gross anatomical samples was first described more than a century ago and has only recently found widespread use in the field of microscopy. This renaissance has been driven by the application of modern knowledge of optical physics and chemical engineering to the development of robust and reproducible clearing techniques, the arrival of new microscopes that can image large samples at cellular resolution and computing infrastructure able to store and analyse large volumes of data. Many biological relationships between structure and function require investigation in three dimensions, and tissue clearing therefore has the potential to enable broad discoveries in the biological sciences. Unfortunately, the current literature is complex and could confuse researchers looking to begin a clearing project. The goal of this Primer is to outline a modular approach to tissue clearing that allows a novice researcher to develop a customized clearing pipeline tailored to their tissue of interest. Furthermore, the Primer outlines the required imaging and computational infrastructure needed to perform tissue clearing at scale, gives an overview of current applications, discusses limitations and provides an outlook on future advances in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of the components of a tissue clearing experiment.
Fig. 2: Concept of hydrogel embedding.
Fig. 3: Protocols for delipidation.
Fig. 4: Mechanisms of delipidation.
Fig. 5: Examples of the clearing process.
Fig. 6: Whole-organ cell profiling using the latest CUBIC-L/R+ protocol.
Fig. 7: Example of neuronal staining in the mouse brain.
Fig. 8: Representative results of vDISCO panoptic imaging.
Fig. 9: Example of vascular staining in the mouse brain.

Similar content being viewed by others

References

  1. Richardson, D. S. & Lichtman, J. W. Clarifying tissue clearing. Cell 162, 246–257 (2015).

    Google Scholar 

  2. Tainaka, K., Kuno, A., Kubota, S. I., Murakami, T. & Ueda, H. R. Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu. Rev. Cell Dev. Biol. 32, 713–741 (2016).

    Google Scholar 

  3. Ueda, H. R. et al. Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. 21, 61–79 (2020).

    Google Scholar 

  4. Park, Y.-G. et al. Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat. Biotechnol. https://doi.org/10.1038/nbt.4281 (2018).

  5. Susaki, E. A. et al. Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues. Nat. Commun. 11, 1982 (2020).

    ADS  Google Scholar 

  6. Zhao, S. et al. Cellular and molecular probing of intact human organs. Cell 180, 796–812.e719 (2020).

    Google Scholar 

  7. Kubota, S. I. et al. Whole-body profiling of cancer metastasis with single-cell resolution. Cell Rep. 20, 236–250 (2017).

    Google Scholar 

  8. Lee, E. et al. ACT-PRESTO: rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci. Rep. 6, 18631 (2016).

    ADS  Google Scholar 

  9. Pan, C. et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Methods 13, 859–867 (2016).

    ADS  Google Scholar 

  10. Susaki, E. A. & Ueda, H. R. Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem. Biol. 23, 137–157 (2016).

    Google Scholar 

  11. Tainaka, K. et al. Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159, 911–924 (2014).

    Google Scholar 

  12. Messal, H. A. et al. Antigen retrieval and clearing for whole-organ immunofluorescence by FLASH. Nat. Protoc. 16, 239–262 (2021).

    Google Scholar 

  13. Pende, M. et al. High-resolution ultramicroscopy of the developing and adult nervous system in optically cleared Drosophila melanogaster. Nat. Commun. 9, 4731 (2018).

    ADS  Google Scholar 

  14. Lindsey, B. W., Douek, A. M., Loosli, F. & Kaslin, J. A whole brain staining, embedding, and clearing pipeline for adult zebrafish to visualize cell proliferation and morphology in 3-dimensions. Front. Neurosci. 11, 750 (2017).

    Google Scholar 

  15. Pende, M. et al. A versatile depigmentation, clearing, and labeling method for exploring nervous system diversity. Sci. Adv. 6, eaba0365 (2020).

    ADS  Google Scholar 

  16. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    Google Scholar 

  17. Menegas, W. et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 4, e10032 (2015).

    Google Scholar 

  18. Ravindra Kumar, S. et al. Multiplexed Cre-dependent selection yields systemic AAVs for targeting distinct brain cell types. Nat. Methods 17, 541–550 (2020).

    Google Scholar 

  19. Hopwood, D. The reactions between formaldehyde, glutaraldehyde and osmium tetroxide, and their fixation effects o bovine serum albumin and on tissue blocks. Histochemie 24, 50–64 (1970).

    Google Scholar 

  20. Murray, E. et al. Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163, 1500–1514 (2015).

    Google Scholar 

  21. Collins, J. S. & Goldsmith, T. H. Spectral properties of fluorescence induced by glutaraldehyde fixation. J. Histochem. Cytochem. 29, 411–414 (1981).

    Google Scholar 

  22. Ueda, H. R. et al. Whole-brain profiling of cells and circuits in mammals by tissue clearing and light-sheet microscopy. Neuron 106, 369–387 (2020).

    Google Scholar 

  23. Susaki, E. A. et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157, 726–739 (2014).

    Google Scholar 

  24. Matsumoto, K. et al. Advanced CUBIC tissue clearing for whole-organ cell profiling. Nat. Protoc. 14, 3506–3537 (2019).

    Google Scholar 

  25. Tainaka, K. et al. Chemical landscape for tissue clearing based on hydrophilic reagents. Cell Rep. 24, 2196–2210 (2018).

    Google Scholar 

  26. Kim, S.-Y. & Assawachananont, J. A new method to visualize the intact subretina from retinal pigment epithelium to retinal tissue in whole mount of pigmented mouse eyes. Transl. Vis. Sci. Technol. 5, 6 (2016).

    Google Scholar 

  27. Futami, K., Furukawa, O., Maita, M. & Katagiri, T. Application of hydrogen peroxide-melanin bleaching and fluorescent nuclear staining for whole-body clearing and imaging in fish. Fish. Pathol. 54, 101–103 (2020).

    Google Scholar 

  28. Kuroda, M. & Kuroda, S. Whole-body clearing of beetles by successive treatment with hydrogen peroxide and CUBIC reagents. Entomol. Sci. 23, 311–315 (2020).

    Google Scholar 

  29. Henning, Y., Osadnik, C. & Malkemper, E. P. EyeCi: optical clearing and imaging of immunolabeled mouse eyes using light-sheet fluorescence microscopy. Exp. Eye Res. 180, 137–145 (2019).

    Google Scholar 

  30. Duong, H. & Han, M. A multispectral LED array for the reduction of background autofluorescence in brain tissue. J. Neurosci. Methods 220, 46–54 (2013).

    Google Scholar 

  31. Ku, T. et al. Elasticizing tissues for reversible shape transformation and accelerated molecular labeling. Nat. Methods 17, 609–613 (2020).

    Google Scholar 

  32. Choi, S. W., Guan, W. & Chung, K. Basic principles of hydrogel-based tissue transformation technologies and their applications. Cell 184, 4115–4136 (2021).

    Google Scholar 

  33. Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    ADS  Google Scholar 

  34. Yang, B. et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158, 945–958 (2014).

    Google Scholar 

  35. Chen, F., Tillberg, P. W. & Boyden, E. S. Optical imaging. expansion microscopy. Science 347, 543–548 (2015).

    ADS  Google Scholar 

  36. Tillberg, P. W. et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34, 987–992 (2016).

    Google Scholar 

  37. Ku, T. et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat. Biotechnol. 34, 973–981 (2016).

    Google Scholar 

  38. Murakami, T. C. et al. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat. Neurosci. 21, 625–637 (2018).

    Google Scholar 

  39. Chang, J. B. et al. Iterative expansion microscopy. Nat. Methods 14, 593–599 (2017).

    Google Scholar 

  40. Park, H. E. et al. Scalable and isotropic expansion of tissues with simply tunable expansion ratio. Adv. Sci. 6, 1901673 (2019).

    Google Scholar 

  41. Kiviranta, I., Tammi, M., Lappalainen, R., Kuusela, T. & Helminen, H. J. The rate of calcium extraction during EDTA decalcification from thin bone slices as assessed with atomic absorption spectrophotometry. Histochemistry 68, 119–127 (1980).

    Google Scholar 

  42. Jing, D. et al. Tissue clearing of both hard and soft tissue organs with the PEGASOS method. Cell Res. 28, 803–818 (2018).

    Google Scholar 

  43. Treweek, J. B. et al. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat. Protoc. 10, 1860–1896 (2015).

    Google Scholar 

  44. Greenbaum, A. et al. Bone CLARITY: clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow. Sci. Transl. Med. 9, eaah6518 (2017).

    Google Scholar 

  45. Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat. Neurosci. 22, 317–327 (2019).

    Google Scholar 

  46. Renier, N. et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165, 1789–1802 (2016).

    Google Scholar 

  47. Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014).

    Google Scholar 

  48. Dodt, H. U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007).

    Google Scholar 

  49. Qi, Y. et al. FDISCO: advanced solvent-based clearing method for imaging whole organs. Sci. Adv. 5, eaau8355 (2019).

    ADS  Google Scholar 

  50. Hahn, C. et al. High-resolution imaging of fluorescent whole mouse brains using stabilised organic media (sDISCO). J. Biophotonics 12, e201800368 (2019).

    Google Scholar 

  51. Schwarz, M. K. et al. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains. PLoS ONE 10, e0124650 (2015).

    Google Scholar 

  52. Li, Y., Xu, J., Wan, P., Yu, T. & Zhu, D. Optimization of GFP fluorescence preservation by a modified uDISCO clearing protocol. Front. Neuroanat. 12, 67 (2018).

    Google Scholar 

  53. Becker, K., Jahrling, N., Saghafi, S., Weiler, R. & Dodt, H. U. Chemical clearing and dehydration of GFP expressing mouse brains. PLoS ONE 7, e33916 (2012).

    ADS  Google Scholar 

  54. Erturk, A. et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7, 1983–1995 (2012).

    Google Scholar 

  55. Hama, H. et al. ScaleS: an optical clearing palette for biological imaging. Nat. Neurosci. 18, 1518–1529 (2015).

    Google Scholar 

  56. Chen, L. et al. UbasM: An effective balanced optical clearing method for intact biomedical imaging. Sci. Rep. 7, 12218 (2017).

    ADS  Google Scholar 

  57. Chi, J. et al. Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell Metab. 27, 226–236 (2018).

    Google Scholar 

  58. Kim, S. Y. et al. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc. Natl Acad. Sci. USA 112, E6274–E6283 (2015).

    Google Scholar 

  59. Hoelzel, C. A. & Zhang, X. Visualizing and manipulating biological processes by using halotag and SNAP-tag technologies. ChemBioChem 21, 1935–1946 (2020).

    Google Scholar 

  60. Fang, T. et al. Nanobody immunostaining for correlated light and electron microscopy with preservation of ultrastructure. Nat. Methods 15, 1029–1032 (2018).

    Google Scholar 

  61. Burry, R. W. Immunocytochemistry: A Practical Guide for Biomedical Research (Springer, 2010).

  62. Sahl, S. J., Hell, S. W. & Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).

    Google Scholar 

  63. Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    Google Scholar 

  64. Lai, H. M. et al. Next generation histology methods for three-dimensional imaging of fresh and archival human brain tissues. Nat. Commun. 9, 1066 (2018).

    ADS  Google Scholar 

  65. Gleave, J. A., Lerch, J. P., Henkelman, R. M. & Nieman, B. J. A method for 3D immunostaining and optical imaging of the mouse brain demonstrated in neural progenitor cells. PLoS ONE 8, e72039 (2013).

    ADS  Google Scholar 

  66. Kumar, V. et al. Global lymphoid tissue remodeling during a viral infection is orchestrated by a B cell–lymphotoxin-dependent pathway. Blood 115, 4725–4733 (2010).

    Google Scholar 

  67. Sillitoe, R. V. & Hawkes, R. Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum. J. Histochem. Cytochem. 50, 235–244 (2002).

    Google Scholar 

  68. Na, M., Kim, K., Lim, H. R., Ha, C. M. & Chang, S. Rapid immunostaining method for three-dimensional volume imaging of biological tissues by magnetic force-induced focusing of the electric field. Brain Struct. Funct. 226, 297–309 (2021).

    Google Scholar 

  69. Dwyer, J., Ramirez, M. D., Katz, P. S., Karlstrom, R. O. & Bergan, J. Accelerated clearing and molecular labeling of biological tissues using magnetohydrodynamic force. Sci. Rep. 11, 16462 (2021).

    ADS  Google Scholar 

  70. Takahashi, K., Kubota, S. I., Ehata, S., Ueda, H. R. & Miyazono, K. Protocol for imaging and analysis of mouse tumor models with CUBIC tissue clearing. STAR. Protoc. 1, 100191 (2020).

    Google Scholar 

  71. Li, W., Germain, R. N. & Gerner, M. Y. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D). Proc. Natl Acad. Sci. USA 114, E7321–E7330 (2017).

    Google Scholar 

  72. Klingberg, A. et al. Fully automated evaluation of total glomerular number and capillary tuft size in nephritic kidneys using lightsheet microscopy. J. Am. Soc. Nephrol. 28, 452–459 (2017).

    Google Scholar 

  73. Aoyagi, Y., Kawakami, R., Osanai, H., Hibi, T. & Nemoto, T. A rapid optical clearing protocol using 2,2′-thiodiethanol for microscopic observation of fixed mouse brain. PLoS ONE 10, e0116280 (2015).

    Google Scholar 

  74. Costantini, I. et al. A versatile clearing agent for multi-modal brain imaging. Sci. Rep. 5, 9808 (2015).

    Google Scholar 

  75. Staudt, T., Lang, M. C., Medda, R., Engelhardt, J. & Hell, S. W. 2,2′-Thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microscopy Res. Tech. 70, 1–9 (2007).

    Google Scholar 

  76. Diel, E. E., Lichtman, J. W. & Richardson, D. S. Tutorial: avoiding and correcting sample-induced spherical aberration artifacts in 3D fluorescence microscopy. Nat. Protoc. 15, 2773–2784 (2020).

    Google Scholar 

  77. Vallejo Ramirez, P. P. et al. OptiJ: open-source optical projection tomography of large organ samples. Sci. Rep. 9, 15693 (2019).

    ADS  Google Scholar 

  78. Mayer, J. et al. OPTiSPIM: integrating optical projection tomography in light sheet microscopy extends specimen characterization to nonfluorescent contrasts. Opt. Lett. 39, 1053–1056 (2014).

    ADS  Google Scholar 

  79. Baek, K. et al. Quantitative assessment of regional variation in tissue clearing efficiency using optical coherence tomography (OCT) and magnetic resonance imaging (MRI): a feasibility study. Sci. Rep. 9, 2923 (2019).

    ADS  Google Scholar 

  80. Pietzsch, T., Saalfeld, S., Preibisch, S. & Tomancak, P. BigDataViewer: visualization and processing for large image data sets. Nat. Methods 12, 481–483 (2015).

    Google Scholar 

  81. Jonkman, J., Brown, C. M., Wright, G. D., Anderson, K. I. & North, A. J. Tutorial: guidance for quantitative confocal microscopy. Nat. Protoc. 15, 1585–1611 (2020).

    Google Scholar 

  82. Jost, A. P. & Waters, J. C. Designing a rigorous microscopy experiment: validating methods and avoiding bias. J. Cell Biol. 218, 1452–1466 (2019).

    Google Scholar 

  83. Horl, D. et al. BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nat. Methods 16, 870–874 (2019).

    Google Scholar 

  84. Prahst, C. et al. Mouse retinal cell behaviour in space and time using light sheet fluorescence microscopy. eLife 9, e49779 (2020).

    Google Scholar 

  85. Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246 (2019).

    Google Scholar 

  86. Pan, C. et al. Deep learning reveals cancer metastasis and therapeutic antibody targeting in the entire body. Cell 179, 1661–1676 (2019).

    Google Scholar 

  87. Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 (eds Frangi, A. F., Schnabel, J. A., Davatzikos, C., Alberola-López, C. & Fichtinger, G.) 265–273 (Springer, 2018).

  88. Todorov, M. I. et al. Machine learning analysis of whole mouse brain vasculature. Nat. Methods 17, 442–449 (2020).

    Google Scholar 

  89. Qi, Y. in Ensemble Machine Learning: Methods and Applications (eds Zhang, C. & Ma, Y.) 307–323 (Springer, 2012).

  90. Dhillon, A. & Verma, G. K. Convolutional neural network: a review of models, methodologies and applications to object detection. Prog. Artif. Intell. 9, 85–112 (2020).

    Google Scholar 

  91. Callara, A. L., Magliaro, C., Ahluwalia, A. & Vanello, N. A smart region-growing algorithm for single-neuron segmentation from confocal and 2-photon datasets. Front. Neuroinform. 14, 9 (2020).

    Google Scholar 

  92. Richardson, D. S. et al. SRpHi ratiometric pH biosensors for super-resolution microscopy. Nat. Commun. 8, 577 (2017).

    ADS  Google Scholar 

  93. Gao, R. et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363, eaau8302 (2019).

    Google Scholar 

  94. Randlett, O. et al. Whole-brain activity mapping onto a zebrafish brain atlas. Nat. Methods 12, 1039–1046 (2015).

    Google Scholar 

  95. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    ADS  Google Scholar 

  96. Mikula, S., Trotts, I., Stone, J. M. & Jones, E. G. Internet-enabled high-resolution brain mapping and virtual microscopy. NeuroImage 35, 9–15 (2007).

    Google Scholar 

  97. Amunts, K. et al. BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1475 (2013).

    ADS  Google Scholar 

  98. Calabrese, E. et al. A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. NeuroImage 117, 408–416 (2015).

    Google Scholar 

  99. Rohlfing, T. et al. The INIA19 template and neuromaps atlas for primate brain image parcellation and spatial normalization. Front. Neuroinform. 6, 27 (2012).

    Google Scholar 

  100. Johnson, G. A. et al. Waxholm space: an image-based reference for coordinating mouse brain research. NeuroImage 53, 365–372 (2010).

    Google Scholar 

  101. Papp, E. A., Leergaard, T. B., Calabrese, E., Johnson, G. A. & Bjaalie, J. G. Waxholm space atlas of the sprague dawley rat brain. NeuroImage 97, 374–386 (2014).

    Google Scholar 

  102. Dong, H. W. The Allen Reference Atlas: A Digital Color Brain Atlas of the C57Bl/6J Male Mouse (John Wiley & Sons, Inc., 2008).

  103. Kuan, L. et al. Neuroinformatics of the allen mouse brain connectivity atlas. Methods 73, 4–17 (2015).

    Google Scholar 

  104. Mano, T. et al. CUBIC-Cloud provides an integrative computational framework toward community-driven whole-mouse-brain mapping. Cell Rep. Methods 1, 100038 (2021).

    Google Scholar 

  105. Ye, L. et al. Wiring and molecular features of prefrontal ensembles representing distinct experiences. Cell 165, 1776–1788 (2016).

    Google Scholar 

  106. Kutten, K. S. A. V. et al. in Optics, Photonics and Digital Technologies for Imaging Applications IV (SPIE, 2016).

  107. Gradinaru, V., Treweek, J., Overton, K. & Deisseroth, K. Hydrogel-tissue chemistry: principles and applications. Annu. Rev. Biophys. 47, 355–376 (2018).

    Google Scholar 

  108. Baiker, M. et al. Atlas-based whole-body segmentation of mice from low-contrast micro-CT data. Med. Image Anal. 14, 723–737 (2010).

    ADS  Google Scholar 

  109. Dogdas, B., Stout, D., Chatziioannou, A. F. & Leahy, R. M. Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys. Med. Biol. 52, 577–587 (2007).

    Google Scholar 

  110. Schoppe, O. et al. Deep learning-enabled multi-organ segmentation in whole-body mouse scans. Nat. Commun. 11, 5626 (2020).

    ADS  Google Scholar 

  111. Haase, R. et al. CLIJ: GPU-accelerated image processing for everyone. Nat. Methods 17, 5–6 (2020).

    Google Scholar 

  112. Kirst, C. et al. Mapping the fine-scale organization and plasticity of the brain vasculature. Cell 180, 780–795 (2020).

    Google Scholar 

  113. Hahn, M. et al. 3D imaging of human organs with micrometer resolution — applied to the endocrine pancreas. Commun. Biol. 4, 1063 (2021).

    Google Scholar 

  114. Zhao, Y. et al. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nat. Biotechnol. 35, 757–764 (2017).

    Google Scholar 

  115. Campinho, M. A. et al. A thyroid hormone regulated asymmetric responsive centre is correlated with eye migration during flatfish metamorphosis. Sci. Rep. 8, 12267 (2018).

    ADS  Google Scholar 

  116. Konno, A. & Okazaki, S. Aqueous-based tissue clearing in crustaceans. Zool. Lett. 4, 13 (2018).

    Google Scholar 

  117. Albanese, A. et al. Multiscale 3D phenotyping of human cerebral organoids. Sci. Rep. 10, 21487 (2020).

    ADS  Google Scholar 

  118. Winnubst, J. et al. Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell 179, 268–281 (2019).

    Google Scholar 

  119. Weissbourd, B. et al. Functional modules within a distributed neural network control feeding in a model medusa. Preprint at bioRxiv https://doi.org/10.1101/2021.02.22.432372 (2021).

    Article  Google Scholar 

  120. Morgan, J. L. & Lichtman, J. W. Digital tissue and what it may reveal about the brain. BMC Biol. 15, 101 (2017).

    Google Scholar 

  121. Economo, M. N., Winnubst, J., Bas, E., Ferreira, T. A. & Chandrashekar, J. Single-neuron axonal reconstruction: the search for a wiring diagram of the brain. J. Comp. Neurol. 527, 2190–2199 (2019).

    Google Scholar 

  122. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Google Scholar 

  123. Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W. & Sanes, J. R. Improved tools for the Brainbow toolbox. Nat. Methods 10, 540–547 (2013).

    Google Scholar 

  124. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    ADS  Google Scholar 

  125. Quan, T. et al. NeuroGPS-Tree: automatic reconstruction of large-scale neuronal populations with dense neurites. Nat. Methods 13, 51–54 (2016).

    Google Scholar 

  126. Wang, X. et al. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain. eLife 10, e63455 (2021).

    Google Scholar 

  127. Gail Canter, R. et al. 3D mapping reveals network-specific amyloid progression and subcortical susceptibility in mice. Commun. Biol. 2, 360 (2019).

    Google Scholar 

  128. Sabdyusheva Litschauer, I. et al. 3D histopathology of human tumours by fast clearing and ultramicroscopy. Sci. Rep. 10, 17619 (2020).

    ADS  Google Scholar 

  129. Ma, Y. et al. 3D spatiotemporal mechanical microenvironment: a hydrogel-based platform for guiding stem cell fate. Adv. Mater. 30, 1705911 (2018).

    Google Scholar 

  130. Lloyd-Lewis, B. Multidimensional imaging of mammary gland development: a window into breast form and function. Front. Cell Dev. Biol. 8, 203 (2020).

    ADS  Google Scholar 

  131. Yang, L. et al. Three-dimensional quantitative co-mapping of pulmonary morphology and nanoparticle distribution with cellular resolution in nondissected murine lungs. ACS Nano 13, 1029–1041 (2019).

    Google Scholar 

  132. Cuccarese, M. F. et al. Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat. Commun. 8, 14293 (2017).

    ADS  Google Scholar 

  133. Sindhwani, S., Syed, A. M., Wilhelm, S. & Chan, W. C. Exploring passive clearing for 3d optical imaging of nanoparticles in intact tissues. Bioconjug Chem. 28, 253–259 (2017).

    Google Scholar 

  134. Schimmenti, L. A., Yan, H. C., Madri, J. A. & Albelda, S. M. Platelet endothelial cell adhesion molecule, PECAM-1, modulates cell migration. J. Cell Physiol. 153, 417–428 (1992).

    Google Scholar 

  135. Konno, A., Matsumoto, N. & Okazaki, S. Improved vessel painting with carbocyanine dye-liposome solution for visualisation of vasculature. Sci. Rep. 7, 10089 (2017).

    ADS  Google Scholar 

  136. Nehrhoff, I., Ripoll, J., Samaniego, R., Desco, M. & Gomez-Gaviro, M. V. Looking inside the heart: a see-through view of the vascular tree. Biomed. Opt. Express 8, 3110–3118 (2017).

    Google Scholar 

  137. Lugo-Hernandez, E. et al. 3D visualization and quantification of microvessels in the whole ischemic mouse brain using solvent-based clearing and light sheet microscopy. J. Cereb. Blood Flow. Metab. 37, 3355–3367 (2017).

    Google Scholar 

  138. Di Giovanna, A. P. et al. Whole-brain vasculature reconstruction at the single capillary level. Sci. Rep. 8, 12573 (2018).

    ADS  Google Scholar 

  139. Rajendran, P. S. et al. Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nat. Commun. 10, 1944 (2019).

    ADS  Google Scholar 

  140. Achanta, S. et al. A comprehensive integrated anatomical and molecular atlas of rat intrinsic cardiac nervous system. iScience 23, 101140 (2020).

    ADS  Google Scholar 

  141. Yokoyama, T. et al. Quantification of sympathetic hyperinnervation and denervation after myocardial infarction by three-dimensional assessment of the cardiac sympathetic network in cleared transparent murine hearts. PLoS ONE 12, e0182072 (2017).

    Google Scholar 

  142. Kapp, F. G. et al. Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche. Nature 558, 445–448 (2018).

    ADS  Google Scholar 

  143. Lersten, N. R. Modified clearing method to show sieve tubes in minor veins of leaves. Stain Technol. 61, 231–234 (1986).

    Google Scholar 

  144. Warner, C. A. et al. An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant. Physiol. 166, 1684–1687 (2014).

    Google Scholar 

  145. Kurihara, D., Mizuta, Y., Sato, Y. & Higashiyama, T. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142, 4168–4179 (2015).

    Google Scholar 

  146. Lu, L. et al. A rapid and effective optical-clearing technique for deep tissue fluorescence imaging in trees. Trees Struct. Funct. 34, 783–790 (2020).

    Google Scholar 

  147. Xia, Q. et al. Solar-assisted fabrication of large-scale, patternable transparent wood. Sci. Adv. 7, eabd7342 (2021).

    ADS  Google Scholar 

  148. Nojima, S. et al. CUBIC pathology: three-dimensional imaging for pathological diagnosis. Sci. Rep. 7, 9269 (2017).

    ADS  Google Scholar 

  149. Belle, M. et al. Tridimensional visualization and analysis of early human development. Cell 169, 161–173 (2017).

    Google Scholar 

  150. Dekkers, J. F. et al. High-resolution 3D imaging of fixed and cleared organoids. Nat. Protoc. 14, 1756–1771 (2019).

    Google Scholar 

  151. Rigamonti, A. et al. Large-scale production of mature neurons from human pluripotent stem cells in a three-dimensional suspension culture system. Stem Cell Rep. 6, 993–1008 (2016).

    Google Scholar 

  152. Cora, V. et al. A cleared view on retinal organoids. Cells 8, 391 (2019).

    Google Scholar 

  153. Costantini, I., Cicchi, R., Silvestri, L., Vanzi, F. & Pavone, F. S. In-vivo and ex-vivo optical clearing methods for biological tissues: review. Biomed. Opt. Express 10, 5251–5267 (2019).

    Google Scholar 

  154. Deng, Z. J. et al. Viscous optical clearing agent for in vivo optical imaging. J. Biomed. Opt. 19, 76019 (2014).

    Google Scholar 

  155. Millon, S. R., Roldan-Perez, K. M., Riching, K. M., Palmer, G. M. & Ramanujam, N. Effect of optical clearing agents on the in vivo optical properties of squamous epithelial tissue. Lasers Surg. Med. 38, 920–927 (2006).

    Google Scholar 

  156. Tuchin, V. V., Bashkatov, A. N., Genina, E. A., Sinichkin, Y. P. & Lakodina, N. A. In vivo investigation of the immersion-liquid-induced human skin clearing dynamics. Tech. Phys. Lett. 27, 489–490 (2001).

    ADS  Google Scholar 

  157. Wen, X., Mao, Z. Z., Han, Z. Z., Tuchin, V. V. & Zhu, D. In vivo skin optical clearing by glycerol solutions: mechanism. J. Biophotonics 3, 44–52 (2010).

    Google Scholar 

  158. Zhu, D., Wang, J., Zhi, Z. W., Wen, X. & Luo, Q. M. Imaging dermal blood flow through the intact rat skin with an optical clearing method. J. Biomed. Opt. 15, 026008 (2010).

    ADS  Google Scholar 

  159. Zhao, Y. J. et al. Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution. Light Sci. Appl. 7, 17153 (2018).

    Google Scholar 

  160. Pires, L. et al. Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography. J. Biomed. Opt. 21, 081210 (2016).

    ADS  Google Scholar 

  161. Zhao, H. et al. A versatile strategy for improving phototherapeutic efficacy on deep-sited tumor by tissue optical clearing technique. Nano Today https://doi.org/10.1016/j.nantod.2020.101058 (2021).

    Article  Google Scholar 

  162. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Google Scholar 

  163. Eng, C. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    ADS  Google Scholar 

  164. Moffitt, J. R. et al. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl Acad. Sci. USA 113, 14456–14461 (2016).

    Google Scholar 

  165. Dance, A. Find a home for every imaging data set. Nature 579, 162–163 (2020).

    ADS  Google Scholar 

  166. Pleiner, T. et al. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife 4, e11349 (2015).

    Google Scholar 

  167. Schumacher, D., Helma, J., Schneider, A. F. L., Leonhardt, H. & Hackenberger, C. P. R. Nanobodies: chemical functionalization strategies and intracellular applications. Angew. Chem. Int. Ed. 57, 2314–2333 (2018).

    Google Scholar 

  168. Kishi, J. Y. et al. SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nat. Methods 16, 533–544 (2019).

    Google Scholar 

  169. Shah, S. et al. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing. Development 143, 2862–2867 (2016).

    Google Scholar 

  170. Lin, R. et al. A hybridization-chain-reaction-based method for amplifying immunosignals. Nat. Methods 15, 275–278 (2018).

    Google Scholar 

  171. Saritas, T., Puelles, V. G., Su, X.-T., Ellison, D. H. & Kramann, R. Optical clearing and imaging of immunolabeled kidney tissue. J. Vis. Exp. https://doi.org/10.3791/60002 (2019).

  172. Xu, F. et al. High-throughput mapping of a whole rhesus monkey brain at micrometer resolution. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00986-5 (2021).

  173. Hama, H. et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 14, 1481–1488 (2011).

    Google Scholar 

  174. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Google Scholar 

Download references

Acknowledgements

The authors thank K. Matsumoto and S. Y. Yoshida for help constructing Figs 5 and 6, respectively, and E. Diel and I. Boothby for preparing samples in Figs 5, 7 and 9. This work was supported by a Japan Science and Technology Corporation (JST) Exploratory Research for Advanced Technology (ERATO) grant (JPMJER2001). H.R.U. was supported by the Science and Technology Platform Program for Advanced Biological Medicine (AMED/MEXT), a Japan Society of the Promotion of Science (JSPS) KAKENHI grant-in-aid for scientific research (JP18H05270), a grant-in-aid from the Human Frontier Science Program and a MEXT Quantum Leap Flagship Program (MEXT QLEAP) grant (JPMXS0120330644). K.M. was supported by a JSPS KAKENHI grant-in-aid for scientific research (20K06885) and a JST Moonshot R&D grant (JPMJMS2023). A.E. was supported by the European Research Council (ERC) Calvaria project, the Vascular Dementia Research Foundation and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy, ID 390857198). K.C. was supported by a Burroughs Wellcome Fund Career Awards at the Scientific Interface, the Searle Scholars Program, the Packard award in Science and Engineering, the NARSAD Young Investigator Award, the McKnight Foundation Technology Award, the JPB Foundation (PIIF and PNDRF), the Institute for Basic Science (IBS-R026-D1) and the NIH grants 1-DP2-ES027992 and U01MH117072. J.W.L. is supported by NIH grants U19NS104653 and P50MH094271. Resources that may help to enable general users to establish the methodology are freely available online at http://www.chunglabresources.org.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (D.S.R. and J.W.L.); Experimentation (D.S.R., W.G., K.M., C.P., K.C., A.E., H.R.U. and J.W.L.); Results (D.S.R., W.G., K.M., C.P., K.C., A.E., H.R.U. and J.W.L.); Applications (D.S.R., W.G., K.M., C.P., K.C., A.E., H.R.U. and J.W.L.); Reproducibility and data deposition (D.S.R., W.G., K.M., C.P., K.C., A.E., H.R.U. and J.W.L.); Limitations and optimizations (D.S.R., W.G., K.M., C.P., K.C., A.E., H.R.U. and J.W.L.); Outlook (D.S.R. and J.W.L.); overview of the Primer (D.S.R. and J.W.L.).

Corresponding author

Correspondence to Douglas S. Richardson.

Ethics declarations

Competing interests

H.R.U. is co-founder of CUBICStars, Inc. and a co-inventor on the following patent applications covering the CUBIC reagents: PCT/JP2014/070618 (pending, patent applicant is RIKEN, other co-inventors are E. A. Susaki and K. Tainaka); PCT/JP2017/016410 (pending, patent applicant is RIKEN, other co-inventors are K. Tainaka and T. Murakami). K.C. is an inventor for patent applications covering some technologies described in this paper and co-founder of LifeCanvas Technologies. A.E. and C.P. have filed a patent on whole-body clearing and imaging related technologies. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Methods Primers thanks Alan King Lun Liu, Woong Sun, Valery Tuchin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Aivia: https://www.aivia-software.com/

Arivis Vision4D: https://imaging.arivis.com/en/imaging-science/arivis-vision4d

Cell Image Library: http://www.cellimagelibrary.org/home

ilastik: https://www.ilastik.org/

Image Data Resource: http://idr.openmicroscopy.org/about/

Imaris: https://imaris.oxinst.com/

Intellisis: https://www.zeiss.com/microscopy/us/products/microscope-software/zen-intellesis-image-segmentation-by-deep-learning.html

Napari: https://napari.org/

Online repository for tissue clearing-validated antibodies: https://idisco.info/validated-antibodies/

Trainable Weka Segmentation: https://imagej.net/plugins/tws/

Glossary

Autofluorescence

Fluorescence that arises from endogenous fluorescent molecules contained within a biological specimen. Can also be introduced exogenously (that is, some hydrogels autofluoresce).

Dipping objectives

Objective lenses that are designed to be submerged into a liquid. Dipping objectives are found on upright microscopes, and samples are mounted without a coverslip.

Lattice light sheets

Light sheets that are formed using a specialized interference pattern that results in the projection of thin beams of excitation light into a sample, which are rapidly dithered to form the light sheet.

Steric hindrances

Refers to the inability to mount a sample on a microscope when the working distance of the objective is shorter than the thinnest dimension of the sample.

Optical section

An image of a 2D plane within a 3D object that is derived by optical, rather than mechanical, means.

Isotropic spatial resolution

Refers to specialized light microscopy techniques that produce an identical lateral and axial resolution.

Network switch

A computer network hardware device that allows multiple computers to communicate.

Dispersion

A measure of the change in refractive index relative to the wavelength of light passing through a substance. If a substance has high dispersion, it means blue light and red light will refract differently when passing through it.

Random forests

Machine learning algorithms that comprise many ‘estimators’ that each make a prediction as to which segmentation group a pixel should belong. When many estimators are combined into a ‘forest’, the final prediction is highly accurate.

Tortuosity

Describes the degree of curvature and/or twist in a blood vessel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richardson, D.S., Guan, W., Matsumoto, K. et al. Tissue clearing. Nat Rev Methods Primers 1, 84 (2021). https://doi.org/10.1038/s43586-021-00080-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-021-00080-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing