Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Light sheet fluorescence microscopy

Abstract

Light sheet fluorescence microscopy (LSFM) uses a thin sheet of light to excite only fluorophores within the focal volume. Light sheet microscopes (LSMs) have a true optical sectioning capability and, hence, provide axial resolution, restrict photobleaching and phototoxicity to a fraction of the sample and use cameras to record tens to thousands of images per second. LSMs are used for in-depth analyses of large, optically cleared samples and long-term three-dimensional (3D) observations of live biological specimens at high spatio-temporal resolution. The independently operated illumination and detection trains and the canonical implementations, selective/single plane illumination microscope (SPIM) and digital scanned laser microscope (DSLM), are the basis for many LSM designs. In this Primer, we discuss various applications of LSFM for imaging multicellular specimens, developing vertebrate and invertebrate embryos, brain and heart function, 3D cell culture models, single cells, tissue sections, plants, organismic interaction and entire cleared brains. Further, we describe the combination of LSFM with other imaging approaches to allow for super-resolution or increased penetration depth and the use of sophisticated spatio-temporal manipulations to allow for observations along multiple directions. Finally, we anticipate developments of the field in the near future.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Canonical implementations of light sheet fluorescence microscopy.
Fig. 2: Illumination and detection set-ups.
Fig. 3: Mounting examples for sample chamber-based light sheet microscopes.
Fig. 4: Exploring the three-dimensional space.
Fig. 5: Exemplary image processing flowchart.
Fig. 6: Stitching, fusion, deconvolution and rendering of light sheet fluorescence microscopy data.
Fig. 7: Light sheet fluorescence microscopy for mouse developmental biology.
Fig. 8: Light sheet fluorescence microscopy for evolutionary developmental biology.
Fig. 9: Light sheet fluorescence microscopy for biomedical imaging.

References

  1. 1.

    Santi, P. A. Light sheet fluorescence microscopy: a review. J. Histochem. Cytochemistry https://doi.org/10.1369/0022155410394857 (2011).

    Article  Google Scholar 

  2. 2.

    Tomer, R., Khairy, K. & Keller, P. J. Shedding light on the system: studying embryonic development with light sheet microscopy. Curr. Opin. Genet. Dev. 21, 558–565 (2011).

    Google Scholar 

  3. 3.

    Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature https://doi.org/10.1038/nature22369 (2017).

    Article  Google Scholar 

  4. 4.

    Lu, C. H. et al. Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging. Commun. Biol. 2, 1–10 (2019).

    Google Scholar 

  5. 5.

    Sticker, M., Elsässer, R., Neumann, M. & Wolff, H. How to get better fluorescence images with your widefield microscope: a methodology review. Microsc. Today 28, 36–43 (2020).

    Google Scholar 

  6. 6.

    Cox, I. J. Scanning optical fluorescence microscopy. J. Microsc. 133, 149–154 (1984).

    Google Scholar 

  7. 7.

    Reynaud, E. G., Kržič, U., Greger, K. & Stelzer, E. H. K. Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage. HFSP J. https://doi.org/10.2976/1.2974980 (2008).

    Article  Google Scholar 

  8. 8.

    Truong, T. V., Supatto, W., Koos, D. S., Choi, J. M. & Fraser, S. E. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8, 757–760 (2011).

    Google Scholar 

  9. 9.

    Jemielita, M., Taormina, M. J., Delaurier, A., Kimmel, C. B. & Parthasarathy, R. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques. J. Biophotonics https://doi.org/10.1002/jbio.201200144 (2013).

    Article  Google Scholar 

  10. 10.

    Power, R. M. & Huisken, J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods https://doi.org/10.1038/nmeth.4224 (2017).

    Article  Google Scholar 

  11. 11.

    Siedentopf, H. & Zsigmondy, R. Über Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser [German]. Ann. Phys. https://doi.org/10.1002/andp.19023150102 (1902).

    Article  Google Scholar 

  12. 12.

    Voie, A. H., Burns, D. H. & Spelman, F. A. Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J. Microsc. 170, 229–236 (1993).

    Google Scholar 

  13. 13.

    Fuchs, E., Jaffe, J., Long, R. & Azam, F. Thin laser light sheet microscope for microbial oceanography. Opt. Express https://doi.org/10.1364/oe.10.000145 (2002).

    Article  Google Scholar 

  14. 14.

    Resandt, R. W. W. et al. Optical fluorescence microscopy in three dimensions: microtomoscopy. J. Microsc. 138, 29–34 (1985).

    Google Scholar 

  15. 15.

    Hell, S. & Stelzer, E. H. K. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 9, 2159–2166 (1992).

    ADS  Google Scholar 

  16. 16.

    Stelzer, E. H. K. & Lindek, S. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy. Opt. Commun. 111, 536–547 (1994).

    ADS  Google Scholar 

  17. 17.

    Swoger, J., Huisken, J. & Stelzer, E. H. K. Multiple imaging axis microscopy improves resolution for thick-sample applications. Opt. Lett. 28, 1654 (2003).

    ADS  Google Scholar 

  18. 18.

    Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004). This work describes the first diffraction-limited LSM in the form of the selective/single plane illumination implementation (SPIM), which uses a cylindrical lens to generate a static light sheet.

    ADS  Google Scholar 

  19. 19.

    Stelzer, E. H. K., Enders, S., Huisken, J., Lindek, S. & Swoger, J. H. Microscope with a viewing direction perpendicular to the illumination direction. US Patent 7554725 B2 (2009).

  20. 20.

    Engelbrecht, C. J. & Stelzer, E. H. Resolution enhancement in a light-sheet-based microscope (SPIM). Opt. Lett. 31, 1477–1479 (2006).

    ADS  Google Scholar 

  21. 21.

    Verveer, P. J. et al. High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nat. Methods 4, 311–313 (2007).

    Google Scholar 

  22. 22.

    Swoger, J., Verveer, P., Greger, K., Huisken, J. & Stelzer, E. H. K. K. Multi-view image fusion improves resolution in three-dimensional microscopy. Opt. Express 15, 8029–8042 (2007).

    ADS  Google Scholar 

  23. 23.

    Wohland, T., Shi, X., Sankaran, J. & Stelzer, E. H. K. Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt. Express 18, 10627–10641 (2010).

    ADS  Google Scholar 

  24. 24.

    Greger, K., Neetz, M. J., Reynaud, E. G. & Stelzer, E. H. K. Three-dimensional fluorescence lifetime imaging with a single plane illumination microscope provides an improved signal to noise ratio. Opt. Express 19, 20743 (2011).

    ADS  Google Scholar 

  25. 25.

    Method of the Year 2014. Nat. Methods 12, 1 (2015).

  26. 26.

    Fahrbach, F. O., Voigt, F. F., Schmid, B., Helmchen, F. & Huisken, J. Rapid 3D light-sheet microscopy with a tunable lens. Opt. Express 21, 21010–21026 (2013).

    ADS  Google Scholar 

  27. 27.

    Keller, P. J., Schmidt, A. D., Wittbrodt, J. & Stelzer, E. H. K. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065–1069 (2008). This work presents the first digital scanned laser light sheet-based fluorescence implementation (DSLM), which used beam scanning to generate a dynamic light sheet.

    ADS  Google Scholar 

  28. 28.

    Keller, P. J. & Stelzer, E. H. K. Digital scanned laser light sheet fluorescence microscopy. Cold Spring Harb. Protoc. 2010, pdb.top78 (2010).

    Google Scholar 

  29. 29.

    Khonina, S. N., Kazanskiy, N. L., Karpeev, S. V. & Butt, M. A. Bessel beam: significance and applications — a progressive review. Micromachines 11, 997 (2020).

    Google Scholar 

  30. 30.

    Efremidis, N. K., Chen, Z., Segev, M. & Christodoulides, D. N. Airy beams and accelerating waves: an overview of recent advances. Optica 6, 686 (2019).

    ADS  Google Scholar 

  31. 31.

    Stelzer, E. H. K. Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy. J. Microsc. https://doi.org/10.1046/j.1365-2818.1998.00290.x (1998).

    Article  Google Scholar 

  32. 32.

    Olarte, O. E., Andilla, J., Gualda, E. J. & Loza-Alvarez, P. Light-sheet microscopy: a tutorial. Adv. Opt. Photonics https://doi.org/10.1364/aop.10.000111 (2018).

    Article  Google Scholar 

  33. 33.

    Krzic, U., Gunther, S., Saunders, T. E., Streichan, S. J. & Hufnagel, L. Multiview light-sheet microscope for rapid in toto imaging. Nat. Methods 9, 730–733 (2012).

    Google Scholar 

  34. 34.

    Preibisch, S. et al. Efficient Bayesian-based multiview deconvolution. Nat. Methods 11, 645–648 (2014).

    Google Scholar 

  35. 35.

    Huisken, J. & Stainier, D. Y. R. Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt. Lett. 32, 2608–2610 (2007).

    ADS  Google Scholar 

  36. 36.

    Tomer, R., Khairy, K., Amat, F. & Keller, P. J. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods 9, 755–763 (2012).

    Google Scholar 

  37. 37.

    Chhetri, R. K. et al. Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat. Methods 12, 1171–1178 (2015).

    Google Scholar 

  38. 38.

    Wu, Y. et al. Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1108494108 (2011).

    Article  Google Scholar 

  39. 39.

    Wu, Y. et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat. Biotechnol. https://doi.org/10.1038/nbt.2713 (2013).

    Article  Google Scholar 

  40. 40.

    Wu, Y. et al. Reflective imaging improves spatiotemporal resolution and collection efficiency in light sheet microscopy. Nat. Commun. https://doi.org/10.1038/s41467-017-01250-8 (2017).

    Article  Google Scholar 

  41. 41.

    McGorty, R. et al. Open-top selective plane illumination microscope for conventionally mounted specimens. Opt. Express 23, 16142–16153 (2015).

    ADS  Google Scholar 

  42. 42.

    Mcgorty, R., Xie, D. & Huang, B. High-NA open-top selective-plane illumination microscopy for biological imaging. Opt. Express https://doi.org/10.1364/oe.25.017798 (2017).

    Article  Google Scholar 

  43. 43.

    Glaser, A. K. et al. Multi-immersion open-top light-sheet microscope for high-throughput imaging of cleared tissues. Nat. Commun. 10, 2781 (2019).

    ADS  MathSciNet  Google Scholar 

  44. 44.

    Gualda, E. J. et al. SPIM-fluid: open source light-sheet based platform for high-throughput imaging. Biomed. Opt. Express 6, 4447 (2015).

    Google Scholar 

  45. 45.

    Wu, J., Li, J. & Chan, R. K. Y. Y. A light sheet based high throughput 3D- imaging flow cytometer for phytoplankton analysis. Opt. Express 21, 14474–14480 (2013).

    ADS  Google Scholar 

  46. 46.

    Paiè, P., Bragheri, F., Bassi, A. & Osellame, R. Selective plane illumination microscopy on a chip. Lab. Chip https://doi.org/10.1039/c6lc00084c (2016).

    Article  Google Scholar 

  47. 47.

    Sala, F. et al. High-throughput 3D imaging of single cells with light-sheet fluorescence microscopy on chip. Biomed. Opt. Express https://doi.org/10.1364/boe.393892 (2020).

    Article  Google Scholar 

  48. 48.

    Yang, B. et al. Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution. Nat. Methods 16, 501–504 (2019). This work presents a novel oblique plane microscopy design that enables the collection of fluorescence emissions in high NA to allow for high spatio-temporal resolution and is compatible with common biological sample holders, including multiwell plates.

    Google Scholar 

  49. 49.

    Dunsby, C. Optically sectioned imaging by oblique plane microscopy. Opt. Express 16, 20306 (2008). This work describes the first oblique light sheet-based microscope, which combines selective plane illumination with oblique imaging by using only one objective.

    ADS  Google Scholar 

  50. 50.

    Bouchard, M. B. et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photonics https://doi.org/10.1038/nphoton.2014.323 (2015).

    Article  Google Scholar 

  51. 51.

    Voleti, V. et al. Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nat. Methods https://doi.org/10.1038/s41592-019-0579-4 (2019).

    Article  Google Scholar 

  52. 52.

    Kumar, M., Kishore, S., Nasenbeny, J., Mclean, D. L. & Kozorovitskiy, Y. Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging. Opt. Express https://doi.org/10.1364/OE.26.013027 (2018).

    Article  Google Scholar 

  53. 53.

    Sapoznik, E. et al. A versatile oblique plane microscope for large-scale and high-resolution imaging of subcellular dynamics. eLife https://doi.org/10.7554/eLife.57681 (2020).

    Article  Google Scholar 

  54. 54.

    Maioli, V. et al. Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates. Sci. Rep. https://doi.org/10.1038/srep37777 (2016).

    Article  Google Scholar 

  55. 55.

    Vaadia, R. D. et al. Characterization of proprioceptive system dynamics in behaving Drosophila larvae using high-speed volumetric microscopy. Curr. Biol. https://doi.org/10.1016/j.cub.2019.01.060 (2019).

    Article  Google Scholar 

  56. 56.

    Gebhardt, J. C. M. et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods https://doi.org/10.1038/nmeth.2411 (2013).

    Article  Google Scholar 

  57. 57.

    Plöschner, M. et al. Multimode fibre: light-sheet microscopy at the tip of a needle. Sci. Rep. https://doi.org/10.1038/srep18050 (2015).

    Article  Google Scholar 

  58. 58.

    Greiss, F., Deligiannaki, M., Jung, C., Gaul, U. & Braun, D. Single-molecule imaging in living Drosophila embryos with reflected light-Sseet microscopy. Biophys. J. https://doi.org/10.1016/j.bpj.2015.12.035 (2016).

    Article  Google Scholar 

  59. 59.

    Zagato, E. et al. Microfabricated devices for single objective single plane illumination microscopy (SoSPIM). Opt. Express https://doi.org/10.1364/oe.25.001732 (2017).

    Article  Google Scholar 

  60. 60.

    Galland, R. et al. 3D high-and super-resolution imaging using single-objective SPIM. Nat. Methods https://doi.org/10.1038/nmeth.3402 (2015).

    Article  Google Scholar 

  61. 61.

    Meddens, M. B. M. et al. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution. Biomed. Opt. Express https://doi.org/10.1364/boe.7.002219 (2016).

    Article  Google Scholar 

  62. 62.

    Pitrone, P. G. et al. OpenSPIM: an open-access light-sheet microscopy platform. Nat. Methods 10, 598–599 (2013).

    Google Scholar 

  63. 63.

    Gualda, E. J. et al. OpenSpinMicroscopy: an open-source integrated microscopy platform. Nat. Methods 10, 599–600 (2013).

    Google Scholar 

  64. 64.

    Stuurman, N., Amdodaj, N. & Vale, R. μManager: open source software for light microscope imaging. Micros. Today https://doi.org/10.1017/s1551929500055541 (2007).

    Article  Google Scholar 

  65. 65.

    Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using µManager. Curr. Protoc. Mol. Biol. 92, 14.20.1–14.20.17 (2010).

    Google Scholar 

  66. 66.

    Edelstein, A. D. et al. Advanced methods of microscope control using μManager software. J. Biol. Methods 1, e10 (2014).

    Google Scholar 

  67. 67.

    Saska, D., Pichler, P., Qian, C., Buckley, C. L. & Lagnado, L. μSPIM Toolset: a software platform for selective plane illumination microscopy. J. Neurosci. Methods https://doi.org/10.1016/j.jneumeth.2020.108952 (2021).

    Article  Google Scholar 

  68. 68.

    Pinkard, H. et al. Pycro-Manager: open-source software for customized and reproducible microscope control. Nat. Methods https://doi.org/10.1038/s41592-021-01087-6 (2021).

    Article  Google Scholar 

  69. 69.

    Alamudi, S. H. & Chang, Y. T. Advances in the design of cell-permeable fluorescent probes for applications in live cell imaging. Chem. Commun. 54, 13641–13653 (2018).

    Google Scholar 

  70. 70.

    Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Google Scholar 

  71. 71.

    Shcherbakova, D. M. et al. Molecular basis of spectral diversity in near-infrared phytochrome-based fluorescent proteins. Chem. Biol. 22, 1540–1551 (2015).

    Google Scholar 

  72. 72.

    Tran, M. T. N. et al. In vivo image analysis using iRFP transgenic mice. Exp. Anim. 63, 311–319 (2014).

    Google Scholar 

  73. 73.

    Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. https://doi.org/10.1038/nbt765 (2003).

    Article  Google Scholar 

  74. 74.

    Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Google Scholar 

  75. 75.

    Grimm, J. B. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods https://doi.org/10.1038/nmeth.4403 (2017).

    Article  Google Scholar 

  76. 76.

    Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature https://doi.org/10.1038/nature12354 (2013).

    Article  Google Scholar 

  77. 77.

    Abdelfattah, A. S. et al. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science https://doi.org/10.1126/science.aav6416 (2019).

    Article  Google Scholar 

  78. 78.

    Greenwald, E. C., Mehta, S. & Zhang, J. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem. Rev. 118, 11707–11794 (2018).

    Google Scholar 

  79. 79.

    Arai, S. et al. RGB-color intensiometric indicators to visualize spatiotemporal dynamics of ATP in single cells. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.201804304 (2018).

    Article  Google Scholar 

  80. 80.

    Lindenburg, L. H., Hessels, A. M., Ebberink, E. H. T. M., Arts, R. & Merkx, M. Robust red FRET sensors using self-associating fluorescent domains. ACS Chem. Biol. https://doi.org/10.1021/cb400427b (2013).

    Article  Google Scholar 

  81. 81.

    Liau, E. S., Yen, Y. P. & Chen, J. A. Visualization of motor axon navigation and quantification of axon arborization in mouse embryos using light sheet fluorescence microscopy. J. Vis. Exp. https://doi.org/10.3791/57546 (2018).

    Article  Google Scholar 

  82. 82.

    Silvestri, L. et al. Micron-scale resolution optical tomography of entire mouse brains with confocal light sheet microscopy. J. Vis. Exp. https://doi.org/10.3791/50696 (2013).

    Article  Google Scholar 

  83. 83.

    Ding, Y. et al. Light-sheet fluorescence microscopy for the study of the murine heart. J. Vis. Exp. https://doi.org/10.3791/57769 (2018).

    Article  Google Scholar 

  84. 84.

    Weber, M., Mickoleit, M. & Huisken, J. Multilayer mounting for long-term light sheet microscopy of zebrafish. J. Vis. Exp. https://doi.org/10.3791/51119 (2014).

    Article  Google Scholar 

  85. 85.

    Icha, J. et al. Using light sheet fluorescence microscopy to image zebrafish eye development. J. Vis. Exp. https://doi.org/10.3791/53966 (2016).

    Article  Google Scholar 

  86. 86.

    Lee, J. et al. Light-sheet fluorescence microscopy to capture 4-dimensional images of the effects of modulating shear stress on the developing zebrafish heart. J. Vis. Exp. https://doi.org/10.3791/57763 (2018).

    Article  Google Scholar 

  87. 87.

    Chardès, C., Mélénec, P., Bertrand, V. & Lenne, P. F. Setting up a simple light sheet microscope for in toto imaging of C. elegans development. J. Vis. Exp. https://doi.org/10.3791/51342 (2014).

    Article  Google Scholar 

  88. 88.

    Duncan, L. H. et al. Isotropic light-sheet microscopy and automated cell lineage analyses to catalogue Caenorhabditis elegans embryogenesis with subcellular resolution. J. Vis. Exp. 2019, 59533 (2019).

    Google Scholar 

  89. 89.

    Strobl, F., Klees, S. & Stelzer, E. H. K. Light sheet-based fluorescence microscopy of living or fixed and stained Tribolium castaneum embryos. J. Vis. Exp. https://doi.org/10.3791/55629 (2017).

    Article  Google Scholar 

  90. 90.

    Ratke, J., Krämer, F. & Strobl, F. Simultaneous live imaging of multiple insect embryos in sample chamber-based light sheet fluorescence microscopes. J. Vis. Exp. https://doi.org/10.3791/61713 (2020).

    Article  Google Scholar 

  91. 91.

    von Wangenheim, D., Hauschild, R. & Friml, J. Light sheet fluorescence microscopy of plant roots growing on the surface of a gel. J. Vis. Exp. https://doi.org/10.3791/55044 (2017).

    Article  Google Scholar 

  92. 92.

    Jacob, L., Brito, J. & Thomas, J. L. Three-dimensional imaging of the vertebral lymphatic vasculature and drainage using iDISCO+ and light sheet fluorescence microscopy. J. Vis. Exp. https://doi.org/10.3791/61099 (2020).

    Article  Google Scholar 

  93. 93.

    Schoppmeyer, R., Zhao, R., Hoth, M. & Qu, B. Light-sheet microscopy for three-dimensional visualization of human immune cells. J. Vis. Exp. https://doi.org/10.3791/57651 (2018).

    Article  Google Scholar 

  94. 94.

    Rosenberg, J. & Huang, J. Visualizing surface T-cell receptor dynamics four-dimensionally using lattice light-sheet microscopy. J. Vis. Exp. https://doi.org/10.3791/59914 (2019).

    Article  Google Scholar 

  95. 95.

    Keller, P. J., Schmidt, A. D., Wittbrodt, J. & Stelzer, E. H. K. Digital scanned laser light-sheet fluorescence microscopy (DSLM) of zebrafish and Drosophila embryonic development. Cold Spring Harb. Protoc. 2011, 1235–1243 (2011).

    Google Scholar 

  96. 96.

    Schmied, C. & Tomancak, P. Sample preparation and mounting of Drosophila embryos for multiview light sheet microscopy. in. Methods Mol. Biol. 1478, 189–202 (2016).

    Google Scholar 

  97. 97.

    Kaufmann, A., Mickoleit, M., Weber, M. & Huisken, J. Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope. Development 139, 3242–3247 (2012). This work describes a method that allows for stacking multiple zebrafish embryos into one sample holder for multi-embryo imaging within a single experiment.

    Google Scholar 

  98. 98.

    Uribe, V. et al. In vivo analysis of cardiomyocyte proliferation during trabeculation. Development https://doi.org/10.1242/dev.164194 (2018).

    Article  Google Scholar 

  99. 99.

    de Medeiros, G., Balázs, B. & Hufnagel, L. Light-sheet imaging of mammalian development. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2015.11.001 (2016).

    Article  Google Scholar 

  100. 100.

    Reichmann, J., Eguren, M., Lin, Y., Schneider, I. & Ellenberg, J. Live imaging of cell division in preimplantation mouse embryos using inverted light-sheet microscopy. Methods Cell Biol. https://doi.org/10.1016/bs.mcb.2018.03.030 (2018).

    Article  Google Scholar 

  101. 101.

    Ichikawa, T. et al. Live imaging of whole mouse embryos during gastrulation: migration analyses of epiblast and mesodermal cells. PLoS ONE 8, e64506 (2013).

    ADS  Google Scholar 

  102. 102.

    Ichikawa, T. et al. Live imaging and quantitative analysis of gastrulation in mouse embryos using light-sheet microscopy and 3D tracking tools. Nat. Protoc. 9, 575–585 (2014).

    Google Scholar 

  103. 103.

    McDole, K. et al. In toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell https://doi.org/10.1016/j.cell.2018.09.031 (2018). This work demonstrates the use of light sheet microscopy for imaging the developing mouse embryo over the course of 2 days from gastrulation to early organogenesis, and reconstructs dynamic, lineage-based cell fate maps.

    Article  Google Scholar 

  104. 104.

    Pampaloni, F., Ansari, N. & Stelzer, E. H. K. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res. https://doi.org/10.1007/s00441-013-1589-7 (2013).

    Article  Google Scholar 

  105. 105.

    Hötte, K. et al. Ultra-thin fluorocarbon foils optimise multiscale imaging of three-dimensional native and optically cleared specimens. Sci. Rep. https://doi.org/10.1038/s41598-019-53380-2 (2019).

    Article  Google Scholar 

  106. 106.

    Pampaloni, F. et al. Tissue-culture light sheet fluorescence microscopy (TC-LSFM) allows long-term imaging of three-dimensional cell cultures under controlled conditions. Integr. Biol. https://doi.org/10.1039/c4ib00121d (2014).

    Article  Google Scholar 

  107. 107.

    Flood, P., Page, H. & Reynaud, E. G. Using hydrogels in microscopy: a tutorial. Micron https://doi.org/10.1016/j.micron.2016.02.002 (2016).

    Article  Google Scholar 

  108. 108.

    Ettinger, A. & Wittmann, T. Fluorescence live cell imaging. Methods Cell Biol. https://doi.org/10.1016/B978-0-12-420138-5.00005-7 (2014).

    Article  Google Scholar 

  109. 109.

    Von Wangenheim, D., Daum, G., Lohmann, J. U., Stelzer, E. K. & Maizel, A. Live imaging of Arabidopsis development. Methods Mol. Biol. https://doi.org/10.1007/978-1-62703-580-4_28 (2014).

    Article  Google Scholar 

  110. 110.

    Ovecka, M. et al. Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nat. Protoc. https://doi.org/10.1038/nprot.2015.081 (2015).

    Article  Google Scholar 

  111. 111.

    Strobl, F., Schmitz, A. & Stelzer, E. H. K. Live imaging of Tribolium castaneum embryonic development using light-sheet-based fluorescence microscopy. Nat. Protoc. 10, 1486–1507 (2015). This work describes a two-step calibration routine for light sheet-based microscopes (primarily DSLM-based set-ups) with a comprehensively illustrated troubleshooting guide.

    Google Scholar 

  112. 112.

    Gao, L. Extend the field of view of selective plan illumination microscopy by tiling the excitation light sheet. Opt. Express 23, 6102 (2015).

    ADS  Google Scholar 

  113. 113.

    Yanlu, C. et al. A versatile tiling light sheet microscope for imaging of cleared tissues. Cell Rep. 33, 108349 (2020).

    Google Scholar 

  114. 114.

    Sancataldo, G. et al. Flexible multi-beam light-sheet fluorescence microscope for live imaging without striping artifacts. Front. Neuroanat. https://doi.org/10.3389/fnana.2019.00007 (2019).

    Article  Google Scholar 

  115. 115.

    Fahrbach, F. O. & Rohrbach, A. A line scanned light-sheet microscope with phase shaped self-reconstructing beams. Opt. Express 18, 24229 (2010). This work proposes the first implementation of LSFM with Bessel beams, which in principle can avoid some of the trade-offs of conventional Gaussian beams.

    ADS  Google Scholar 

  116. 116.

    Fahrbach, F. O. & Rohrbach, A. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nat. Commun. 3, 632 (2012).

    ADS  Google Scholar 

  117. 117.

    Müllenbroich, M. C. et al. Bessel beam illumination reduces random and systematic errors in quantitative functional studies using light-sheet microscopy. Front. Cell. Neurosci. https://doi.org/10.3389/fncel.2018.00315 (2018).

    Article  Google Scholar 

  118. 118.

    Salili, S. M., Harrington, M. & Durian, D. J. Note: Eliminating stripe artifacts in light-sheet fluorescence imaging. Rev. Sci. Instrum. https://doi.org/10.1063/1.5016546 (2018).

    Article  Google Scholar 

  119. 119.

    Liang, X. et al. Stripe artifact elimination based on nonsubsampled contourlet transform for light sheet fluorescence microscopy. J. Biomed. Opt. https://doi.org/10.1117/1.jbo.21.10.106005 (2016).

    Article  Google Scholar 

  120. 120.

    Keller, P. J. et al. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat. Methods 7, 637–642 (2010).

    Google Scholar 

  121. 121.

    Neil, M. A. A., Juškaitis, R. & Wilson, T. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett. https://doi.org/10.1364/ol.22.001905 (1997).

    Article  Google Scholar 

  122. 122.

    Silvestri, L., Bria, A., Sacconi, L., Iannello, G. & Pavone, F. S. Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Opt. Express 20, 20582 (2012).

    ADS  Google Scholar 

  123. 123.

    Baumgart, E. & Kubitscheck, U. Scanned light sheet microscopy with confocal slit detection. Opt. Express 20, 21805–21814 (2012).

    ADS  Google Scholar 

  124. 124.

    Medeiros, G. D. et al. Confocal multiview light-sheet microscopy. Nat. Commun. https://doi.org/10.1038/ncomms9881 (2015).

    Article  Google Scholar 

  125. 125.

    Gavryusev, V. et al. Dual-beam confocal light-sheet microscopy via flexible acousto-optic deflector. J. Biomed. Opt. https://doi.org/10.1117/1.jbo.24.10.106504 (2019).

    Article  Google Scholar 

  126. 126.

    Jahr, W., Schmid, B., Schmied, C., Fahrbach, F. O. & Huisken, J. Hyperspectral light sheet microscopy. Nat. Commun. 6, 7990 (2015).

    ADS  Google Scholar 

  127. 127.

    Lavagnino, Z. et al. Snapshot hyperspectral light-sheet imaging of signal transduction in live pancreatic islets. Biophys. J. https://doi.org/10.1016/j.bpj.2016.06.014 (2016).

    Article  Google Scholar 

  128. 128.

    Jones, R. R., Hooper, D. C., Zhang, L., Wolverson, D. & Valev, V. K. Raman techniques: fundamentals and frontiers. Nanoscale Res. Lett. 14, 1–34 (2019).

    Google Scholar 

  129. 129.

    Rocha-Mendoza, I. et al. Rapid spontaneous Raman light sheet microscopy using cw-lasers and tunable filters. Biomed. Opt. Express https://doi.org/10.1364/boe.6.003449 (2015).

    Article  Google Scholar 

  130. 130.

    Müller, W., Kielhorn, M., Schmitt, M., Popp, J. & Heintzmann, R. Light sheet Raman micro-spectroscopy. Optica https://doi.org/10.1364/optica.3.000452 (2016).

    Article  Google Scholar 

  131. 131.

    Yu, L. et al. A comprehensive review of fluorescence correlation spectroscopy. Front. Phys. 9, 110 (2021).

    Google Scholar 

  132. 132.

    Capoulade, J., Wachsmuth, M., Hufnagel, L. & Knop, M. Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nat. Biotechnol. https://doi.org/10.1038/nbt.1928 (2011).

    Article  Google Scholar 

  133. 133.

    Struntz, P. & Weiss, M. Multiplexed measurement of protein diffusion in Caenorhabditis elegans embryos with SPIM-FCS. J. Phys. D. Appl. Phys. https://doi.org/10.1088/0022-3727/49/4/044002 (2015).

    Article  Google Scholar 

  134. 134.

    Singh, A. P. et al. 3D protein dynamics in the cell nucleus. Biophys. J. https://doi.org/10.1016/j.bpj.2016.11.3196 (2017).

    Article  Google Scholar 

  135. 135.

    Krieger, J. W., Singh, A. P., Garbe, C. S., Wohland, T. & Langowski, J. Dual-color fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS). Opt. Express https://doi.org/10.1364/oe.22.002358 (2014).

    Article  Google Scholar 

  136. 136.

    Krieger, J. W. et al. Imaging fluorescence (cross-)correlation spectroscopy in live cells and organisms. Nat. Protoc. https://doi.org/10.1038/nprot.2015.100 (2015).

    Article  Google Scholar 

  137. 137.

    Buchholz, J. et al. Widefield high frame rate single-photon SPAD imagers for SPIM-FCS. Biophys. J. https://doi.org/10.1016/j.bpj.2018.04.029 (2018).

    Article  Google Scholar 

  138. 138.

    Datta, R., Heaster, T. M., Sharick, J. T., Gillette, A. A. & Skala, M. C. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J. Biomed. Opt. 25, 1 (2020).

    Google Scholar 

  139. 139.

    Mitchell, C. A. et al. Functional in vivo imaging using fluorescence lifetime light-sheet microscopy. Opt. Lett. https://doi.org/10.1364/ol.42.001269 (2017).

    Article  Google Scholar 

  140. 140.

    Ulku, A. et al. Wide-field time-gated SPAD imager for phasor-based FLIM applications. Methods Appl. Fluoresc. https://doi.org/10.1088/2050-6120/ab6ed7 (2020).

    Article  Google Scholar 

  141. 141.

    Oleksiievets, N. et al. Wide-field fluorescence lifetime imaging of single molecules. J. Phys. Chem. A https://doi.org/10.1021/acs.jpca.0c01513 (2020).

    Article  Google Scholar 

  142. 142.

    Reynaud, E. G., Peychl, J., Huisken, J. & Tomancak, P. Guide to light-sheet microscopy for adventurous biologists. Nat. Methods 12, 30–34 (2015).

    Google Scholar 

  143. 143.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Google Scholar 

  144. 144.

    Schindelin, J., Rueden, C. T., Hiner, M. C. & Eliceiri, K. W. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol. Reprod. Dev. https://doi.org/10.1002/mrd.22489 (2015).

    Article  Google Scholar 

  145. 145.

    Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics https://doi.org/10.1186/s12859-017-1934-z (2017).

    Article  Google Scholar 

  146. 146.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Google Scholar 

  147. 147.

    Amat, F. et al. Efficient processing and analysis of large-scale light-sheet microscopy data. Nat. Protoc. 10, 1679–1696 (2015). This work provides a comprehensive protocol for the processing and analysis of light sheet-based data in the terabyte range, including advice for data compression, multi-view fusion automated cell tracking and visualization.

    Google Scholar 

  148. 148.

    Huisman, M. et al. A perspective on microscopy metadata: data provenance and quality control. Preprint at https://arxiv.org/abs/1910.11370 (2019).

  149. 149.

    Gao, R. et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science https://doi.org/10.1126/science.aau8302 (2019).

    Article  Google Scholar 

  150. 150.

    Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).

    Google Scholar 

  151. 151.

    Hörl, D. et al. BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nat. Methods https://doi.org/10.1038/s41592-019-0501-0 (2019).

    Article  Google Scholar 

  152. 152.

    Guo, M. et al. Rapid image deconvolution and multiview fusion for optical microscopy. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0560-x (2020).

    Article  Google Scholar 

  153. 153.

    Preibisch, S., Saalfeld, S., Schindelin, J. & Tomancak, P. Software for bead-based registration of selective plane illumination microscopy data. Nat. Methods 7, 418–419 (2010).

    Google Scholar 

  154. 154.

    Wallace, W., Schaefer, L. H. & Swedlow, J. R. A workingperson’s guide to deconvolution in light microscopy. Biotechniques 31, 1076–1097 (2001).

    Google Scholar 

  155. 155.

    Becker, K. et al. Deconvolution of light sheet microscopy recordings. Sci. Rep. https://doi.org/10.1038/s41598-019-53875-y (2019).

    Article  Google Scholar 

  156. 156.

    Verveer, P. J. et al. Restoration of light sheet multi-view data with the huygens fusion and deconvolution wizard. Micros. Today https://doi.org/10.1017/s1551929518000846 (2018).

    Article  Google Scholar 

  157. 157.

    Long, F., Zhou, J. & Peng, H. Visualization and analysis of 3D microscopic images. PLoS Comput. Biol. 8, e1002519 (2012).

    ADS  Google Scholar 

  158. 158.

    Pietzsch, T., Saalfeld, S., Preibisch, S. & Tomancak, P. BigDataViewer: visualization and processing for large image data sets. Nat. Methods 12, 481–483 (2015).

    Google Scholar 

  159. 159.

    Pietzsch, T., Preibisch, S., Tomančák, P. & Saalfeld, S. Img lib 2-generic image processing in Java. Bioinformatics https://doi.org/10.1093/bioinformatics/bts543 (2012).

    Article  Google Scholar 

  160. 160.

    Preusser, F. et al. FRC-QE: a robust and comparable 3D microscopy image quality metric for cleared organoids. Bioinformatics https://doi.org/10.1093/bioinformatics/btab160 (2021).

    Article  Google Scholar 

  161. 161.

    Peng, H., Ruan, Z., Long, F., Simpson, J. H. & Myers, E. W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. https://doi.org/10.1038/nbt.1612 (2010).

    Article  Google Scholar 

  162. 162.

    Bria, A. & Iannello, G. TeraStitcher — a tool for fast automatic 3D-stitching of teravoxel-sized microscopy images. BMC Bioinformatics https://doi.org/10.1186/1471-2105-13-316 (2012).

    Article  Google Scholar 

  163. 163.

    Royer, L. A. et al. ClearVolume: open-source live 3D visualization for light-sheet microscopy. Nat. Methods 12, 480–481 (2015).

    Google Scholar 

  164. 164.

    Schmid, B. et al. 3Dscript: animating 3D/4D microscopy data using a natural-language-based syntax. Nat. Methods https://doi.org/10.1038/s41592-019-0359-1 (2019).

    Article  Google Scholar 

  165. 165.

    Bria, A., Iannello, G., Onofri, L. & Peng, H. TeraFly: real-time three-dimensional visualization and annotation of terabytes of multidimensional volumetric images. Nat. Methods https://doi.org/10.1038/nmeth.3767 (2016).

    Article  Google Scholar 

  166. 166.

    Günther U. et al. Scenery: flexible virtual reality visualization on the Java VM. 2019 IEEE Visualization Conference (VIS) 2019, 1–5, https://doi.org/10.1109/VISUAL.2019.8933605 (2019).

  167. 167.

    Pettersen, E. F. et al. UCSF Chimera — a visualization system for exploratory research and analysis. J. Comput. Chem. https://doi.org/10.1002/jcc.20084 (2004).

    Article  Google Scholar 

  168. 168.

    Fritz-Laylin, L. K. et al. Actin-based protrusions of migrating neutrophils are intrinsically lamellar and facilitate direction changes. eLife https://doi.org/10.7554/eLife.26990 (2017).

    Article  Google Scholar 

  169. 169.

    Cheeseman, B. L., Günther, U., Gonciarz, K., Susik, M. & Sbalzarini, I. F. Adaptive particle representation of fluorescence microscopy images. Nat. Commun. https://doi.org/10.1038/s41467-018-07390-9 (2018).

    Article  Google Scholar 

  170. 170.

    Vladimirov, N. npy2bdv: writing numpy arrays to Fiji/BigDataViewer HDF5 files. ZENODO https://doi.org/10.5281/ZENODO.3971783 (2020).

    Article  Google Scholar 

  171. 171.

    Beati, I., Andreica, E. & Majer, P. ImarisWriter: open source software for storage of large images in blockwise multi-resolution format. Preprint at https://arxiv.org/abs/2008.10311 (2020).

  172. 172.

    Balázs, B., Deschamps, J., Albert, M., Ries, J. & Hufnagel, L. A real-time compression library for microscopy images. Preprint at bioRxiv https://doi.org/10.1101/164624 (2017).

    Article  Google Scholar 

  173. 173.

    Wolff, C. et al. Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb. eLife https://doi.org/10.7554/eLife.34410 (2018). This work demonstrates the tracking of individual lineages in developing Parhyale limbs using multi-view light-sheet microscopy and an open-source Fiji-based tracking plug-in called MaMuT.

    Article  Google Scholar 

  174. 174.

    Amat, F. et al. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11, 951–958 (2014).

    Google Scholar 

  175. 175.

    Maling-Mayor, C. et al. Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations. Preprint at bioRxiv https://doi.org/10.1101/2021.07.28.454016 (2021).

    Article  Google Scholar 

  176. 176.

    Haase, R. et al. CLIJ: GPU-accelerated image processing for everyone. Nat. Methods https://doi.org/10.1038/s41592-019-0650-1 (2020).

    Article  Google Scholar 

  177. 177.

    Haase, R. et al. Interactive design of GPU-accelerated image data flow graphs and cross-platform deployment using multi-lingual code generation. Preprint at bioRxiv https://doi.org/10.1101/2020.11.19.386565 (2020).

    Article  Google Scholar 

  178. 178.

    Belthangady, C. & Royer, L. A. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat. Methods https://doi.org/10.1038/s41592-019-0458-z (2019).

    Article  Google Scholar 

  179. 179.

    Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods https://doi.org/10.1038/s41592-019-0582-9 (2019).

    Article  Google Scholar 

  180. 180.

    Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. Lecture Notes Comput. Sci. https://doi.org/10.1007/978-3-030-00934-2_30 (2018).

    Article  Google Scholar 

  181. 181.

    Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods https://doi.org/10.1038/s41592-020-01018-x (2021).

    Article  Google Scholar 

  182. 182.

    Sugawara, K., Cevrim, C. & Averof, M. Tracking cell lineages in 3D by incremental deep learning. Preprint at bioRxiv https://doi.org/10.1101/2021.02.26.432552 (2021).

    Article  Google Scholar 

  183. 183.

    Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods https://doi.org/10.1038/s41592-018-0216-7 (2018).

    Article  Google Scholar 

  184. 184.

    Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. https://doi.org/10.1038/nbt.3711 (2016).

    Article  Google Scholar 

  185. 185.

    Waschke, J. et al. linus: Conveniently explore, share, and present large-scale biological trajectory data from a web browser. Preprint at bioRxiv https://doi.org/10.1101/2020.04.17.043323 (2021).

    Article  Google Scholar 

  186. 186.

    Pampaloni, F., Knuppertz, L., Hamann, A., Osiewacz, H. D. & Stelzer, E. H. K. Three-dimensional live imaging of filamentous fungi with light sheet-based fluorescence microscopy (LSFM). Methods Mol. Biol. 1563, 19–31 (2017).

    Google Scholar 

  187. 187.

    Amich, J. et al. Three-dimensional light sheet fluorescence microscopy of lungs to dissect local host immune-aspergillus fumigatus interactions. mBio https://doi.org/10.1128/mBio.02752-19 (2020).

    Article  Google Scholar 

  188. 188.

    Qin, B. et al. Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science https://doi.org/10.1126/science.abb8501 (2020).

    Article  Google Scholar 

  189. 189.

    Zhang, M. et al. Non-invasive single-cell morphometry in living bacterial biofilms. Nat. Commun. 11, 6151 (2020).

    Google Scholar 

  190. 190.

    Bhagwat, A. R., Le Sage, V. & Lakdawala, S. S. Live imaging of influenza viral ribonucleoproteins using light-sheet microscopy. Methods Mol. Biol. 1836, 303–327 (2018).

    Google Scholar 

  191. 191.

    Mascheroni, L. et al. Combining sample expansion and light sheet microscopy for the volumetric imaging of virus-infected cells with super-resolution. Biomed. Opt. Express https://doi.org/10.1364/boe.399404 (2020).

    Article  Google Scholar 

  192. 192.

    Liao, P. et al. Three-dimensional digital PCR through light-sheet imaging of optically cleared emulsion. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2002448117 (2020).

    Article  Google Scholar 

  193. 193.

    Attardi, A. et al. Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Development https://doi.org/10.1242/dev.166728 (2018).

    Article  Google Scholar 

  194. 194.

    Wan, Y. et al. Single-cell reconstruction of emerging population activity in an entire developing circuit. Cell https://doi.org/10.1016/j.cell.2019.08.039 (2019).

  195. 195.

    Daetwyler, S., Gunther, U., Modes, C. D., Harrington, K. & Huisken, J. Multi-sample SPIM image acquisition, processing and analysis of vascular growth in zebrafish. Development https://doi.org/10.1242/dev.173757 (2019).

    Article  Google Scholar 

  196. 196.

    Wan, Y. et al. Single-cell reconstruction of emerging population activity in an entire developing circuit. Cell 179, 355–372.e23 (2019).

    Google Scholar 

  197. 197.

    Rozbicki, E. et al. Myosin-II-mediated cell shape changes and cell intercalation contribute to primitive streak formation. Nat. Cell Biol. 17, 397–408 (2015).

    Google Scholar 

  198. 198.

    Goḿez-Gaviro, M. V. et al. Optimized CUBIC protocol for three-dimensional imaging of chicken embryos at single-cell resolution. Development https://doi.org/10.1242/dev.145805 (2017).

    Article  Google Scholar 

  199. 199.

    Strnad, P. et al. Inverted light-sheet microscope for imaging mouse pre-implantation development. Nat. Methods 13, 139–142 (2016).

    Google Scholar 

  200. 200.

    Wu, C. et al. Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study. Biomed. Opt. Express https://doi.org/10.1364/boe.8.004629 (2017).

    Article  Google Scholar 

  201. 201.

    Fu, Q., Martin, B. L., Matus, D. Q. & Gao, L. Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy. Nat. Commun. 7, 1–10 (2016).

    Google Scholar 

  202. 202.

    Chen, B.-C. B. C. et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998–1–1257998–13 (2014). This work introduces lattice light sheets, where multiple Bessel beams interfere coherently to tailor the properties of a light sheet, resulting in high-resolution 3D imaging and reduced phototoxicity compared with line-scanned Bessel beams.

    Google Scholar 

  203. 203.

    Stegmaier, J. et al. Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Dev. Cell 36, 225–240 (2016).

    Google Scholar 

  204. 204.

    Streichan, S. J., Lefebvre, M. F., Noll, N., Wieschaus, E. F. & Shraiman, B. I. Global morphogenetic flow is accurately predicted by the spatial distribution of myosin motors. eLife https://doi.org/10.7554/eLife.27454 (2018).

    Article  Google Scholar 

  205. 205.

    Strobl, F. & Stelzer, E. H. K. Non-invasive long-term fluorescence live imaging of Tribolium castaneum embryos. Development 141, 2331–2338 (2014).

    Google Scholar 

  206. 206.

    Münster, S. et al. Attachment of the blastoderm to the vitelline envelope affects gastrulation of insects. Nature https://doi.org/10.1038/s41586-019-1044-3 (2019).

    Article  Google Scholar 

  207. 207.

    Hilbrant, M., Horn, T., Koelzer, S. & Panfilio, K. A. The beetle amnion and serosa functionally interact as apposed epithelia. eLife 5, e13834 (2016).

    Google Scholar 

  208. 208.

    Li, F. et al. Insect genomes: progress and challenges. Insect Mol. Biol. 28, 739–758 (2019).

    Google Scholar 

  209. 209.

    Keller, P. J. J. & Ahrens, M. B. B. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron 85, 462–483 (2015).

    Google Scholar 

  210. 210.

    Hillman, E. M. C., Voleti, V., Li, W. & Yu, H. Light-sheet microscopy in neuroscience. Annu. Rev. Neurosci. https://doi.org/10.1146/annurev-neuro-070918-050357 (2019).

    Article  Google Scholar 

  211. 211.

    Simpson, J. H. & Looger, L. L. Functional imaging and optogenetics in Drosophila. Genetics https://doi.org/10.1534/genetics.117.300228 (2018).

    Article  Google Scholar 

  212. 212.

    Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    Google Scholar 

  213. 213.

    Lemon, W. C. et al. Whole-central nervous system functional imaging in larval Drosophila. Nat. Commun. 6, 7924 (2015).

    ADS  Google Scholar 

  214. 214.

    Arrenberg, A. B., Stainier, D. Y. R., Baier, H. & Huisken, J. Optogenetic control of cardiac function. Science 330, 971–974 (2010).

    ADS  Google Scholar 

  215. 215.

    Mickoleit, M. et al. High-resolution reconstruction of the beating zebrafish heart. Nat. Methods 11, 919–922 (2014).

    Google Scholar 

  216. 216.

    Taylor, J. M. et al. Adaptive prospective optical gating enables day-long 3D time-lapse imaging of the beating embryonic zebrafish heart. Nat. Commun. https://doi.org/10.1038/s41467-019-13112-6 (2019).

    Article  Google Scholar 

  217. 217.

    Ding, Y. et al. Multiscale light-sheet for rapid imaging of cardiopulmonary system. JCI Insight https://doi.org/10.1172/jci.insight.121396 (2018).

    Article  Google Scholar 

  218. 218.

    Pampaloni, F., Reynaud, E. G. & Stelzer, E. H. K. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007).

    Google Scholar 

  219. 219.

    Simian, M. & Bissell, M. J. Organoids: a historical perspective of thinking in three dimensions. J. Cell Biol. https://doi.org/10.1083/jcb.201610056 (2017).

    Article  Google Scholar 

  220. 220.

    Lebreton, F. et al. Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes. Nat. Commun. https://doi.org/10.1038/s41467-019-12472-3 (2019).

    Article  Google Scholar 

  221. 221.

    Lorenzo, C. et al. Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy. Cell Div. https://doi.org/10.1186/1747-1028-6-22 (2011).

    Article  Google Scholar 

  222. 222.

    Medeios, G. De et al. Multiscale light-sheet organoid imaging framework. Preprint at bioRxiv https://doi.org/10.1101/2021.05.12.443427 (2021).

    Article  Google Scholar 

  223. 223.

    Glaser, A. K. et al. Multidirectional digital scanned light-sheet microscopy enables uniform fluorescence excitation and contrast-enhanced imaging. Sci. Rep. https://doi.org/10.1038/s41598-018-32367-5 (2018).

    Article  Google Scholar 

  224. 224.

    Andilla, J. et al. Imaging tissue-mimic with light sheet microscopy: a comparative guideline. Sci. Rep. https://doi.org/10.1038/srep44939 (2017).

    Article  Google Scholar 

  225. 225.

    Schmitz, A., Fischer, S. C., Mattheyer, C., Pampaloni, F. & Stelzer, E. H. K. Multiscale image analysis reveals structural heterogeneity of the cell microenvironment in homotypic spheroids. Sci. Rep. https://doi.org/10.1038/srep43693 (2017).

    Article  Google Scholar 

  226. 226.

    Schöneberg, J. et al. 4D cell biology: big data image analytics and lattice light-sheet imaging reveal dynamics of clathrin-mediated endocytosis in stem cell–derived intestinal organoids. Mol. Biol. Cell https://doi.org/10.1091/mbc.E18-06-0375 (2018).

    Article  Google Scholar 

  227. 227.

    Dean, K. M. et al. Imaging subcellular dynamics with fast and light-efficient volumetrically parallelized microscopy. Optica https://doi.org/10.1364/optica.4.000263 (2017).

    Article  Google Scholar 

  228. 228.

    Chen, Y. et al. Rapid pathology of lumpectomy margins with open-top light-sheet (OTLS) microscopy. Biomed. Opt. Express https://doi.org/10.1364/boe.10.001257 (2019).

    Article  Google Scholar 

  229. 229.

    Glaser, A. K. et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-017-0084 (2017).

    Article  Google Scholar 

  230. 230.

    Maizel, A., Von Wangenheim, D., Federici, F., Haseloff, J. & Stelzer, E. H. K. High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant. J. 68, 377–385 (2011).

    Google Scholar 

  231. 231.

    Ovečka, M. et al. Multiscale imaging of plant development by light-sheet fluorescence microscopy. Nat. Plants https://doi.org/10.1038/s41477-018-0238-2 (2018).

    Article  Google Scholar 

  232. 232.

    Sena, G., Frentz, Z., Birnbaum, K. D. & Leibler, S. Quantitation of cellular dynamics in growing Arabidopsis roots with light sheet microscopy. PLoS ONE https://doi.org/10.1371/journal.pone.0021303 (2011).

    Article  Google Scholar 

  233. 233.

    Von Wangenheim, D. et al. Rules and self-organizing properties of post-embryonic plant organ cell division patterns. Curr. Biol. 26, 439–449 (2016).

    Google Scholar 

  234. 234.

    Yan, J., Wang, B. & Zhou, Y. A root penetration model of Arabidopsis thaliana in phytagel medium with different strength. J. Plant. Res. https://doi.org/10.1007/s10265-017-0926-4 (2017).

    Article  Google Scholar 

  235. 235.

    Roué, J. et al. Root cap size and shape influence responses to the physical strength of the growth medium in Arabidopsis thaliana primary roots. J. Exp. Bot. https://doi.org/10.1093/jxb/erz418 (2020).

    Article  Google Scholar 

  236. 236.

    Candeo, A., Doccula, F. G., Valentini, G., Bassi, A. & Costa, A. Light sheet fluorescence microscopy quantifies calcium oscillations in root hairs of Arabidopsis thaliana. Plant. Cell Physiol. https://doi.org/10.1093/pcp/pcx045 (2017).

    Article  Google Scholar 

  237. 237.

    Valuchova, S. et al. Imaging plant germline differentiation within Arabidopsis flowers by light sheet microscopy. eLife https://doi.org/10.7554/eLife.52546 (2020).

    Article  Google Scholar 

  238. 238.

    Tichá, M. et al. Advanced microscopy reveals complex developmental and subcellular localization patterns of ANNEXIN 1 in Arabidopsis. Front. Plant. Sci. https://doi.org/10.3389/fpls.2020.01153 (2020).

    Article  Google Scholar 

  239. 239.

    Höhn, S., Honerkamp-Smith, A. R., Haas, P. A., Trong, P. K. & Goldstein, R. E. Dynamics of a Volvox embryo turning itself inside out. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.114.178101 (2015).

    Article  Google Scholar 

  240. 240.

    Lichtenberg, M., Trampe, E. C. L., Vogelmann, T. C. & Kühl, M. Light sheet microscopy imaging of light absorption and photosynthesis distribution in plant tissue. Plant. Physiol. https://doi.org/10.1104/pp.17.00820 (2017).

    Article  Google Scholar 

  241. 241.

    Truhaut, R. Ecotoxicology: objectives, principles and perspectives. Ecotoxicol. Environ. Saf. 1, 151–173 (1977).

    Google Scholar 

  242. 242.

    Inglese, J. et al. High-throughput screening assays for the identification of chemical probes. Nat. Chem. Biol. 3, 466–479 (2007).

    Google Scholar 

  243. 243.

    Chandler, G. T. & Volz, D. C. Semiquantitative confocal laser scanning microscopy applied to marine invertebrate ecotoxicology. Mar. Biotechnol. 6, 128–137 (2004).

    Google Scholar 

  244. 244.

    Nancharaiah, Y. V., Rajadurai, M. & Venugopalan, V. P. Single cell level microalgal ecotoxicity assessment by confocal microscopy and digital image analysis. Environ. Sci. Technol. 41, 2617–2621 (2007).

    ADS  Google Scholar 

  245. 245.

    Scott, G. R. & Sloman, K. A. The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat. Toxicol. 68, 369–392 (2004).

    Google Scholar 

  246. 246.

    Peterson, E. K. et al. Integrative behavioral ecotoxicology: bringing together fields to establish new insight to behavioral ecology, toxicology, and conservation. Curr. Zool. 63, 185 (2017).

    Google Scholar 

  247. 247.

    Bae, M. J. & Park, Y. S. Biological early warning system based on the responses of aquatic organisms to disturbances: a review. Sci. Total. Environ. 466–467, 635–649 (2014).

    ADS  Google Scholar 

  248. 248.

    Dell, A. I. et al. Automated image-based tracking and its application in ecology. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2014.05.004 (2014).

    Article  Google Scholar 

  249. 249.

    Cong, L. et al. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife https://doi.org/10.7554/eLife.28158 (2017).

    Article  Google Scholar 

  250. 250.

    Mougi, A. The roles of amensalistic and commensalistic interactions in large ecological network stability. Sci. Rep. 6, 1–6 (2016).

    Google Scholar 

  251. 251.

    Taormina, M. J. et al. Investigating bacterial–animal symbioses with light sheet microscopy. Biol. Bull. 223, 7–20 (2012).

    Google Scholar 

  252. 252.

    Jemielita, M. et al. Spatial and temporal features of the growth of a bacterial species colonizing the zebrafish gut. mBio 5, 1751–1765 (2014).

    Google Scholar 

  253. 253.

    Wiles, T. J. et al. Host gut motility promotes competitive exclusion within a model intestinal microbiota. PLoS Biol. 14, e1002517 (2016).

    Google Scholar 

  254. 254.

    Logan, S. L. et al. The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. Proc. Natl Acad. Sci. USA 115, E3779–E3787 (2018).

    Google Scholar 

  255. 255.

    Schlomann, B. H., Wiles, T. J., Wall, E. S., Guillemin, K. & Parthasarathy, R. Sublethal antibiotics collapse gut bacterial populations by enhancing aggregation and expulsion. Proc. Natl Acad. Sci. USA 116, 21392–21400 (2019).

    Google Scholar 

  256. 256.

    Niz, M. D. et al. 3D imaging of undissected optically cleared Anopheles stephensi mosquitoes infected with Plasmodium parasites. PLoS ONE 15, e0238134 (2019).

    Google Scholar 

  257. 257.

    Liu, C., Cheng, S. H. & Lin, S. Illuminating the dark depths inside coral. Cell. Microbiol. 22, e13122 (2020).

    Google Scholar 

  258. 258.

    Hamill, P. Unit Test Frameworks: Tools for High-Quality Software Development (O’Reilly Media, 2004).

  259. 259.

    Marqués, G., Pengo, T. & Sanders, M. A. Imaging methods are vastly underreported in biomedical research. eLife 9, 1–10 (2020).

    Google Scholar 

  260. 260.

    Wilkinson, M. D. et al. Comment: The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 1–9 (2016).

    Google Scholar 

  261. 261.

    Linkert, M. et al. Metadata matters: access to image data in the real world. J. Cell Biol. 189, 777–782 (2010).

    Google Scholar 

  262. 262.

    Swedlow, J. R., Goldberg, I., Brauner, E. & Sorger, P. K. Informatics and quantitative analysis in biological imaging. Science 300, 100–102 (2003).

    ADS  Google Scholar 

  263. 263.

    Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat. Methods https://doi.org/10.1038/nmeth.1896 (2012).

    Article  Google Scholar 

  264. 264.

    Williams, E. et al. Image Data Resource: a bioimage data integration and publication platform. Nat. Methods https://doi.org/10.1038/nmeth.4326 (2017).

    Article  Google Scholar 

  265. 265.

    Sarkans, U. et al. The BioStudies database — one stop shop for all data supporting a life sciences study. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx965 (2018).

    Article  Google Scholar 

  266. 266.

    Saalfeld, S., Cardona, A., Hartenstein, V. & Tomančák, P. CATMAID: Collaborative Annotation Toolkit for Massive Amounts of Image Data. Bioinformatics https://doi.org/10.1093/bioinformatics/btp266 (2009).

    Article  Google Scholar 

  267. 267.

    Stelzer, E. H. K. Light-sheet fluorescence microscopy for quantitative biology. Nat. Methods 12, 23–26 (2015).

    Google Scholar 

  268. 268.

    Dean, K. M., Roudot, P., Welf, E. S., Danuser, G. & Fiolka, R. Deconvolution-free subcellular imaging with axially swept light sheet microscopy. Biophys. J. https://doi.org/10.1016/j.bpj.2015.05.013 (2015). This work presents ASLM, which can achieve 390-nm isotropic resolution and high optical sectioning strength over a large field of view by using a remote focusing technique.

    Article  Google Scholar 

  269. 269.

    Kim, B. et al. Open-top axially swept light-sheet microscopy. Biomed. Opt. Express https://doi.org/10.1364/boe.419030 (2021).

    Article  Google Scholar 

  270. 270.

    Voigt, F. F. et al. The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nat. Methods https://doi.org/10.1038/s41592-019-0554-0 (2019).

    Article  Google Scholar 

  271. 271.

    Chakraborty, T. et al. Light-sheet microscopy of cleared tissues with isotropic, subcellular resolution. Nat. Methods https://doi.org/10.1038/s41592-019-0615-4 (2019).

    Article  Google Scholar 

  272. 272.

    Planchon, T. A. et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods https://doi.org/10.1038/nmeth.1586 (2011).

    Article  Google Scholar 

  273. 273.

    Vettenburg, T. et al. Light-sheet microscopy using an Airy beam. Nat. Methods 11, 541–544 (2014).

    Google Scholar 

  274. 274.

    Chang, B. J. et al. Universal light-sheet generation with field synthesis. Nat. Methods https://doi.org/10.1038/s41592-019-0327-9 (2019).

    Article  Google Scholar 

  275. 275.

    Remacha, E., Friedrich, L., Vermot, J. & Fahrbach, F. O. How to define and optimize axial resolution in light-sheet microscopy: a simulation-based approach. Biomed. Opt. Express https://doi.org/10.1364/boe.11.000008 (2020).

    Article  Google Scholar 

  276. 276.

    Tang, J. & Han, K. Y. Instantaneous non-diffracting light-sheet generation by controlling spatial coherence. Opt. Commun. https://doi.org/10.1016/j.optcom.2020.126154 (2020).

    Article  Google Scholar 

  277. 277.

    Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. https://doi.org/10.1046/j.1365-2818.2000.00710.x (2000). This work introduces SIM, a method that can double the resolving power of a microscope.

    Article  Google Scholar 

  278. 278.

    Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science https://doi.org/10.1126/science.1127344 (2006).

    Article  Google Scholar 

  279. 279.

    Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. https://doi.org/10.1364/ol.19.000780 (1994). This work presents STED microscopy, the first description of a super-resolution microscopy technique.

    Article  Google Scholar 

  280. 280.

    Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.97.15.8206 (2000).

    Article  Google Scholar 

  281. 281.

    Gustafsson, M. G. L. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. https://doi.org/10.1529/biophysj.107.120345 (2008).

    Article  Google Scholar 

  282. 282.

    Chang, B. J., Meza, V. D. P. & Stelzer, E. H. K. csiLSFM combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1609278114 (2017).

    Article  Google Scholar 

  283. 283.

    Huang, B., Jones, S. A., Brandenburg, B. & Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods https://doi.org/10.1038/nmeth.1274 (2008).

    Article  Google Scholar 

  284. 284.

    Cella Zanacchi, F. et al. Live-cell 3D super-resolution imaging in thick biological samples. Nat. Methods https://doi.org/10.1038/nmeth.1744 (2011).

    Article  Google Scholar 

  285. 285.

    Legant, W. R. et al. High-density three-dimensional localization microscopy across large volumes. Nat. Methods 13, 359–365 (2016).

    Google Scholar 

  286. 286.

    Gustavsson, A. K., Petrov, P. N., Lee, M. Y., Shechtman, Y. & Moerner, W. E. 3D single-molecule super-resolution microscopy with a tilted light sheet. Nat. Commun. https://doi.org/10.1038/s41467-017-02563-4 (2018).

    Article  Google Scholar 

  287. 287.

    Kim, J. et al. Oblique-plane single-molecule localization microscopy for tissues and small intact animals. Nat. Methods https://doi.org/10.1038/s41592-019-0510-z (2019).

    Article  Google Scholar 

  288. 288.

    Friedrich, M., Gan, Q., Ermolayev, V. & Harms, G. S. STED-SPIM: stimulated emission depletion improves sheet illumination microscopy resolution. Biophys. J. 100, L43–L45 (2011).

    Google Scholar 

  289. 289.

    Gohn-Kreuz, C. & Rohrbach, A. Light-sheet generation in inhomogeneous media using self-reconstructing beams and the STED-principle. Opt. Express https://doi.org/10.1364/oe.24.005855 (2016).

    Article  Google Scholar 

  290. 290.

    Hernández, J. M., Buisson, A., Wang, I. & Vial, J.-C. Improved optical slicing by stimulated emission depletion light sheet microscopy. Biomed. Opt. Express https://doi.org/10.1364/boe.379646 (2020).

    Article  Google Scholar 

  291. 291.

    Hoyer, P. et al. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT. Proc. Natl Acad. Sci. USA 113, 3442–3446 (2016).

    ADS  Google Scholar 

  292. 292.

    Richardson, D. S. S. & Lichtman, J. W. W. Clarifying tissue clearing. Cell 162, 246–257 (2015).

    Google Scholar 

  293. 293.

    Ariel, P. A beginner’s guide to tissue clearing. Int. J. Biochem. Cell Biol. https://doi.org/10.1016/j.biocel.2016.12.009 (2017).

    Article  Google Scholar 

  294. 294.

    Genina, E. A., Bashkatov, A. N., Sinichkin, Y. P., Yanina, I. Y. & Tuchin, V. V. Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy. J. Biomed. Photonics Eng. https://doi.org/10.18287/jbpe-2015-1-1-22 (2015).

    Article  Google Scholar 

  295. 295.

    Costa, E. C., Silva, D. N., Moreira, A. F. & Correia, I. J. Optical clearing methods: an overview of the techniques used for the imaging of 3D spheroids. Biotechnol. Bioeng. https://doi.org/10.1002/bit.27105 (2019).

    Article  Google Scholar 

  296. 296.

    Gómez-Gaviro, M. V., Sanderson, D., Ripoll, J. & Desco, M. Biomedical applications of tissue clearing and three-dimensional imaging in health and disease. iScience https://doi.org/10.1016/j.isci.2020.101432 (2020).

    Article  Google Scholar 

  297. 297.

    Costantini, I., Cicchi, R., Silvestri, L., Vanzi, F. & Pavone, F. S. In-vivo and ex-vivo optical clearing methods for biological tissues: review. Biomed. Opt. Express https://doi.org/10.1364/boe.10.005251 (2019).

    Article  Google Scholar 

  298. 298.

    Dekkers, J. F. et al. High-resolution 3D imaging of fixed and cleared organoids. Nat. Protoc. https://doi.org/10.1038/s41596-019-0160-8 (2019).

    Article  Google Scholar 

  299. 299.

    Azaripour, A. et al. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog. Histochem. Cytochem. 51, 9–23 (2016).

    Google Scholar 

  300. 300.

    Dodt, H.-U. U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007).

    Google Scholar 

  301. 301.

    Tomer, R. & Deisseroth, K. Rapid high-resolution brain mapping with CLARITY optimized light sheet microscopy (COLM). Microsc. Microanal. https://doi.org/10.1017/s1431927615004389 (2015).

    Article  Google Scholar 

  302. 302.

    Migliori, B. et al. Light sheet theta microscopy for rapid high-resolution imaging of large biological samples. BMC Biol. https://doi.org/10.1186/s12915-018-0521-8 (2018).

    Article  Google Scholar 

  303. 303.

    Glaser, A. K., Bishop, K. W., Barner, L. A., Serafin, R. B. & Liu, J. T. C. A hybrid open-top light-sheet microscope for multi-scale imaging of cleared tissues. Preprint at bioRxiv https://doi.org/10.1101/2020.05.06.081745 (2021).

    Article  Google Scholar 

  304. 304.

    Mano, T. et al. Whole-brain analysis of cells and circuits by tissue clearing and light-sheet microscopy. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.1677-18.2018 (2018).

    Article  Google Scholar 

  305. 305.

    Ueda, H. R. et al. Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. https://doi.org/10.1038/s41583-019-0250-1 (2020).

    Article  Google Scholar 

  306. 306.

    Pan, C. et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Methods https://doi.org/10.1038/nmeth.3964 (2016).

    ADS  Article  Google Scholar 

  307. 307.

    Chung, K. & Deisseroth, K. CLARITY for mapping the nervous system. Nat. Methods https://doi.org/10.1038/nmeth.2481 (2013).

    Article  Google Scholar 

  308. 308.

    Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science https://doi.org/10.1126/science.1260088 (2015). This work introduces expansion microscopy, a super-resolution technique that is based on physically expanding the sample.

    Article  Google Scholar 

  309. 309.

    Chang, J. B. et al. Iterative expansion microscopy. Nat. Methods https://doi.org/10.1038/nmeth.4261 (2017).

    Article  Google Scholar 

  310. 310.

    Bridges, W. B. et al. Coherent optical adaptive techniques. Appl. Opt. https://doi.org/10.1364/ao.13.000291 (1974).

    Article  Google Scholar 

  311. 311.

    Buffington, A., Crawford, F. S., Muller, R. A., Schwemin, A. J. & Smits, R. G. Correction of atmospheric distortion with an image-sharpening telescope. J. Opt. Soc. Am. https://doi.org/10.1364/josa.67.000298 (1977).

    Article  Google Scholar 

  312. 312.

    Le Gargasson, J. F., Glanc, M. & Léna, P. Retinal imaging with adaptive optics. Comptes Rendus l’Academie des. Sci. IV Phys. Astrophys. 2, 1131–1138 (2001).

    ADS  Google Scholar 

  313. 313.

    Booth, M. J. Adaptive optical microscopy: the ongoing quest for a perfect image. Light: Sci. Appl. https://doi.org/10.1038/lsa.2014.46 (2014).

    Article  Google Scholar 

  314. 314.

    Booth, M. J. Adaptive optics in microscopy. Philos. Trans. R. Soc. A: Math.Phys. Eng. Sci. 365, 2829–2843 (2007).

    ADS  Google Scholar 

  315. 315.

    Dalgarno, H. I. C. et al. Wavefront corrected light sheet microscopy in turbid media. Appl. Phys. Lett. https://doi.org/10.1063/1.4710527 (2012).

    Article  Google Scholar 

  316. 316.

    Jorand, R. et al. Deep and clear optical imaging of thick inhomogeneous samples. PLoS ONE https://doi.org/10.1371/journal.pone.0035795 (2012).

    Article  Google Scholar 

  317. 317.

    Bourgenot, C., Saunter, C. D., Taylor, J. M., Girkin, J. M. & Love, G. D. 3D adaptive optics in a light sheet microscope. Opt. Express https://doi.org/10.1364/oe.20.013252 (2012).

    Article  Google Scholar 

  318. 318.

    Wilding, D., Pozzi, P., Soloviev, O., Vdovin, G. & Verhaegen, M. Adaptive illumination based on direct wavefront sensing in a light-sheet fluorescence microscope. Opt. Express https://doi.org/10.1364/oe.24.024896 (2016).

    Article  Google Scholar 

  319. 319.

    Liu, T. L. et al. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science https://doi.org/10.1126/science.aaq1392 (2018).

    Article  Google Scholar 

  320. 320.

    Nishizaki, Y. et al. Deep learning wavefront sensing. Opt. Express https://doi.org/10.1364/oe.27.000240 (2019).

    Article  Google Scholar 

  321. 321.

    Saha, D. et al. Practical sensorless aberration estimation for 3D microscopy with deep learning. Opt. Express 28, 20738–26040 (2020).

    Google Scholar 

  322. 322.

    Krishnan, A. P. et al. Optical aberration correction via phase diversity and deep learning. Preprint at bioRxiv https://doi.org/10.1101/2020.04.05.026567 (2020).

    Article  Google Scholar 

  323. 323.

    Masson, A. et al. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM. Sci. Rep. https://doi.org/10.1038/srep16898 (2015).

    Article  Google Scholar 

  324. 324.

    Benninger, R. K. P. & Piston, D. W. Two-photon excitation microscopy for the study of living cells and tissues. Curr. Protoc. Cell Biol. 59, 4.11.1–4.11.24 (2013).

    Google Scholar 

  325. 325.

    Svoboda, K. & Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron https://doi.org/10.1016/j.neuron.2006.05.019 (2006).

    Article  Google Scholar 

  326. 326.

    Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods https://doi.org/10.1038/nmeth818 (2005).

    Article  Google Scholar 

  327. 327.

    Lavagnino, Z., Cella Zanacchi, F., Ronzitti, E. & Diaspro, A. Two-photon excitation selective plane illumination microscopy (2PE-SPIM) of highly scattering samples: characterization and application. Opt. Express 21, 5998 (2013).

    ADS  Google Scholar 

  328. 328.

    Keller, P. J. & Dodt, H. U. Light sheet microscopy of living or cleared specimens. Curr. Opin. Neurobiol. https://doi.org/10.1016/j.conb.2011.08.003 (2012).

    Article  Google Scholar 

  329. 329.

    Lavagnino, Z. et al. 4D (x–y–z–t) imaging of thick biological samples by means of two-photon inverted selective plane illumination microscopy (2PE-iSPIM). Sci. Rep. https://doi.org/10.1038/srep23923 (2016).

    Article  Google Scholar 

  330. 330.

    Mahou, P., Vermot, J., Beaurepaire, E. & Supatto, W. Multicolor two-photon light-sheet microscopy. Nat. Methods https://doi.org/10.1038/nmeth.2963 (2014).

    Article  Google Scholar 

  331. 331.

    Cella Zanacchi, F., Lavagnino, Z., Faretta, M., Furia, L. & Diaspro, A. Light-sheet confined super-resolution using two-photon photoactivation. PLoS ONE https://doi.org/10.1371/journal.pone.0067667 (2013).

    Article  Google Scholar 

  332. 332.

    Welf, E. S. et al. Quantitative multiscale cell imaging in controlled 3D microenvironments. Dev. Cell https://doi.org/10.1016/j.devcel.2016.01.022 (2016).

    Article  Google Scholar 

  333. 333.

    Dean, K. M. & Fiolka, R. Lossless three-dimensional parallelization in digitally scanned light-sheet fluorescence microscopy. Sci. Rep. https://doi.org/10.1038/s41598-017-08113-8 (2017).

  334. 334.

    Wagner, N. et al. Instantaneous isotropic volumetric imaging of fast biological processes. Nat. Methods 16, 497–500 (2019).

    Google Scholar 

  335. 335.

    Ren, Y. X. et al. Parallelized volumetric fluorescence microscopy with a reconfigurable coded incoherent light-sheet array. Light. Sci. Appl. https://doi.org/10.1038/s41377-020-0245-8 (2020).

    Article  Google Scholar 

  336. 336.

    Sheppard, C. J. R. et al. Pixel reassignment in image scanning microscopy: a re-evaluation. J. Opt. Soc. Am. A https://doi.org/10.1364/josaa.37.000154 (2020).

    Article  Google Scholar 

  337. 337.

    Müller, C. B. & Enderlein, J. Image scanning microscopy. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.104.198101 (2010).

    Article  Google Scholar 

  338. 338.

    Hoffman, D. P., Slavitt, I. & Fitzpatrick, C. A. The promise and peril of deep learning in microscopy. Nat. Methods https://doi.org/10.1038/s41592-020-01035-w (2021).

    Article  Google Scholar 

  339. 339.

    Scherf, N. & Huisken, J. The smart and gentle microscope. Nat. Biotechnol. 33, 815–818 (2015).

    Google Scholar 

  340. 340.

    Royer, L. A. et al. Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nat. Biotechnol. https://doi.org/10.1038/nbt.3708 (2016). This work describes an automated framework (Autopilot) that integrates into multi-view light sheet-based devices in order to control the microscope’s various degrees of freedom to optimize spatial resolution within a sample and throughout time.

    Article  Google Scholar 

  341. 341.

    Power, R. M. & Huisken, J. Adaptable, illumination patterning light sheet microscopy. Sci. Rep. https://doi.org/10.1038/s41598-018-28036-2 (2018).

    Article  Google Scholar 

  342. 342.

    He, J. & Huisken, J. Image quality guided smart rotation improves coverage in microscopy. Nat. Commun. https://doi.org/10.1038/s41467-019-13821-y (2020).

    Article  Google Scholar 

  343. 343.

    Heinrich, L. et al. Automatic whole cell organelle segmentation in volumetric electron microscopy. Preprint at bioRxiv https://doi.org/10.1101/2020.11.14.382143 (2020).

    Article  Google Scholar 

  344. 344.

    Vergara, H. M. et al. Whole-body integration of gene expression and single-cell morphology. Cell https://doi.org/10.1016/j.cell.2021.07.017 (2021).

    Article  Google Scholar 

  345. 345.

    von Chamier, L. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat. Commun. https://doi.org/10.1038/s41467-021-22518-0 (2021).

    Article  Google Scholar 

  346. 346.

    Heinrich, L. et al. Whole-cell organelle segmentation in volume electron microscopy. Nature https://doi.org/10.1038/s41586-021-03977-3 (2021).

    Article  Google Scholar 

  347. 347.

    Strobl, F., Schmitz, A. & Stelzer, E. H. K. Improving your four-dimensional image: traveling through a decade of light-sheet-based fluorescence microscopy research. Nat. Protoc. 12, 1103–1109 (2017).

    Google Scholar 

  348. 348.

    Piccinini, F. et al. Advanced cell classifier: user-friendly machine-learning-based software for discovering phenotypes in high-content imaging data. Cell Syst. https://doi.org/10.1016/j.cels.2017.05.012 (2017).

    Article  Google Scholar 

  349. 349.

    Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods https://doi.org/10.1038/s41592-019-0403-1 (2019).

    Article  Google Scholar 

  350. 350.

    Ladoux, B. & Mège, R. M. Mechanobiology of collective cell behaviours. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/nrm.2017.98 (2017).

    Article  Google Scholar 

  351. 351.

    Chatterjee, K., Pratiwi, F. W., Wu, F. C. M., Chen, P. & Chen, B. C. Recent progress in light sheet microscopy for biological applications. Appl. Spectrosc. https://doi.org/10.1177/0003702818778851 (2018).

    Article  Google Scholar 

  352. 352.

    Heddleston, J. M. & Chew, T. L. Light sheet microscopes: novel imaging toolbox for visualizing life’s processes. Int. J. Biochem. Cell Biol. https://doi.org/10.1016/j.biocel.2016.10.002 (2016).

    Article  Google Scholar 

  353. 353.

    Girkin, J. M. & Carvalho, M. T. The light-sheet microscopy revolution. J. Opt. https://doi.org/10.1088/2040-8986/aab58a (2018).

    Article  Google Scholar 

  354. 354.

    Elisa, Z. et al. Technical implementations of light sheet microscopy. Microscopy Res. Tech. https://doi.org/10.1002/jemt.22981 (2018).

    Article  Google Scholar 

  355. 355.

    Albert-Smet, I. et al. Applications of light-sheet microscopy in microdevices. Front. Neuroanatomy https://doi.org/10.3389/fnana.2019.00001 (2019).

    Article  Google Scholar 

  356. 356.

    Madrid-Wolff, J. & Forero-Shelton, M. Protocol for the design and assembly of a light sheet light field microscope. Methods Protoc. https://doi.org/10.3390/mps2030056 (2019).

    Article  Google Scholar 

  357. 357.

    De Vos, W. H. et al. Invited Review Article: Advanced light microscopy for biological space research. Rev. Sci. Instrum. https://doi.org/10.1063/1.4898123 (2014).

    Article  Google Scholar 

  358. 358.

    Daetwyler, S. & Huisken, J. Fast fluorescence microscopy with light sheets. Biol. Bull. 231, 14–25 (2016).

    Google Scholar 

  359. 359.

    Gualda, E. J., Pereira, H., Martins, G. G., Gardner, R. & Moreno, N. Three-dimensional imaging flow cytometry through light-sheet fluorescence microscopy. Cytometry A https://doi.org/10.1002/cyto.a.23046 (2017).

    Article  Google Scholar 

  360. 360.

    Royer, L. A., Lemon, W. C., Chhetri, R. K. & Keller, P. J. A practical guide to adaptive light-sheet microscopy. Nat. Protoc. https://doi.org/10.1038/s41596-018-0043-4 (2018).

    Article  Google Scholar 

  361. 361.

    Lemon, W. C. & McDole, K. Live-cell imaging in the era of too many microscopes. Curr. Opin. Cell Biol. https://doi.org/10.1016/j.ceb.2020.04.008 (2020).

    Article  Google Scholar 

  362. 362.

    Hu, Y. S., Zimmerley, M., Li, Y., Watters, R. & Cang, H. Single-molecule super-resolution light-sheet microscopy. ChemPhysChem https://doi.org/10.1002/cphc.201300732 (2014).

    Article  Google Scholar 

  363. 363.

    Tang, J., Ren, J. & Han, K. Y. Fluorescence imaging with tailored light. Nanophotonics https://doi.org/10.1515/nanoph-2019-0227 (2019).

    Article  Google Scholar 

  364. 364.

    Amat, F. & Keller, P. J. Towards comprehensive cell lineage reconstructions in complex organisms using light-sheet microscopy. Dev. Growth Differ. 55, 563–578 (2013).

    Google Scholar 

  365. 365.

    Huisken, J. & Stainier, D. Y. R. Selective plane illumination microscopy techniques in developmental biology. Development https://doi.org/10.1242/dev.022426 (2009).

    Article  Google Scholar 

  366. 366.

    Weber, M. & Huisken, J. Light sheet microscopy for real-time developmental biology. Curr. Opin. Genet. Dev. 21, 566–572 (2011).

    Google Scholar 

  367. 367.

    Huisken, J. Slicing embryos gently with laser light sheets. BioEssays 34, 406–411 (2012).

    Google Scholar 

  368. 368.

    Wan, Y., McDole, K. & Keller, P. J. Light-sheet microscopy and its potential for understanding developmental processes. Annu. Rev. Cell Dev. Biol. https://doi.org/10.1146/annurev-cellbio-100818-125311 (2019).

    Article  Google Scholar 

  369. 369.

    Corsetti, S., Gunn-Moore, F. & Dholakia, K. Light sheet fluorescence microscopy for neuroscience. J. Neurosci. Methods https://doi.org/10.1016/j.jneumeth.2018.07.011 (2019).

    Article  Google Scholar 

  370. 370.

    Ueda, H. R. et al. Whole-brain profiling of cells and circuits in mammals by tissue clearing and light-sheet microscopy. Neuron https://doi.org/10.1016/j.neuron.2020.03.004 (2020).

    Article  Google Scholar 

  371. 371.

    Tomer, R., Khairy, K. & Keller, P. J. Light sheet microscopy in cell biology. Methods Mol. Biol. 931, 123–137 (2012).

    Google Scholar 

  372. 372.

    Ding, Y. et al. Light-sheet imaging to elucidate cardiovascular injury and repair. Curr. Cardiol. Rep. https://doi.org/10.1007/s11886-018-0979-6 (2018).

    Article  Google Scholar 

  373. 373.

    Poola, P. K., Afzal, M. I., Yoo, Y., Kim, K. H. & Chung, E. Light sheet microscopy for histopathology applications. Biomed. Eng. Lett. https://doi.org/10.1007/s13534-019-00122-y (2019).

    Article  Google Scholar 

  374. 374.

    Berthet, B. B. & Maizel, A. Light sheet microscopy and live imaging of plants. J. Microsc. 263, 158–164 (2016).

    Google Scholar 

  375. 375.

    Komis, G., Novák, D., Ovečka, M., Šamajová, O. & Šamaj, J. Advances in imaging plant cell dynamics. Plant. Physiol. https://doi.org/10.1104/pp.17.00962 (2018).

    Article  Google Scholar 

  376. 376.

    Parthasarathy, R. Monitoring microbial communities using light sheet fluorescence microscopy. Curr. Opin. Microbiol. https://doi.org/10.1016/j.mib.2017.11.008 (2018).

    Article  Google Scholar 

  377. 377.

    Joseph, J. L. & Christensen, C. M. Disruptive technologies: catching the wave. J. Prod. Innov. Manag. https://doi.org/10.1016/0737-6782(96)81091-5 (1996).

    Article  Google Scholar 

  378. 378.

    Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. https://doi.org/10.1038/nrg.2016.49 (2016).

    Article  Google Scholar 

  379. 379.

    Greger, K., Swoger, J. & Stelzer, E. H. K. Basic building units and properties of a fluorescence single plane illumination microscope. Rev. Sci. Instrum. 78, 023705 (2007).

    ADS  Google Scholar 

  380. 380.

    Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Google Scholar 

  381. 381.

    Schetelig, M. F. et al. Site-specific recombination for the modification of transgenic strains of the Mediterranean fruit fly Ceratitis capitata. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.0907264106 (2009).

    Article  Google Scholar 

  382. 382.

    Nakamura, T. et al. Imaging of transgenic cricket embryos reveals cell movements consistent with a syncytial patterning mechanism. Curr. Biol. 20, 1641–1647 (2010).

    Google Scholar 

  383. 383.

    Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).

    ADS  Google Scholar 

Download references

Acknowledgements

The Ceratitis, Apis and Gryllus live imaging data were acquired by a cooperation of F.S. and E.H.K.S. with M. F. Schetelig (Justus-Liebig-Universität, Gießen, Germany), P. Siefert and B. Grünewald (Institut für Bienenkunde, Oberursel, Germany) and T. Mito (University of Tokushima, Japan), respectively. The human prostate biopsy images were kindly provided by A. K. Glaser and J. T. C. Liu (Department of Mechanical Engineering, University of Washington, USA) and N. P. Reder and L. D. True (Department of Pathology, University of Washington, USA). F.S. and E.H.K.S. thank S. Plath for his assistance in generating the computer-assisted design schemes.

Author information

Affiliations

Authors

Contributions

Introduction (E.H.K.S.); Experimentation (E.H.K.S., F.S., B.-J.C., K.M. and R.F.); Results (F.S., F.P., S.P., K.M. and R.F.); Applications (E.H.K.S., F.S., B.-J.C., K.M. and R.F.); Reproducibility and data deposition (E.H.K.S., F.P., S.P. and K.M.); Limitations and optimizations (B.-J.C., S.P., K.M., S.P. and R.F.); Outlook (E.H.K.S., F.S., S.P., F.P., K.M. and R.F.); Overview of the Primer (E.H.K.S., F.S., B.-J.C., K.M., R.F., F.P. and S.P.).

Corresponding authors

Correspondence to Ernst H. K. Stelzer or Frederic Strobl.

Ethics declarations

Competing interests

E.H.K.S. has shares in related patents. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Methods Primers thanks J. Liu, who co-reviewed with A. Glaser; P. Mondal; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

2014 Nature Methods Method of the Year: https://www.nature.com/collections/cktrchwtrc

3Dscript: https://imagej.net/3Dscript

μManager: https://micro-manager.org

μSPIM: https://uspim.org/

BigDataViewer: https://imagej.net/BigDataViewer

BigStitcher: https://imagej.net/BigStitcher

BigVolumeViewer: https://github.com/tpietzsch/jogl-minimal

Bio-Formats: https://github.com/ome/bioformats

BioStudies: https://www.ebi.ac.uk/biostudies

B 3 D framework: https://git.embl.de/balazs/B3D

Caltech file naming convention worksheet: https://resolver.caltech.edu/CaltechAUTHORS:20200601-161923247

CARE: https://github.com/CSBDeep/CSBDeep

Cellpose: https://github.com/MouseLand/cellpose

Cell Organelle Segmentation by Electron Microscopy: https://www.janelia.org/project-team/cosem

ClearVolume: https://clearvolume.github.io

CLIJ: https://clij.github.io

Collaborative Annotation Toolkit for Massive Amounts of Image Data (CATMAID): https://catmaid.readthedocs.io

Conda: https://docs.conda.io/en/latest

Dask: https://dask.org

Docker: https://www.docker.com

FAIR principles: https://www.go-fair.org/fair-principles

Fiji: https://fiji.sc

FlyLight: https://www.janelia.org/project-team/flylight

FPbase: https://www.fpbase.org/

FPvis: https://www.fpvis.org/

Git: https://git-scm.com

GZIP: https://www.gzip.org/

HDF5 file format: https://www.hdfgroup.org/solutions/hdf5

Ilastik: https://www.ilastik.org/

Image Data Resource: https://idr.openmicroscopy.org

ImageJ: https://imagej.nih.gov/ij

ImarisWriter: https://github.com/imaris/ImarisWriter

ImgLib2: https://imagej.net/ImgLib2

Insight toolkit: https://itk.org

Keller lab block file format: https://bitbucket.org/fernandoamat/keller-lab-block-filetype/src/master

Linus: https://gitlab.com/imb-dev/linus

LZ4: https://github.com/lz4/lz4

MaMuT: http://imagej.net/MaMuT

Mastodon: https://github.com/mastodon-sc/mastodon

Maven: https://maven.apache.org

N5 file format: https://github.com/saalfeldlab/n5

napari: https://github.com/napari/napari

Nature Methods LSFM collection: https://www.nature.com/collections/shjqwygmvh

Neuroglancer: https://github.com/google/neuroglancer

Npy2bdv: https://github.com/nvladimus/npy2bdv

Open Microscopy Environment Consortium: https://www.openmicroscopy.org

Open Microscopy Environment Remote Objects: https://www.openmicroscopy.org/omero

OpenSPIM: https://openspim.org

OpenSpinMicroscopy: https://sites.google.com/site/openspinmicroscopy/

Pycro-Manager: https://github.com/micro-manager/pycro-manager

Scenery: https://github.com/scenerygraphics/scenery

Singularity: https://sylabs.io/docs

Spark: http://sparkjava.com

StarDist: https://github.com/mpicbg-csbd/stardist

TeraFly: https://github.com/abria/TeraStitcher/wiki/TeraFly

TeraStitcher: https://github.com/abria/TeraStitcher

Tracking with Gaussian mixture models: https://www.janelia.org/lab/keller-lab/software/fast-accurate-reconstruction-cell-lineages-large-scale-fluorescence

UCSF Chimera: https://www.cgl.ucsf.edu/chimera/

Vaa3D: https://alleninstitute.org/what-we-do/brain-science/research/products-tools/vaa3d

Visualization toolkit: https://vtk.org

xarray: http://xarray.pydata.org/en/stable

ZARR file format: https://zarr.readthedocs.io/en/stable

Glossary

Focal volume

The planar volume in front of an objective, from which a sharp image can be obtained. It is proportional to the depth of field of the detection objective and the field of view.

Voxels

Portmanteau term of ‘volumes’ and ‘elements’, referring to single points of a three-dimensional grid.

Diffraction limit

The maximum achievable optical/spatial resolution of an image recorded with an optical microscope, equivalent to about half the wavelength of the illumination light.

Illumination train

The optical path used for forming the light sheet and excitation of fluorophores.

Detection train

The optical path used for collection of the emission signal.

Coherent illumination

Illumination with light composed of wave sources of the same frequency, waveform and phase; scattered laser light retains the original phase.

Numerical aperture

(NA). A refraction index-based dimensionless number that states the maximum half-angle across which an optical element, such as an objective, emits and collects light. The NA influences both the lateral and the axial resolutions.

Gaussian beams

Pencil-shaped diffracting focused beams whose planar profiles perpendicular to the beam axis are described with two-dimensional Gaussian functions.

Bessel beams

Non-diffracting, self-reconstructing beams generated with an axicon or a spatial light modulator.

Airy beams

Non-diffracting, self-reconstructing beams generated with a spatial light modulator.

Free working distance

The distance between the front surface of an objective and the centre of the focal volume.

Volume of view

The volume covered by the field of view (along the x axis and y axis) and the free working distance of the detection objective (along the z axis).

Lateral resolution

Spatial resolution along the x axis and y axis.

Oversampling and undersampling

The collection of redundant and less than available spatial/temporal information, respectively.

Axial resolution

Spatial resolution along the z axis.

Point spread functions

The images of point sources, often used to describe the response or the resolution of an imaging system.

High-content imaging

Collection of a large amount of complementary information from the same specimen.

Air objectives

Objective lenses that operate in air or vacuum; these cannot achieve the high and very high numerical apertures of water or oil immersion objectives.

Water-dipping objectives

Objective lenses that operate in aqueous or organic media; these can have higher numerical apertures (NAs) than air objectives, but not the very high NAs of oil objectives.

Isotropic resolution

Identical resolution along the x axis, y axis and z axis.

Oviparous

Describes a metazoan species that lays eggs with no or partial embryonic development in the parent.

Fluorinated ethylene propylene

(FEP). A synthetic material with a refractive index close to that of water (1.33), available as threads, foils and tubes.

Viviparous

Describes a metazoan species in which the embryos develop within the body of the parent.

Explantation

In developmental biology, the process of removing a developing embryo from the uterus of the parent for experimentation.

Pre-implantation

In developmental biology, the time period between fertilization of the oocyte and implantation of the blastocyst into the uterine wall.

Phytagel

Water-soluble anionic polysaccharide of bacterial origin with similar biophysical and optical properties to agarose.

Rolling shutter

The line-wise recording of scientific complementary metal–oxide–semiconductor sensors; in light sheet fluorescence microscopy it is synchronized with line-wise illumination to record anisotropic confocal images along the y axis.

Spectral unmixing

Data processing procedure in which the spectral signatures of voxels are divided into collections of constituent spectra.

Fourier transform

A mathematical operation that transforms a real intensity-based image into a spatial frequency-based array. These arrays are used to perform mathematical operations in spatial frequency space and inverse Fourier transforms are used to calculate real images.

Fluorescence correlation spectroscopy

A time correlation-based statistical imaging method for the quantification of fluorescence fluctuations that is used to measure diffusion coefficients or characterize reaction kinetics.

Fluorescence lifetime imaging

The imaging of the spatial distribution of the lifetimes of fluorophores in a specimen; fluorescence lifetimes are sensitive to their close environment.

Hot pixels

Dysfunctional pixels that appear white in every image independent of the actual signal.

Dead pixels

Dysfunctional pixels that appear black in every image independent of the actual signal.

Stitching

In fluorescence microscopy image processing, the combination of multiple partially overlapping stacks recorded along the same direction to generate larger three-dimensional images.

Multi-view fusion

In fluorescence microscopy data processing, the calculation of a single three-dimensional image based on multiple image stacks recorded along multiple directions of an opaque specimen.

Deconvolution

A mathematical approach to take advantage of a priori information regarding the properties of an optical system to emphasize certain spatial frequencies and, in consequence, improve the resolution of an image.

Block-wise

Describes parallelized image processing using blocks such as fractions of a line, area or volume to process data on multiple computation and graphic processing units.

Hierarchical data formats

File formats that utilize a file directory-like structure to organize the data within the file in a structured fashion.

Lossy image compression

A data size-reduction approach based on approximation and/or partial data discard; the original data cannot be completely reconstructed.

Bit-shuffling

The rearrangement of bits to, for example, allow or simplify image processing.

Segmentation

Detection and highlighting of morphological features, for example cell membranes or nuclei, in a two-dimensional or three-dimensional image.

Spheroids

Multicellular, usually densely packed, three-dimensional tissue-like cell culture models.

Organoids

A miniaturized and functionally simplified cell culture version of an organ.

Trichoblasts

Cells at the surface of plant roots that are responsible for the formation of root hairs.

Actinic

Describes light that is able to induce photochemical reactions.

Beam divergence

In Gaussian beams, the increase in beam radius as a function of distance from the beam waist.

Point spread function engineering

The modification of the plane wave usually encountered in the entrance aperture of a lens to change the properties of the point spread functions. For example, Bessel beams are generated by point spread function engineering.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stelzer, E.H.K., Strobl, F., Chang, BJ. et al. Light sheet fluorescence microscopy. Nat Rev Methods Primers 1, 73 (2021). https://doi.org/10.1038/s43586-021-00069-4

Download citation

Search

Quick links