Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Optically stimulated luminescence dating using quartz

Abstract

Optically stimulated luminescence (OSL) signals from quartz can be used to determine when sedimentary archives were deposited. OSL dating uses the accumulation of energy stored in a crystal structure to measure time. This stored energy is absorbed from ionizing radiation, and is released (reset) by heat or daylight. The total specific energy (dose) absorbed since the last resetting is measured using OSL, and divided by the rate of storage (dose rate) to give the time elapsed from the last heating or daylight exposure. In this Primer, quartz OSL dating is introduced and the signal resetting processes outlined. We describe the origins and quantification of the dose rate and the daylight-sensitive OSL signal most appropriate to dose estimation. The most widely used dose measurement method is then discussed, together with quality-control procedures. A broad set of geological and archaeological studies are used to illustrate the wide range of potential applications, and we describe the challenges arising from different deposition environments and summarize evidence for the precision and accuracy of published ages. Uncertainties and minimum reporting are discussed together with methodological limitations, particularly when applied to young and old sediments. Finally, we highlight the anticipated future developments in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Origins of the luminescence dating signal in quartz.
Fig. 2: Sedimentary cycle and the acquisition and loss of a luminescence dating signal.
Fig. 3: Sample preparation and instrumentation for OSL measurement.
Fig. 4: Using SAR to determine De.
Fig. 5: Correcting for sensitivity changes using the luminescence response to test dose.
Fig. 6: Dependence of De and dose recovery ratio on thermal pretreatment.
Fig. 7: Effect of sublinear dose–response on apparent dose distributions.
Fig. 8: Testing aliquot rejection criteria.
Fig. 9: Opportunities for bleaching of the optically stimulated luminescence signal in different environments.
Fig. 10: Sources of complexity in estimations of dose and dose rate.
Fig. 11: Accuracy and precision in quartz OSL dating.

Similar content being viewed by others

References

  1. Noller, J. S., Sowers, J. M., Lettis, W. R. Quaternary Geochronology: Methods and Applications (American Geophysical Union, 2013).

  2. Bronk Ramsey, C. Radiocarbon dating: revolutions in understanding. Archaeometry 50, 249–275 (2008).

    Article  Google Scholar 

  3. Gosse, J. C. & Phillips, F. M. Terrestrial in situ cosmogenic nuclides: theory and application. Quat. Sci. Rev. 20, 1475–1560 (2001).

    Article  ADS  Google Scholar 

  4. Wintle, A. G. Luminescence dating: where it has been and where it is going. Boreas 37, 471–482 (2008).

    Article  Google Scholar 

  5. van Calsteren, P. & Thomas, L. Uranium-series dating applications in natural environmental science. Earth Sci. Rev. 75, 155–175 (2006).

    Article  ADS  Google Scholar 

  6. Walter, R. C. in Chronometric Dating in Archaeology (eds Taylor, R. E. A. & Aitken, M. J.) 97–126 (Springer, 1997).

  7. Wintle, A. & Huntley, D. Thermoluminescence dating of a deep-sea sediment core. Nature 279, 710–712 (1979).

    Article  ADS  Google Scholar 

  8. Huntley, D. J., Godfrey-Smith, D. I. & Thewalt, M. L. W. Optical dating of sediments. Nature 313, 105–107 (1985).

    Article  ADS  Google Scholar 

  9. Heier-Nielsen, S. et al. Radiocarbon dating of shells and foraminifera from the Skagen Core, Denmark: evidence of reworking. Radiocarbon 37, 119–130 (1995).

    Article  Google Scholar 

  10. Qiu, F. Y. & Zhou, L. P. A new luminescence chronology for the Mangshan loess–palaeosol sequence on the southern bank of the Yellow River in Henan, central China. Quat. Geochronol. 30, 24–33 (2015).

    Article  Google Scholar 

  11. Sugisaki, S. et al. High resolution optically stimulated luminescence dating of a sediment core from the southwestern Sea of Okhotsk. Geochem. Geophys. Geosystems 13, Q0AA22 (2012).

    Article  Google Scholar 

  12. Buylaert, J.-P. et al. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41, 435–451 (2012).

    Article  Google Scholar 

  13. Jain, M. Extending the dose range: probing deep traps in quartz with 3.06 eV photons. Radiat. Meas. 44, 445–452 (2009).

    Article  Google Scholar 

  14. Hütt, G., Jaek, I. & Tchonka, J. Optical dating: K-feldspars optical response stimulation spectra. Quat. Sci. Rev. 7, 381–385 (1988).

    Article  ADS  Google Scholar 

  15. Sohbati, R., Murray, A. S., Lindvold, L., Buylaert, J.-P. & Jain, M. Optimization of laboratory illumination in optical dating. Quat. Geochronol. 39, 105–111 (2017).

    Article  Google Scholar 

  16. Nelson, M. S. G. et al. User guide for luminescence sampling in archaeological and geological contexts. Adv. Archaeol. Pract. 3, 166–177 (2015).

    Article  Google Scholar 

  17. Rajapara, H. M., Kumar, V., Chauhan, N., Gajjar, P. N. & Singhvi, A. K. Bleaching of blue light stimulated luminescence of quartz by moonlight. J. Earth Syst. Sci. 129, 1–7 (2020).

    Article  Google Scholar 

  18. Tuit, C. B. & Wait, A. D. A review of marine sediment sampling methods. Environ. Forensics 21, 291–309 (2020).

    Article  Google Scholar 

  19. Chen, Y. W., Chen, Y.-G., Murray, A. S., Liu, T. K. & Lai, T. C. Luminescence dating of neotectonic activity on the southwestern coastal plain, Taiwan. Quat. Sci. Rev. 22, 1223–1229 (2003).

    Article  ADS  Google Scholar 

  20. Sugisaki, S. et al. High resolution OSL dating back to MIS 5e in the central Sea of Okhotsk. Quat. Geochronol. 5, 293–298 (2010).

    Article  Google Scholar 

  21. Armitage, S. J. & Pinder, R. C. Testing the applicability of optically stimulated luminescence dating to Ocean Drilling Program cores. Quat. Geochronol. 39, 124–130 (2017).

    Article  Google Scholar 

  22. Gliganic, L. A., Meyer, M. C., Sohbati, R., Jain, M. & Barret, S. OSL surface exposure dating of a lithic quarry in Tibet: laboratory validation and application. Quat. Geochronol. 49, 199–204 (2019).

    Article  Google Scholar 

  23. Sohbati, R., Murray, A. S., Buylaert, J.-P., Almeida, N. A. C. & Cunha, P. P. Optically stimulated luminescence (OSL) dating of quartzite cobbles from the Tapada do Montinho archaeological site (east-central Portugal). Boreas 41, 452–562 (2012).

    Article  Google Scholar 

  24. Prescott, J. R. & Hutton, J. T. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiat. Meas. 23, 497–500 (1994).

    Article  Google Scholar 

  25. Aitken, M. J. Thermoluminescence Dating (Academic, 1985). This work is still the best summary of the dosimetric foundation of trapped charge dating methods using quartz and feldspar.

  26. Arnold, L. J., Demuro, M. & Ruiz, N. Empirical insights into multi-grain averaging effects from ‘pseudo’ single-grain OSL measurements. Radiat. Meas. 47, 652–658 (2012).

    Article  Google Scholar 

  27. Li, B., Jacobs, Z., Roberts, R. G. & Li, S. Review and assessment of the potential of post-IR IRSL dating methods to circumvent the problem of anomalous fading in feldspar luminescence. Geochronometria 41, 178–201 (2014).

    Article  Google Scholar 

  28. Porat, N., Faerstein, G., Medialdea, A. & Murray, A. S. Re-examination of common extraction and purification methods of quartz and feldspar for luminescence dating. Anc. TL 33, 22–30 (2015).

    Google Scholar 

  29. Ivanovich, M. & Harmon, R. S. Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences 2nd edn (Clarendon, 1992).

  30. Roesch, W. C. & Attix, F. H. in Radiation Dosimetry. Volume I: Fundamentals (eds Attix, F. H. & Roesch, W. C.) (Academic, 1968).

  31. Bourdon, B., Henderson, G. M., Lundstrom, C. C. & Turner, S. P. (eds) Uranium-series Geochemistry (Mineralogical Society of America, 2003).

  32. Bøtter-Jensen, L., Agersnap Larsen, N., Markey, B. G. & McKeever, S. W. S. Al2O3:C as a sensitive OSL dosemeter for rapid assessment of environmental photon dose rates. Radiat. Meas. 27, 295–298 (1997).

    Article  Google Scholar 

  33. Richter, D., Dombrowski, H., Neumaier, S., Guibert, P. & Zink, A. C. Environmental gamma dosimetry with OSL of α-Al2O3:C for in situ sediment measurements. Radiat. Prot. Dosimetry 141, 27–35 (2010).

    Article  Google Scholar 

  34. Kreutzer, S. et al. Environmental dose rate determination using a passive dosimeter: techniques and workflow for α-Al2O3:C chips. Geochronometria 45, 56–67 (2019).

    Article  Google Scholar 

  35. Miallier, D., Guérin, G., Mercier, N., Pilleyre, T. & Sanzelle, S. The Clermont radiometric reference rocks: a convenient tool for dosimetric purposes. Anc. TL 20, 37–43 (2009).

    Google Scholar 

  36. Arnold, L. J., Duval, M., Falguères, C., Bahain, J.-J. & Demuro, M. Portable gamma spectrometry with cerium-doped lanthanum bromide scintillators: suitability assessments for luminescence and electron spin resonance dating applications. Radiat. Meas. 6–18, 47 (2012).

    Google Scholar 

  37. Løvborg, L. & Kirkegaard, P. Response of 3′′ × 3′′ NaI(Tl) detectors to terrestrial gamma radiation. Nucl. Instrum. Methods 121, 239–251 (1974).

    Article  ADS  Google Scholar 

  38. Guérin, G. & Mercier, N. Determining gamma dose rates by field gamma spectroscopy in sedimentary media: results of Monte Carlo simulations. Radiat. Meas. 46, 190–195 (2011).

    Article  Google Scholar 

  39. Spooner, N. A. The optical dating signal from quartz. Radiat. Meas. 23, 593–600 (1994).

    Article  Google Scholar 

  40. Bøtter-Jensen, L., Thomsen, K. J. & Jain, M. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Rad. Meas. 45, 253–257 (2010). This work describes the instrumentation used for dose measurement using OSL.

    Article  Google Scholar 

  41. Clark-Balzan, L. & Schwenninger, J. First steps toward spatially resolved OSL dating with electron multiplying charge-coupled devices (EMCCDs): system design and image analysis. Radiat. Meas. 47, 797–802 (2012).

    Article  Google Scholar 

  42. Richter, D., Richter, A. & Dornich, K. Lexsyg — a new instrument for luminescence research. Geochronometria 40, 220–228 (2013).

    Article  Google Scholar 

  43. Thomsen, K. J., Kook, M., Murray, A. S., Jain, M. & Lapp, T. Single-grain results from an EMCCD-based imaging system. Radiat. Meas. 81, 185–191 (2015).

    Article  Google Scholar 

  44. Bøtter-Jensen, L. & Duller, G. A. T. A new system for measuring OSL from quartz samples. Nucl. Tracks. Radiat. Meas. 20, 549–553 (1992).

    Article  Google Scholar 

  45. Bulur, E., Bøtter-Jensen, L. & Murray, A. S. Optically stimulated luminescence from quartz measured using linear modulation technique. Radiat. Meas. 32, 407–411 (2000).

    Article  Google Scholar 

  46. Huntley, D. J., Short, M. A. & Dunphy, K. Deep traps in quartz and their use for optical dating. Can. J. Phys. 74, 81–91 (1996).

    Article  ADS  Google Scholar 

  47. Bulur, E. An alternative technique for optically stimulated luminescence (OSL) experiment. Radiat. Meas. 26, 701–709 (1996).

    Article  Google Scholar 

  48. Thomsen, K. J. et al. Minimizing feldspar OSL contamination in quartz UV-OSL using pulsed blue stimulation. Radiat. Meas. 43, 752–757 (2008).

    Article  Google Scholar 

  49. Ankjærgaard, C. & Jain, M. Optically stimulated phosphorescence in quartz over the millisecond to second time scale: insights into the role of shallow traps in delaying luminescent recombination. J. Phys. D Appl. Phys. 43, 255502 (2010).

    Article  ADS  Google Scholar 

  50. Duller, G. A. T., Bøtter-Jensen, L., Murray, A. S. & Truscott, A. J. Single grain laser luminescence (SGLL) measurement using a novel automated reader. Nucl. Instrum. Methods B 155, 506–514 (1999).

    Article  ADS  Google Scholar 

  51. Bøtter-Jensen, L., Bulur, E., Duller, G. A. T. & Murray, A. S. Advances in luminescence instrument systems. Radiat. Meas. 32, 523–528 (2000).

    Article  Google Scholar 

  52. Bøtter-Jensen, L., Duller, G. A. T., Murray, A. S. & Banerjee, D. Blue light emitting diodes for optical stimulation of quartz in retrospective dosimetry and dating. Radiat. Prot. Dosimetry 84, 335–340 (1999).

    Article  Google Scholar 

  53. Duller, G. A. T., Bøtter-Jensen, L. & Murray, A. S. Combining infrared- and green-laser stimulation sources in single-grain luminescence measurements of feldspar and quartz. Radiat. Meas. 37, 543–550 (2003).

    Article  Google Scholar 

  54. Andersen, C. E., Boetter-Jensen, L. & Murray, A. S. A mini X-ray generator as an alternative to a 90Sr/90Y beta source in luminescence dating. Radiat. Meas. 37, 557–561 (2003).

    Article  Google Scholar 

  55. Hansen, V., Murray, A., Buylaert, J. P., Yeo, E. Y. & Thomsen, K. A new irradiated quartz for β source calibration. Radiat. Meas. 81, 123–127 (2015).

    Article  Google Scholar 

  56. Thomsen, K. J., Murray, A. S. & Bøtter-Jensen, L. Sources of variability in OSL dose measurements using single grains of quartz. Radiat. Meas. 39, 47–61 (2005). This work shows that instrument reproducibility and photon counting statistics are unable to account for the variance in controlled laboratory dose measurements.

    Article  Google Scholar 

  57. Ankjærgaard, C. & Murray, A. S. Total β and γ dose rates in trapped charge dating based on β counting. Radiat. Meas. 42, 352–359 (2007).

    Article  Google Scholar 

  58. Vandenberghe, D., De Corte, F., Buylaert, J.-P. & Kučera, J. On the internal radioactivity in quartz. Radiat. Meas. 43, 771–775 (2008).

    Article  Google Scholar 

  59. Guérin, G., Mercier, N. & Adamiec, G. Dose-rate conversion factors: update. Anc. TL 29, 5–8 (2011).

    Google Scholar 

  60. Mayya, R. M., Morthekai, P., Murari, M. K. & Singhvi, A. K. Towards quantifying beta microdosimetric effects in single grain quartz dose distribution. Radiat. Meas. 41, 1032–1039 (2006).

    Article  Google Scholar 

  61. Guérin, G., Jain, M., Thomsen, K. J., Murray, A. S. & Mercier, N. Modelling dose rate to single grains of quartz in well-sorted sand samples: the dispersion arising from the presence of potassium feldspars and implications for single grain OSL dating. Quat. Geochronol. 27, 52–65 (2015).

    Article  Google Scholar 

  62. Guérin, G. et al. Absorbed dose, equivalent dose, measured dose rates, and implications for OSL age estimates: introducing the average dose model. Quat. Geochronol. 41, 163–173 (2017). This work argues in favour of using arithmetic mean doses when dose rate variability is a major contribution to overdispersion in dose estimates, shows that resulting ages are more accurate than those based on the central age model and argues against the use of the finite mixture model.

    Article  Google Scholar 

  63. Guérin, G., Mercier, N., Nathan, R., Adamiec, G. & Lefrais, Y. On the use of the infinite matrix assumption and associated concepts: a critical review. Radiat. Meas. 47, 778–785 (2012). This work provides updated dose rate conversion and attenuation factors, discusses the limitation of the infinite matrix assumption and demonstrates the value of Monte Carlo-based alternatives.

    Article  Google Scholar 

  64. Guibert, P., Lahaye, C. & Bechtel, F. The importance of U-series disequilibrium of sediments in luminescence dating: a case study at the Roc de Marsal cave (Dordogne, France). Radiat. Meas. 44, 223–231 (2009).

    Article  Google Scholar 

  65. Jain, M., Choi, J. H. & Thomas, P. J. The ultrafast OSL component in quartz: origins and implications. Radiat. Meas. 43, 709–714 (2008).

    Article  Google Scholar 

  66. Wintle, A. G. & Murray, A. S. The relationship between quartz TL, PTTL and OSL. Radiat. Meas. 27, 611–624 (1997).

    Article  Google Scholar 

  67. Jain, M., Murray, A. S., Bøtter-Jensen, L. & Wintle, A. G. A single-aliquot regenerative-dose method based on IR (1.49 eV) bleaching of the fast OSL component in quartz. Radiat. Meas. 39, 309–318 (2005).

    Article  Google Scholar 

  68. Jain, M., Murray, A. S. & Bøtter-Jensen, L. Characterisation of blue-light stimulated luminescence components in different quartz samples: implications for dose measurement. Radiat. Meas. 37, 441–449 (2003).

    Article  Google Scholar 

  69. Murray, A. S. & Wintle, A. G. Isothermal decay of optically stimulated luminescence in quartz. Radiat. Meas. 30, 119–125 (1999).

    Article  Google Scholar 

  70. Bøtter-Jensen, L. et al. Luminescence sensitivity changes in quartz as a result of annealing. Radiat. Meas. 24, 535–541 (1995).

    Article  Google Scholar 

  71. Wintle, A. G. & Murray, A. S. Quartz OSL: effects of thermal treatment and their relevance to laboratory dating procedures. Radiat. Meas. 32, 387–400 (2000).

    Article  Google Scholar 

  72. Moska, P. & Murray, A. S. Stability of the quartz fast-component in insensitive samples. Radiat. Meas. 41, 878–885 (2006).

    Article  Google Scholar 

  73. Buylaert, J. P. et al. Luminescence dating of old (>70 ka) Chinese loess: a comparison of single-aliquot OSL and IRSL techniques. Quat. Geochronol. 2, 9–14 (2007).

    Article  Google Scholar 

  74. Chapot, M., Roberts, H. M., Duller, G. A. & Lai, Z. P. A comparison of natural- and laboratory-generated dose response curves for quartz optically stimulated luminescence signals from Chinese loess. Radiat. Meas. 47, 1045–1052 (2012).

    Article  Google Scholar 

  75. Lowick, S. E., Preusser, F. & Wintle, A. G. Investigating quartz optically stimulated luminescence dose–response curves at high doses. Radiat. Meas. 45, 975–984 (2010).

    Article  Google Scholar 

  76. Ellerton, D. et al. An 800 kyr record of dune emplacement in relationship to high sea level. Geomorphology 354, 106999 (2020).

    Article  Google Scholar 

  77. Pawley, S. M., Bailey, R. M., Rose, J., Moorlock, B. S. P. & Hamblin, R. J. O. Age limits on Middle Pleistocene glacial sediments from OSL dating, north Norfolk, UK. Quat. Sci. Rev. 27, 1363–1377 (2008).

    Article  ADS  Google Scholar 

  78. Beerten, K. et al. Electron spin resonance (ESR), optically stimulated luminescence (OSL) and terrestrial cosmogenic radionuclide (TCN) dating of quartz from a Plio-Pleistocene sandy formation in the Campine area, NE Belgium. Quat. Int. 556, 144–158 (2020).

    Article  Google Scholar 

  79. Madsen, A. T., Duller, G. A. T., Donnelly, J. P., Roberts, H. M. & Wintle, A. G. A chronology of hurricane landfalls at Little Sippewisset Marsh, Massachusetts, USA, using optical dating. Geomorphology 109, 36–45 (2009).

    Article  ADS  Google Scholar 

  80. Durcan, J. A. & Duller, G. A. T. The fast ratio: a rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz. Radiat. Meas. 46, 1065–1072 (2011).

    Article  Google Scholar 

  81. Ankjærgaard, C., Jain, M., Hansen, P. C. & Nielsen, H. B. Towards multi-exponential analysis in optically stimulated luminescence. J. Phys. D: Appl. Phys. 43, 195501 (2010).

    Article  ADS  Google Scholar 

  82. Bailey, R. M., Yukihara, E. G. & McKeever, S. W. S. Separation of quartz optically stimulated luminescence components using green (525 nm) stimulation. Radiat. Meas. 46, 643–648 (2011).

    Article  Google Scholar 

  83. Ballarini, M., Wallinga, J., Wintle, A. G. & Bos, A. J. J. A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiat. Meas. 42, 360–369 (2007).

    Article  Google Scholar 

  84. Cunningham, A. & Wallinga, J. Selection of integration time intervals for quartz OSL decay curves. Quat. Geochronol. 5, 657–666 (2010).

    Article  Google Scholar 

  85. Duller, G. A. T., Bøtter-Jensen, L. & Murray, A. S. Optical dating of single sand-sized grains of quartz: sources of variability. Radiat. Meas. 32, 453–457 (2000).

    Article  Google Scholar 

  86. Murray, A. S. & Wintle, A. G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 32, 57–73 (2000). This work presents a detailed empirical description of the most widely used dose-measurement procedure in retrospective dosimetry using luminescence.

    Article  Google Scholar 

  87. Murray, A. S., Roberts, R. G. & Wintle, A. G. Equivalent dose measurement using a single aliquot of quartz. Radiat. Meas. 27, 171–184 (1997).

    Article  Google Scholar 

  88. Huntley, D. J. Note: some notes on language. Anc. TL 19, 27–28 (2001).

    Google Scholar 

  89. Bailey, R. M. Towards a general kinetic model for optically and thermally stimulated luminescence of quartz. Radiat. Meas. 33, 17–45 (2001).

    Article  Google Scholar 

  90. Murray, A. S. & Wintle, A. G. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiat. Meas. 37, 377–381 (2003).

    Article  Google Scholar 

  91. Madsen, A. T., Murray, A. S. & Andersen, T. J. Optical dating of dune ridges on Rømø, a barrier island in the Wadden Sea, Denmark. J. Coast. Res. 23, 1259–1269 (2007).

    Article  Google Scholar 

  92. Godfrey-Smith, D. I. Thermal effects in the optically stimulated luminescence of quartz and mixed feldspars from sediments. J. Phys. D Appl. Phys. 27, 1737–1746 (1994).

    Article  ADS  Google Scholar 

  93. Wintle, A. G. & Murray, A. S. Luminescence sensitivity changes in quartz. Radiat. Meas. 30, 107.118 (1999).

    Article  Google Scholar 

  94. Smith, B. W. & Rhodes, E. J. Charge movements in quartz and their relevance to optical dating. Radiat. Meas. 23, 329–333 (1994).

    Article  Google Scholar 

  95. Ankjærgaard, C., Murray, A. S. & Denby, P. M. Thermal pre-treatment (preheat) in the OSL dating of quartz: is it necessary? Radiat. Prot. Dosimetry 119, 470–473 (2006).

    Article  Google Scholar 

  96. Rhodes, E. J. Observations of thermal transfer OSL signals in glacigenic quartz. Radiat. Meas. 32, 595–602 (2000).

    Article  Google Scholar 

  97. Madsen, A. T., Murray, A. S., Andersen, T. J., Pejrup, M. & Breuning-Madsen, H. Optically stimulated luminescence dating of young estuarine sediments: a comparison with 210Pb and 137Cs dating. Mar. Geol. 214, 251–268 (2005).

    Article  ADS  Google Scholar 

  98. Murray, A. S. Developments in optically transferred luminescence and photo-transferred thermoluminescence dating: application to a 2000-year sequence of flood deposits. Geochim. Cosmochim. Acta 60, 565–576 (1996).

    Article  ADS  Google Scholar 

  99. Singh, A. et al. Counter-intuitive influence of Himalayan river morphodynamics on Indus Civilisation urban settlements. Nat. Commun. 8, 1–14 (2017).

    Article  Google Scholar 

  100. Guérin, G. C. et al. The accuracy of a single grain OSL Bayesian central dose model with known-age samples. Radiat. Meas. 81, 62–70 (2015).

    Article  Google Scholar 

  101. Duller, G. A. T. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat. Meas. 37, 161–165 (2003).

    Article  Google Scholar 

  102. Thomsen, K. J. et al. Testing single-grain quartz OSL methods using sediment samples with independent age control from the Bordes-Fitte rockshelter (Roches d’Abilly site, Central France). Quat. Geochronol. 31, 77–96 (2016).

    Article  Google Scholar 

  103. Stevens, T. et al. Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site. Nat. Commun. 9, 983 (2018).

    Article  ADS  Google Scholar 

  104. Vandenberghe, D. et al. Exploring the method of optical dating and comparison of optical and 14C ages of Late Weichselian coversands in the southern Netherlands. J. Quat. Sci. 19, 73–86 (2004).

    Article  Google Scholar 

  105. Guérin, G. et al. The complementarity of luminescence dating methods illustrated on the Mousterian sequence of the Roc de Marsal: a series of reindeer-dominated, Quina Mousterian layers dated to MIS 3. Quat. Int. 433, 102–115 (2017).

    Article  Google Scholar 

  106. Nielsen, A., Murray, A. S., Pejrup, M. & Elberling, B. Optically stimulated luminescence dating of a Holocene beach ridge plain in northern Jutland, Denmark. Quat. Geochronol. 1, 305–312 (2006).

    Article  Google Scholar 

  107. Buylaert, J. P. et al. Optical dating of Chinese loess using sand-sized quartz: establishing a time frame for Late Pleistocene climate changes in the western part of the Chinese Loess Plateau. Quat. Geochronol. 3, 99–113 (2008).

    Article  Google Scholar 

  108. Roberts, H. M. & Duller, G. A. T. Standardised growth curves for optical dating of sediment using multiple-grain aliquots. Radiat. Meas. 38, 241–252 (2004).

    Article  Google Scholar 

  109. Duller, G. A. T. Improving the accuracy and precision of equivalent doses determined using the optically stimulated luminescence signal from single grains of quartz. Radiat. Meas. 47, 770–777 (2012).

    Article  Google Scholar 

  110. Jacobs, Z., Roberts, R. G., Nespoulet, R., El Hajraoui, M. A. & Debénath, A. Single-grain OSL chronologies for Middle Palaeolithic deposits at El Mnasra and El Harhoura 2, Morocco: implications for Late Pleistocene human–environment interactions along the Atlantic coast of northwest Africa. J. Human Evol. 62, 377–394 (2012).

    Article  Google Scholar 

  111. Gliganic, L. A., Jacobs, Z. & Roberts, R. G. Luminescence characteristics and dose distributions. Archaeol. Anthropol. Sci. 4, 115–135 (2012).

    Article  Google Scholar 

  112. Demuro, M., Arnold, L. E., Froese, D. G. & Roberts, R. G. OSL dating of loess deposits bracketing Sheep Creek tephra beds, northwest Canada: dim and problematic single-grain OSL characteristics and their effect on multi-grain age estimates. Quat. Geochronol. 15, 67–87 (2013).

    Article  Google Scholar 

  113. Guérin, G. et al. A multi-method luminescence dating of the Palaeolithic sequence of La Ferrassie based on new excavations adjacent to the La Ferrassie 1 and 2 skeletons. J. Archaeol. Sci. 58, 147–166 (2015).

    Article  Google Scholar 

  114. Arnold, L. J. et al. OSL dating of individual quartz ‘supergrains’ from the Ancient Middle Palaeolithic site of Cuesta de la Bajada, Spain. Quat. Geochronol. 36, 78–101 (2016).

    Article  Google Scholar 

  115. Demuro, M., Arnold, L. J., Aranburu, A., Gómez-Olivencia, A. & Arsuaga, J. L. Single-grain OSL dating of the Middle Palaeolithic site of Galería de las Estatuas, Atapuerca (Burgos, Spain). Quat. Geochronol. 49, 138–145 (2019).

    Article  Google Scholar 

  116. Sohbati, R., Murray, A. S., Jain, M., Buylaert, J. P. & Thomsen, K. J. Investigating the resetting of OSL signals in rock surfaces. Geochronometria 30, 249–258 (2011).

    Article  Google Scholar 

  117. Pietsch, T. J., Olley, J. M. & Nanson, G. C. Fluvial transport as a natural luminescence sensitiser of quartz. Quat. Geochronol. 3, 365–376 (2008).

    Article  Google Scholar 

  118. Li, S.-H. Luminescence sensitivity changes of quartz by bleaching, annealing and UV exposure. Radiat. Eff. Defects Solids 157, 357–364 (2002).

    Article  ADS  Google Scholar 

  119. Koul, D. K. & Chougaonkar, M. P. The pre-dose phenomenon in the OSL signal of quartz. Radiat. Meas. 42, 1265–1272 (2007).

    Article  Google Scholar 

  120. Murray, A. S. & Olley, J. M. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz. Geochronometria 21, 1–16 (2002).

    Google Scholar 

  121. Preusser, F. et al. Quartz as a natural luminescence dosimeter. Earth Sci. Rev. 97, 184–214 (2009).

    Article  ADS  Google Scholar 

  122. Rhodes, E. J. Optically stimulated luminescence dating of sediments over the past 200,000 years. Annu. Rev. Earth Planet. Sci. 39, 461–488 (2011).

    Article  ADS  Google Scholar 

  123. Madsen, A. T. & Murray, A. S. Optically stimulated luminescence dating of young sediments: a review. Geomorphology 109, 3–16 (2009).

    Article  ADS  Google Scholar 

  124. Wallinga, J. Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31, 303–322 (2003).

    Article  Google Scholar 

  125. Thrasher, I. M., Mauz, B., Chiverrell, R. C. & Lang, A. Luminescence dating of glaciofluvial deposits: a review. Earth Sci. Rev. 97, 133–146 (2009).

    Article  ADS  Google Scholar 

  126. Jacobs, Z. & Roberts, R. G. Advances in optically stimulated luminescence dating of individual grains of quartz from archeological deposits. Evolut. Athropol. 16, 210–223 (2007).

    Article  Google Scholar 

  127. Fleming, S. J. The pre-dose technique: a new thermo-luminescent dating method. Archaeometry 15, 13–30 (1973).

    Article  Google Scholar 

  128. Wintle, A. G. Thermoluminescence dating of late Devensian loesses in southern England. Nature 289, 479–480 (1981).

    Article  ADS  Google Scholar 

  129. Wintle, A. G., Li, S. H. & Botha, G. A. Luminescence dating of colluvial deposits from Natal, South Africa. South. Afr. J. Sci. 89, 77–82 (1993).

    Google Scholar 

  130. Lang, A. Infra-red stimulated luminescence dating of holocene reworked silty sediments. Quat. Sci. Rev. 13, 525–528 (1994).

    Article  ADS  Google Scholar 

  131. Chawla, S. & Singhvi, A. K. Thermoluminescence dating of archaeological sediments. Naturwissenschaften 76, 416–419 (1989).

    Article  ADS  Google Scholar 

  132. Owen, L. A. et al. Relic permafrost structures in the Gobi of Mongolia: age and significance. J. Quat Sci. 13, 539–547 (1998).

    Article  Google Scholar 

  133. Balescu, S. & Lamothe, M. Comparison of TL and IRSL age estimates of feldspar coarse grains from waterlain sediments. Quat. Sci. Rev. 13, 437–444 (1994).

    Article  ADS  Google Scholar 

  134. Edwards, S. R. Luminescence dating of sand from the Kelso Dunes, California. A.S. Geolog Society 72, 59–68 (1993).

    Google Scholar 

  135. Lamothe, M. & Huntley, D. J. Thermoluminescence dating of Late Pleistocene sediments, St. Lawrence Lowland, Quebec. Geographie Phys. Quat. 42, 33–44 (1988).

    Google Scholar 

  136. Banerjee, D., Singhvi, A. K., Pande, K., Chandra, B. P. & Gogte, V. Towards a direct dating of fault gouges using luminescence dating techniques — methodological aspects. Curr. Sci. 77, 256–268 (1999).

    Google Scholar 

  137. Singhvi, A. K., Bronger, A., Pant, R. K. & Sauer, W. Thermoluminescence dating and its implications for the chronostratigraphy of loess-paleosol sequences in the Kashmir Valley (India). Chem. Geology Isotope Geosci. Sect. 65, 45–56 (1987).

    Article  Google Scholar 

  138. Bhandari, N., Sen Gupta, D., Singhvi, A. K., Nijampurkar, V. N. & Vohra, C. P. Thermoluminescene dating of glaciers. PACT 9, 513–521 (1983).

    Google Scholar 

  139. Benea, V. et al. Luminescence dating of neolithic ceramics from lumea nouă, Romania. Geochronometria 28, 9–16 (2007).

    Article  Google Scholar 

  140. Ideker, C. J., Byrd Finley, J., Rittenour, T. M. & Nelson, M. S. Single-grain optically stimulated luminescence dating of quartz temper from prehistoric Intermountain Ware ceramics, northwestern Wyoming, USA. Quat. Geochronol. 42, 42–55 (2017).

    Article  Google Scholar 

  141. Armitage, S. J. & King, G. E. Optically stimulated luminescence dating of hearths from the Fazzan Basin, Libya: a tool for determining the timing and pattern of Holocene occupation of the Sahara. Quat. Geochronol. 15, 88–97 (2013).

    Article  Google Scholar 

  142. al Khasawneh, S., Murray, A., Bonatz, D. & Freiesleben, T. Testing the application of post IR IRSL dating to Iron- and Viking-Age ceramics and heated stones from Denmark. Quat. Geochronol. 30, 386–391 (2015).

    Article  Google Scholar 

  143. Guérin, G. et al. Multi-method (TL and OSL), multi-material (quartz and flint) dating of the Mousterian site of Roc de Marsal (Dordogne, France): correlating Neanderthal occupations with the climatic variability of MIS 5–3. J. Archaeol. Sci. 39, 3071–3084 (2012).

    Article  Google Scholar 

  144. Moayed, N. K. et al. Bypassing the Suess-effect: age determination of charcoal kiln remains using OSL dating. J. Archaeol. Sci. 120, 105176 (2020).

    Article  Google Scholar 

  145. Ahn, H.-S. et al. Magnetic assessment of OSL and radiocarbon ages of sediments beneath a lava in Jeju Island, Korea: implication of possible resetting of OSL signals and age constraint of the late Quaternary lava. Quat. Geochronol. 48, 45–63 (2018).

    Article  Google Scholar 

  146. Porat, N., Levi, T. & Weinberger, R. Possible resetting of quartz OSL signals during earthquakes — evidence from late Pleistocene injection dikes, Dead Sea basin, Israel. Quat. Geochronol. 2, 272–277 (2007).

    Article  Google Scholar 

  147. Kim, J. H. et al. Experimental investigations on dating the last earthquake event using OSL signals of quartz from fault gouges. Tectonophysics 769, 228191 (2019).

    Article  Google Scholar 

  148. Tsakalos, E. et al. Absolute dating of past seismic events using the optically stimulated luminescence (OSL) technique on fault gouge material — a case study of the Nojima Fault Zone, SW Japan. J. Geophys. Res. Solid. Earth 125, 019257 (2019).

    Google Scholar 

  149. Navarro-González, R. et al. Paleoecology reconstruction from trapped gases in a fulgurite from the late Pleistocence of the Libyan Desert. Geology 35, 117–120 (2007).

    Article  Google Scholar 

  150. Godfrey-Smith, D. I., Huntley, D. J. & Chen, W. H. Optical dating studies of quartz and feldspar sediment extracts. Quat. Sci. Rev. 7, 373–380 (1988).

    Article  ADS  Google Scholar 

  151. Li, G. et al. Quantitative precipitation reconstructions from Chagan Nur revealed lag response of East Asian summer monsoon precipitation to summer insolation during the Holocene in arid northern China. Quat. Sci. Rev. 239, 106365 (2020).

    Article  Google Scholar 

  152. Stokes, S. et al. Alternative chronologies for Late Quaternary (Last Interglacial-Holocene) deep sea sediments via optical dating of silt-sized quartz. Quat. Sci. Rev. 22, 925–941 (2003).

    Article  ADS  Google Scholar 

  153. Singhvi, A. K. & Porat, N. Impact of luminescence dating on geomorphological and palaeoclimate research in drylands. Boreas 37, 536–558 (2008).

    Article  Google Scholar 

  154. Telfer, M. W. & Thomas, D. S. G. Late Quaternary linear dune accumulation and chronostratigraphy of the southwestern Kalahari: implications for aeolian palaeoclimatic reconstructions and predictions of future dynamics. Quat. Sci. Rev. 26, 2617–2630 (2007).

    Article  ADS  Google Scholar 

  155. Stevens, T., Thomas, D. S. G., Armitage, S. J., Lunn, H. R. & Lu, H. Reinterpreting climate proxy records from late Quaternary Chinese loess: a detailed OSL investigation. Earth Sci. Rev. 80, 111–136 (2007).

    Article  ADS  Google Scholar 

  156. Kang, S. et al. Early Holocene weakening and mid- to late Holocene strengthening of the East Asian winter monsoon. Geology 48, 1043–1047 (2020).

    Article  ADS  Google Scholar 

  157. Zeng, L. et al. Response of dune mobility and pedogenesis to fluctuations in monsoon precipitation and human activity in the Hulunbuir dune field, northeastern China, since the last deglaciation. Glob. Planet. Change 168, 1–14 (2018).

    Article  ADS  Google Scholar 

  158. Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T. & Yang, Z. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464, 740–743 (2010).

    Article  ADS  Google Scholar 

  159. Armitage, S. J., Bristow, C. S. & Drake, N. A. West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad. Proc. Natl Acad. Sci. USA 112, 8543–8548 (2015).

    Article  ADS  Google Scholar 

  160. Cohen, T. J. et al. Hydrological transformation coincided with megafaunal extinction in central Australia. Geology 43, 195–199 (2015).

    Article  ADS  Google Scholar 

  161. De Deckker, P. et al. Marine Isotope Stage 4 in Australasia: a full glacial culminating 65,000 years ago — global connections and implications for human dispersal. Quat. Sci. Rev. 204, 187–207 (2019).

    Article  ADS  Google Scholar 

  162. Cohen, K. M. & Gibbard, P. L. Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500. Quat. Int. 500, 20–31 (2019).

    Article  Google Scholar 

  163. Vandenberghe, J. Multi-proxy analysis: a reflection on essence and potential pitfalls. Neth. J. Geosci. Geologie Mijnb. 91, 263–269 (2012).

    Google Scholar 

  164. Marković, S. B. et al. Loess correlations — between myth and reality. Palaeogeogr. Palaeoclimatol. Palaeoecol. 509, 4–23 (2018).

    Article  Google Scholar 

  165. Svendsen, J. I. et al. Late Quaternary ice sheet history of northern Eurasia. Quat.Sci. Rev. 23, 1229–1271 (2004).

    Article  ADS  Google Scholar 

  166. Thiede, J. Quaternary environment of the Eurasian North. Wikipedia https://en.wikipedia.org/wiki/Quaternary_Environment_of_the_Eurasian_North (2003).

  167. Smedley, R. K. et al. New age constraints for the limit of the British–Irish ice sheet on the Isles of Scilly. J. Quat. Sci. 32, 48–62 (2017).

    Article  Google Scholar 

  168. Lancaster, N. et al. The INQUA Dunes Atlas chronologic database. Quat. Int. 410, 3–10 (2016).

    Article  Google Scholar 

  169. Buylaert, J. P. et al. Optical dating of relict sand wedges and composite-wedge pseudomorphs in Flanders, Belgium. Boreas 38, 160–175 (2009).

    Article  Google Scholar 

  170. Cheong, C. S. et al. Determination of slip rate by optical dating of fluvial deposits from the Wangsan fault, SE Korea. Quat. Sci. Rev. 1207–1211, 22 (2003).

    Google Scholar 

  171. Choi, S.-J. et al. Estimation of possible maximum earthquake magnitudes of Quaternary faults in the southern Korean Peninsula. Quat. Int. 344, 53–63 (2014).

    Article  Google Scholar 

  172. Vandenberghe, D. et al. Late Weichselian and Holocene earthquake events along the Geleen fault in NE Belgium: OSL age constraints. Quat. Int. 199, 56–74 (2009).

    Article  Google Scholar 

  173. Fattahi, M. et al. Holocene slip-rate on the Sabzevar thrust fault, NE Iran, determined using optically stimulated luminescence (OSL). Earth Planet. Sci. Lett. 245, 673–684 (2006).

    Article  ADS  Google Scholar 

  174. Heimsath, A. M., Chappell, J., Spooner, N. A. & Questiaux, D. G. Creeping soil. Geology 30, 111–114 (2002).

    Article  ADS  Google Scholar 

  175. Gliganic, L. A., May, J.-H. & Cohen, T. J. All mixed up: using single-grain equivalent dose distribution to identify phases of pedogenic mixing on dryland alluvial fan. Quat. Int. 362, 23–33 (2015).

    Article  Google Scholar 

  176. Bateman, M. D., Frederick, C. D., Jaiswal, M. K. & Singhvi, A. K. Investigations into the potential effects of pedoturbation on luminescence dating. Quat. Sci. Rev. 22, 1169–1176 (2003).

    Article  ADS  Google Scholar 

  177. Rink, W. J. et al. Subterranean transport and deposition of quartz by ants in sandy sites relevant to age overestimation in optical luminescence dating. J. Archaeol. Sci. 40, 2217–2226 (2013).

    Article  Google Scholar 

  178. Gray, H. J., Keen-Zebert, A., Furbish, D. J., Tucker, G. E. & Mahan, S. A. Depth dependent soil mixing persists across climatic zone. Proc. Natl Acad. Sci. 117, 8750–8756 (2020).

    Article  Google Scholar 

  179. Kristensen, J. A. et al. Quantification of termite bioturbation in a savannah ecosystem: application of OSL dating. Quat. Geochronol. 30B, 334–341 (2015).

    Article  Google Scholar 

  180. Brown, N. D. Which geomorphic process can be informed by luminescence measurements? Geomorphology 367, 107296 (2020).

    Article  Google Scholar 

  181. Madsen, A. T., Murray, A. S., Jain, M., Andersen, T. J. & Pejrup, M. A new method for measuring bioturbation rates in sandy tidal flat sediments based on luminescence dating. Estuarine Coast. Shelf Sci. 92, 464–472 (2011).

    Article  ADS  Google Scholar 

  182. Xu, Z. et al. Climate-driven changes to dune activity during the Last Glacial Maximum and deglaciation in the Mu Us dune field, north-central China. Earth Planet. Sci. Lett. 427, 149–159 (2015).

    Article  ADS  Google Scholar 

  183. Stevens, T. et al. Abrupt last glacial dust fall over southeast England associated with dynamics of the British–Irish ice sheet. Quat. Sci. Rev. 250, 106641 (2020).

    Article  Google Scholar 

  184. Porat, N., Rosen, S. A., Boaretto, E. & Avni, Y. Dating the Ramat Saharonim Late Neolithic desert cult site. J. Archaeol. Sci. 33, 1341–1355 (2006).

    Article  Google Scholar 

  185. Huang, C. C. et al. Extraordinary floods of 4100-4000 a BP recorded at the Late Neolithic ruins in the Jinghe River gorges, middle reach of the Yellow River, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 289, 1–9 (2010).

    Article  Google Scholar 

  186. Saunders, J. W. et al. A mound complex in Louisiana at 5400–5000 years before present. Science 277, 1796–1799 (1997).

    Article  Google Scholar 

  187. Burbidge, C. I., Batt, C. M., Barnett, S. M. & Dockrill, S. J. The potential for dating the old Scatness site, Shetland, by optically stimulated luminescence. Archaeometry 43, 589–596 (2001).

    Article  Google Scholar 

  188. Roberts, R. G. et al. Luminescence dating of rock art and past environments using mud-wasp nests in northern Australia. Nature 387, 696–699 (1997).

    Article  ADS  Google Scholar 

  189. Pederson, J. L. et al. Age of Barrier Canyon-style rock art constrained by cross-cutting relations and luminescence dating techniques. Proc. Natl Acad. Sci. USA 111, 12986–12991 (2014).

    Article  ADS  Google Scholar 

  190. Blain, S., Bailiff, I. K., Guibert, P., Bouvier, A. & Baylé, M. An intercomparison study of luminescence dating protocols and techniques applied to medieval brick samples from Normandy (France). Quat. Geochronol. 5, 311–316 (2007).

    Article  Google Scholar 

  191. Guibert, P., Christophe, C., Urbanova, P., Guérin, G. & Blain, S. Modeling incomplete and heterogeneous bleaching of mobile grains partially exposed to the light: towards a new tool for single grain OSL dating of poorly bleached mortars. Radiat. Meas. 107, 48–57 (2017).

    Article  Google Scholar 

  192. Greilich, S., Glasmacher, U. A. & Wagner, G. A. Optical dating of granitic stone surfaces. Archaeometry 47, 645–665 (2005).

    Article  Google Scholar 

  193. Chapot, M. S., Sohbati, R., Murray, A. S., Pederson, J. L. & Rittenour, T. M. Constraining the age of rock art by dating a rockfall event using sediment and rock-surface luminescence dating techniques. Quat. Geochronol. 13, 18–25 (2012).

    Article  Google Scholar 

  194. Petraglia, M. et al. Middle paleolithic assemblages from the indian subcontinent before and after the toba super-eruption. Science 317, 114–116 (2007).

    Article  ADS  Google Scholar 

  195. Armitage, S. J. et al. The southern route ‘out of Africa’: evidence for an early expansion of modern humans into Arabia. Science 331, 453–456 (2011).

    Article  ADS  Google Scholar 

  196. Mishra, S., Chauhan, N. & Singhvi, A. K. Continuity of microblade technology in the Indian subcontinent since at least 45 ka: implications for the dispersal of modern humans. PLoS ONE 8, e69280 (2013).

    Article  ADS  Google Scholar 

  197. Meyer, M. C. et al. Permanent human occupation of the central Tibetan Plateau in the Early Holocene. Science 355, 64–67 (2017).

    Article  ADS  Google Scholar 

  198. Hu, Y. et al. Late Middle Pleistocene Levallois stone-tool technology in southwest China. Nature 565, 82–85 (2019).

    Article  ADS  Google Scholar 

  199. Zhang, X. L. et al. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago. Science 362, 1049–1051 (2018).

    Article  ADS  Google Scholar 

  200. Roberts, R. et al. Optical and radiocarbon dating at Jinmium rock shelter in northern Australia. Nature 393, 358–362 (1998).

    Article  ADS  Google Scholar 

  201. Bowler, J. M. et al. New ages for human occupation and climate change at Lake Mungo, Australia. Nature 421, 837–840 (2003).

    Article  ADS  Google Scholar 

  202. Hamm, G. et al. Cultural innovation and megafauna interaction in the early settlement of arid Australia. Nature 539, 280–283 (2016).

    Article  ADS  Google Scholar 

  203. Clarkson, C. et al. New evidence for human occupation of northern Australia by 65,000 years ago. Nature 547, 306–310 (2017).

    Article  ADS  Google Scholar 

  204. Lahaye, C. et al. Human occupation in South America by 20,000 BC: the Toca da Tira Peia site, Piauí, Brazil. J. Archaeol. Sci. 40, 2840–2847 (2013).

    Article  Google Scholar 

  205. Lahaye, C. et al. Another site, same old song: the Pleistocene–Holocene archaeological sequence of Toca da Janela da Barra do Antonião-North, Piauí, Brazil. Quat. Geochronol. 49, 223–229 (2019).

    Article  Google Scholar 

  206. Jacobs, Z. et al. Timing of archaic hominin occupation of Denisova Cave in southern Siberia. Nature 565, 594–599 (2019).

    Article  ADS  Google Scholar 

  207. Zilhão, J. et al. Last interglacial Iberian Neandertals as fisher-hunter-gatherers. Science 367, 1443 (2020).

    Article  ADS  Google Scholar 

  208. Bouzouggar, A. et al. 82,000-year-old shell beads from North Africa and implications for the origins of modern human behavior. Proc. Natl Acad. Sci. USA 104, 9964–9969 (2007).

    Article  ADS  Google Scholar 

  209. Carter, T. et al. Earliest occupation of the Central Aegean (Naxos), Greece: implications for hominin and Homo sapiens’ behavior and dispersals. Sci. Adv. 5, eaax0997 (2019).

    Article  ADS  Google Scholar 

  210. Petraglia, M. et al. Population increase and environmental deterioration correspond with microlithic innovations in South Asia ca. 35,000 years ago. Proc. Natl Acad. Sci. USA 106, 12261–12266 (2009).

    Article  ADS  Google Scholar 

  211. Henshilwood, C. S. et al. A 100,000-year-old ochre-processing workshop at Blombos Cave, South Africa. Science 334, 219–222 (2011).

    Article  ADS  Google Scholar 

  212. Roberts, R. G. et al. New ages for the last Australian megafauna: continent-wide extinction about 46,000 years ago. Science 292, 1888–1892 (2001).

    Article  ADS  Google Scholar 

  213. Prideaux, G. J. et al. An arid-adapted middle Pleistocene vertebrate fauna from south-central Australia. Nature 445, 422–425 (2007).

    Article  ADS  Google Scholar 

  214. Haile, J. et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl Acad. Sci. 106, 22363–22368 (2009).

    Article  Google Scholar 

  215. Hocknull, S. A. et al. Extinction of eastern Sahul megafauna coincides with sustained environmental deterioration. Nat. Commun. 11, 2250 (2020).

    Article  ADS  Google Scholar 

  216. Medialdea, A., Thomsen, K. J., Murray, A. S. & Benito, G. Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. Quat. Geochronol. 22, 11–24 (2014).

    Article  Google Scholar 

  217. Kale, V. S., Singhvi, A. K., Mishra, P. K. & Banerjee, D. Sedimentary records and luminescence chronology of Late Holocene palaeofloods in the Luni River, Thar Desert, northwest India. Catena 40, 337–358 (2000).

    Article  Google Scholar 

  218. Arnold, L. J., Roberts, R. G., Galbraith, R. F. & DeLong, S. B. A revised burial dose estimation procedure for optical dating of young and modern-age sediments. Quat. Geochronol. 4, 306–325 (2009).

    Article  Google Scholar 

  219. Galbraith, R. F. & Roberts, R. G. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quat. Geochronol. 11, 1–27 (2012). This work reviews statistical aspects of dose determinations using OSL and describes statistical approaches to comparing and combining dose estimates.

    Article  Google Scholar 

  220. Timar-Gabor, A. et al. On the importance of grain size in luminescence dating using quartz. Radiat. Meas. 106, 464–471 (2017).

    Article  Google Scholar 

  221. Choi, J. H., Murray, A. S., Cheong, C. S., Hong, D. G. & Chang, H. W. The resolution of stratigraphic inconsistency in the luminescence ages of marine terrace sediments from Korea. Quat. Sci. Rev. 22, 1201–1206 (2003).

    Article  ADS  Google Scholar 

  222. Singarayer, J. S. & Bailey, R. M. Component-resolved bleaching spectra of quartz optically stimulated luminescence: preliminary results and implications for dating. Radiat. Meas. 38, 111–118 (2004).

    Article  Google Scholar 

  223. Zhou, L. P., Fu, D. P. & Zhang, J. F. An analysis of the components of the luminescence signals of selected polymineral and quartz samples from loess in western China and southern Tajikistan, and their suitability for optical dating. Quat. Geochronol. 5, 149–153 (2010).

    Article  Google Scholar 

  224. Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H. & Olley, J. M. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 41, 339–364 (1999).

    Article  Google Scholar 

  225. Bailey, R. M. & Arnold, L. J. Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quat.Sci. Rev. 25, 2475–2502 (2006).

    Article  ADS  Google Scholar 

  226. Combès, B. & Philippe, A. Bayesian analysis of individual and systematic multiplicative errors for estimating ages with stratigraphic constraints in optically stimulated luminescence dating. Quat. Geochronol. 39, 24–34 (2017).

    Article  Google Scholar 

  227. Philippe, A., Guérin, G. & Kreutzer, S. BayLum — an R package for Bayesian analysis of OSL ages: an introduction. Quat. Geochronol. 49, 16–24 (2019).

    Article  Google Scholar 

  228. Combès, B. et al. A Bayesian central equivalent dose model for optically stimulated luminescence dating. Quat. Geochronol. 28, 62–70 (2015).

    Article  Google Scholar 

  229. Thomsen, K. J., Murray, A. S., Bøtter-Jensen, L. & Kinahan, J. Determination of burial dose in incompletely bleached fluvial samples using single grains of quartz. Radiat. Meas. 42, 370–379 (2007).

    Article  Google Scholar 

  230. Jain, M., Murray, A. S. & Bøtter-Jensen, L. Optically stimulated luminescence dating: how significant is incomplete light exposure in fluvial environments? Quaternaire 15, 143–157 (2004).

    Article  Google Scholar 

  231. Gliganic, L. A., Cohen, T. J., Meyer, M. & Molenaar, A. Variations in luminescence properties of quartz and feldspar from modern fluvial sediments in three rivers. Quat. Geochronol. 41, 70–82 (2017).

    Article  Google Scholar 

  232. Arnold, L. J. et al. Single-grain TT-OSL bleaching characteristics: Insights from modern analogues and OSL dating comparisons. Quat. Geochronol. 49, 45–51 (2019).

    Article  Google Scholar 

  233. Murray, A. S., Thomsen, K. J., Masuda, N., Buylaert, J. P. & Jain, M. Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals. Radiat. Meas. 47, 688–695 (2012). This work argues that statistical analysis of dose distributions often leads to physically unrealistic conclusions, and demonstrates that a comparison of quartz and feldspar ages can be used to identify well-bleached quartz.

    Article  Google Scholar 

  234. Demuro, M., Arnold, L. J., Parés, J. M. & Sala, R. Extended-range luminescence chronologies suggest potentially complex bone accumulation histories at the Early-to-Middle Pleistocene palaeontological site of Huéscar-1 (Guadix-Baza basin, Spain). Quat. Int. 389, 191–212 (2015).

    Article  Google Scholar 

  235. Möller, P. & Murray, A. S. Drumlinised glaciofluvial and glaciolacustrine sediments on the Småland peneplain, south Sweden — new information on the growth and decay history of the Fennoscandian ice sheets during MIS 3. Quat. Sci. Rev. 122, 1–29 (2015).

    Article  ADS  Google Scholar 

  236. Duller, G. A. T. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37, 589–612 (2008). This work presents a review of the benefits and disadvantages of dose measurements using single grains.

    Article  Google Scholar 

  237. Jacobs, Z., Wintle, A. G., Roberts, R. G. & Duller, G. A. Equivalent dose distributions from single grains of quartz at Sibudu, South Africa: context, causes and consequences for optical dating of archaeological deposits. J. Archaeol. Sci. 35, 1808–1820 (2008).

    Article  Google Scholar 

  238. Andrieux, E., Bateman, M. D. & Bertran, P. The chronology of Late Pleistocene thermal contraction cracking derived from sand wedge OSL dating in central and southern France. Glob. Planet. Change 162, 84–100 (2018).

    Article  ADS  Google Scholar 

  239. Feathers, J. K., Evans, M., Stratford, D. J. & de la Peña, P. Exploring complexity in luminescence dating of quartz and feldspars at the Middle Stone Age site of Mwulu’s cave (Limpopo, South Africa). Quat. Geochronol. 59, 101092 (2020).

    Article  Google Scholar 

  240. Tribolo, C., Rasse, M., Soriano, S. & Huysecom, E. Defining a chronological framework for the Middle Stone Age in West Africa: comparison of methods and models for OSL ages at Ounjougou (Mali). Quat. Geochronol. 29, 80–96 (2015).

    Article  Google Scholar 

  241. Jacobs, Z., Wintle, A. G., Duller, G. A., Roberts, R. G. & Wadley, L. New ages for the post-Howiesons Poort, late and final Middle Stone Age at Sibudu, South Africa. J. Archaeol. Sci. 35, 1790–1807 (2008).

    Article  Google Scholar 

  242. Fitzsimmons, K. E., Stern, N. & Murray-Wallace, C. V. Depositional history and archaeology of the central Lake Mungo lunette, Willandra Lakes, southeast Australia. J. Archaeol. Sci. 41, 349–364 (2014).

    Article  Google Scholar 

  243. Galbraith, R. G. & Galbraith, R. F. Estimating the component ages in a finite mixture. Nucl. Tracks Radiat. Meas. 17, 197–206 (1990).

    Article  Google Scholar 

  244. Jacobs, Z., Duller, G. A. T., Wintle, A. G. & Henshilwood, C. S. Extending the chronology of deposits at Blombos Cave, South Africa, back to 140 ka using optical dating of single and multiple grains of quartz. J. Hum. Evol. 51, 255–273 (2006).

    Article  Google Scholar 

  245. David, B. et al. Sediment mixing at Nonda Rock: investigations of stratigraphic integrity at an early archaeological site in northern Australia and implications for the human colonisation of the continent. J. Quat. Sci. 22, 449–479 (2007).

    Article  Google Scholar 

  246. Bateman, M. D. et al. Detecting post-depositional sediment disturbance in sandy deposits using optical luminescence. Quat. Geochronol. 2, 57–64 (2007).

    Article  Google Scholar 

  247. Wolfe, S., Murton, J., Bateman, M. & Barlow, J. Oriented-lake development in the context of late Quaternary landscape evolution, McKinley Bay Coastal Plain, western Arctic Canada. Quat. Sci. Rev. 242, 106414 (2020).

    Article  Google Scholar 

  248. Arnold, L. J. & Roberts, R. G. Stochastic modelling of multi-grain equivalent dose (De) distributions: implications for OSL dating of sediment mixtures. Quat. Geochronol. 4, 204–230 (2009).

    Article  Google Scholar 

  249. Cunningham, A. C., Wallinga, J. & Minderhoud, P. S. J. Expectations of scatter in equivalent-dose distributions when using multi-grain aliquots for OSL dating. Geochronometria 38, 424–431 (2011).

    Article  Google Scholar 

  250. Nathan, R., Puthusserry, T., Jain, M. & Murray, A. S. Environmental dose rate heterogeneity due to beta microdosimetry and its implications for luminescence dating: Monte Carlo modelling and experimental validation. Radiat. Meas. 37, 305–313 (2003).

    Article  Google Scholar 

  251. Rufer, D. & Preusser, F. Potential of autoradiography to detect spatially resolved radiation patterns in the context of trapped charge dating. Geochronometria 34, 1–13 (2009).

    Article  Google Scholar 

  252. Smedley, R. K., Duller, G. A. T., Rufer, D. & Utley, J. Empirical assessment of β dose heterogeneity in sediments: implications for luminescence dating. Quat. Geochronol. 56, 101052 (2020).

    Article  Google Scholar 

  253. Guibert, P., Bechtel, F., Schvoerer, M., Müller, P. & Balescu, S. A new method for γ dose-rate estimation of heterogeneous media in TL dating. Radiat. Meas. 29, 561–572 (1998).

    Article  Google Scholar 

  254. Burbidge, C. I. & Duller, G. A. T. Combined γ and β dosimetry, using Al2O3:C, for in situ measurements on a sequence of archaeological deposits. Radiat. Meas. 37, 285–291 (2003).

    Article  Google Scholar 

  255. Guérin, G. & Mercier, N. Field gamma spectrometry, Monte Carlo simulations and potential of non-invasive measurements. Geochronometria 39, 40–47 (2012).

    Article  Google Scholar 

  256. Guérin, G. & Mercier, N. Preliminary insight into dose deposition processes in sedimentary media on a scale of single grains: Monte Carlo modelling of the effect of water on the γ dose rate. Radiat. Meas. 47, 541–547 (2012).

    Article  Google Scholar 

  257. Degering, D. & Degering, A. Change is the only constant — time-dependent dose rates in luminescence dating. Quat. Geochronol. 58, 101074 (2020).

    Article  Google Scholar 

  258. Singhvi, A. K., Banerjee, D., Ramesh, R., Rajaguru, S. N. & Gogte, V. A luminescence method for dating “dirty” pedogenic carbonates for paleoenvironmental reconstruction. Earth Planet. Sci. Lett. 139, 321 (1996).

    Article  ADS  Google Scholar 

  259. Nathan, R. P. & Mauz, B. On the dose-rate estimate of carbonate-rich sediments for trapped charge dating. Radiat. Meas. 43, 14–25 (2008).

    Article  Google Scholar 

  260. Olley, J. M., Murray, A. S. & Roberts, R. G. The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quat. Geochronol. 15, 751–760 (1996). This work presents an overview of the degree of radionuclide disequilibria to be found in modern fluvial sediments, and the significance of these disequilibria on dose rates.

    Google Scholar 

  261. Tanner, A. B. in The Natural Radiation Environment III Conf. 780422 (Viginia, 1978).

  262. Olley, J. M., Roberts, R. G. & Murray, A. S. Disequilibria in the uranium decay series in sedimentary deposits at Allens cave, Nullarbor Plain, Australia: implications for dose rate determinations. Radiat. Meas. 27, 433–443 (1997).

    Article  Google Scholar 

  263. Murray, A. S., Buylaert, J. P. & Thiel, C. A luminescence dating intercomparison based on a Danish beach-ridge sand. Radiat. Meas. 81, 32–38 (2015).

    Article  Google Scholar 

  264. Murray, A. S., Helsted, L. M., Autzen, M., Jain, M. & Buylaert, J. P. Measurement of natural radioactivity: calibration and performance of a high-resolution gamma spectrometry facility. Radiat. Meas. 15, 215–220 (2018).

    Article  Google Scholar 

  265. Durcan, J. A., King, G. E. & Duller, G. A. DRAC: Dose Rate and Age Calculator for trapped charge dating. Quat. Geochronol. 28, 54–61 (2015).

    Article  Google Scholar 

  266. Kreutzer, S. et al. Introducing an R package for luminescence dating analysis. Anc. TL 30, 1–8 (2012).

    Google Scholar 

  267. Peng, J., Dong, Z., Han, F., Long, H. & Liu, X. R package numOSL: numeric routines for optically stimulated luminescence dating. Anc. TL 31, 41–48 (2013).

    Google Scholar 

  268. Lai, Z. P., Brückner, H., Zöller, L. & Füllinga, A. Existence of a common growth curve for silt-sized quartz OSL of loess from different continents. Radiat. Meas. 42, 1432–1440 (2007).

    Article  Google Scholar 

  269. Burbidge, C. I., Duller, G. A. T. & Roberts, H. M. De determination for young samples using the standardised OSL response of coarse-grain quartz. Radiat. Meas. 41, 278–288 (2006).

    Article  Google Scholar 

  270. Telfer, M. W. & Hesse, P. P. Palaeoenvironmental reconstructions from linear dunefields: recent progress, current challenges and future directions. Quat. Sci. Rev. 78, 1–21 (2013).

    Article  ADS  Google Scholar 

  271. Thomsen, K. J., Murray, A. & Jain, M. The dose dependency of the over-dispersion of quartz OSL single grain dose distributions. Radiat. Meas. 47, 732–739 (2012).

    Article  Google Scholar 

  272. Timar-Gabor, A. et al. Optical dating of Romanian loess: a comparison between silt-sized and sand-sized quartz. Quat. Int. 240, 62–70 (2011).

    Article  Google Scholar 

  273. Qin, J. T. & Zhou, L. P. Stepped-irradiation SAR: a viable approach to circumvent OSL equivalent dose underestimation in last glacial loess of northwestern China. Radiat. Meas. 44, 417–422 (2009).

    Article  Google Scholar 

  274. Timar-Gabor, A. & Wintle, A. G. On natural and laboratory generated dose response curves for quartz of different grain sizes from Romanian loess. Quat. Geochronol. 18, 34–40 (2013).

    Article  Google Scholar 

  275. Timar-Gabor, A. et al. Fundamental investigations of natural and laboratory generated SAR dose response curves for quartz OSL in the high dose range. Radiat. Meas. 81, 150–156 (2015).

    Article  Google Scholar 

  276. Chauhan, N., Anand, S., Selvam, P., Mayya, Y. S. & Singhvi, A. K. Extending the upper age limits in the luminescence dating of sediments: a feasibility study of using large grains. Radiat. Meas. 44, 629–633 (2009).

    Article  Google Scholar 

  277. Heydari, M. & Guérin, G. OSL signal saturation and dose rate variability: investigating the behaviour of different statistical models. Radiat. Meas. 120, 96–103 (2018).

    Article  Google Scholar 

  278. Rittenour, T. Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research. Boreas 37, 613–635 (2008).

    Article  Google Scholar 

  279. Lai, Z. Chronology and the upper dating limit for loess samples from Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol. J. Asian Earth Sci. 37, 176–185 (2010).

    Article  ADS  Google Scholar 

  280. Ankjærgaard, C. et al. Violet stimulated luminescence: geo- or thermochronometer? Radiat. Meas. 81, 78–84 (2015).

    Article  Google Scholar 

  281. Wang, X. L., Lu, Y. C. & Wintle, A. G. Recuperated OSL dating of fine-grained quartz in Chinese loess. Quat. Geochronol. 1, 89–100 (2006).

    Article  Google Scholar 

  282. Arnold, L. J. & Demuro, M. Insights into TT-OSL signal stability from single-grain analyses of known-age deposits at Atapuerca, Spain. Quat. Geochronol. 30, 472–478 (2015).

    Article  Google Scholar 

  283. Duller, G. A. T. & Wintle, A. G. A review of the thermally transferred optically stimulated luminescence signal from quartz for dating sediments. Quat. Geochronol. 7, 6–20 (2012).

    Article  Google Scholar 

  284. Hansen, V. et al. Towards the origins of over-dispersion in beta source calibration. Radiat. Meas. 120, 157–162 (2018).

    Article  Google Scholar 

  285. Stevens, T., Armitage, S. J., Lu, H. & Thomas, D. S. G. Sedimentation and diagenesis of Chinese loess: implications for the preservation of continuous, high-resolution climate records. Geology 34, 849–852 (2006).

    Article  ADS  Google Scholar 

  286. Yi, S. et al. High resolution OSL and post-IR IRSL dating of the last interglacial–glacial cycle at the Sanbahuo loess site (northeastern China). Quat. Geochronol. 30, 200–206 (2015).

    Article  Google Scholar 

  287. Sugisaki, S. et al. OSL dating of fine-grained quartz from Holocene Yangtze delta sediments. Quat. Geochronol. 30, 226–232 (2015).

    Article  Google Scholar 

  288. Olley, J. M., Caitcheon, G. G. & Murray, A. S. The distribution of apparent doses as determined by optically stimulated luminescence in small aliquots of fluvial quartz: implications of dating young sediments. Quat. Sci. Rev. 17, 1033–1040 (1998).

    Article  ADS  Google Scholar 

  289. Olley, J. M., Caitcheon, G. G. & Roberts, R. G. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence. Radiat. Meas. 30, 207–217 (1999).

    Article  Google Scholar 

  290. Sanderson, D. C. W. & Murphy, S. Using simple portable OSL measurements and laboratory characterisation to help understand complex and heterogeneous sediment sequences for luminescence dating. Quat. Geochronol. 5, 299–305 (2010).

    Article  Google Scholar 

  291. Muños-Salinas, E., Bishop, P., Sanderson, D. C. W. & Zamorano, J. Interpreting luminescence data from a portable OSL reader: three case studies in fluvial settings. Earth Surf. Process. Landf. 36, 651–660 (2010).

    Article  ADS  Google Scholar 

  292. Stone, A. E. C., Bateman, M. D. & Thomas, D. S. G. Rapid age assessment in the Namib Sand Sea using a portable luminescence reader. Quat. Geochronol. 30, 134–140 (2015).

    Article  Google Scholar 

  293. Simms, A. R., DeWitt, R., Kouremenos, P. & Drewry, A. M. A new approach to reconstructing sea levels in Antarctica using optically stimulated luminescence of cobble surfaces. Quat. Geochronol. 6, 50–60 (2011).

    Article  Google Scholar 

  294. Souza, P. E. et al. Luminescence dating of buried cobble surfaces from sandy beach ridges: a case study from Denmark. Boreas 48, 841–855 (2019).

    Article  Google Scholar 

  295. Jenkins, G. T. H., Duller, G. A. T., Roberts, H. M., Chiverrell, R. C. & Glasser, N. F. A new approach for luminescence dating glaciofluvial deposits — High precision optical dating of cobbles. Quat. Sci. Rev. 192, 263–273 (2018).

    Article  ADS  Google Scholar 

  296. Sohbati, R., Murray, A. S., Chapot, M. S., Jain, M. & Pederson, J. Optically stimulated luminescence (OSL) as a chronometer for surface exposure dating. J. Geophys. Res. 117, B09202 (2012).

    ADS  Google Scholar 

  297. Rades, E. F., Sohbati, R., Lüthgens, C., Jain, M. & Murray, A. First luminescence-depth profiles from boulders from moraine deposits: Insights into glaciation chronology and transport dynamics in Malta Valley, Austria. Radiat. Meas. 120, 281–289 (2018).

    Article  Google Scholar 

  298. Gray, H. J., Jain, M., Sawakuchi, A. O., Mahan, S. & Tucker, G. Luminescence as a sediment tracer and provenance tool. Rev. Geophys. 57, 987–1017 (2019).

    Article  ADS  Google Scholar 

  299. Aitken, M. J. An Introduction to Optical Dating. The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence (Oxford Univ. Press, 1998).

  300. Srivastava, P., Juyal, N., Singhvi, A. K. & Wasson, R. J. Luminescence chronology of river adjustment and incision of Quaternary sediments in the alluvial plain of the Sabarmati River, north Gujarat, India. Geomorphology 36, 217–229 (2001).

    Article  ADS  Google Scholar 

  301. Zhang, J. F. et al. Optical dating of a hyperconcentrated flow deposit on a Yellow River terrace in Hukou, Shaanxi, China. Quat. Geochronol. 5, 194–199 (2010).

    Article  Google Scholar 

  302. Sim, A. K. et al. Dating recent floodplain sediments in the Hawkesbury–Nepean River system, eastern Australia using single-grain quartz OSL. Boreas 43, 1–21 (2014).

    Article  Google Scholar 

  303. Arnold, L. J., Bailey, R. M. & Tucker, G. E. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quat. Geochronol. 2, 162–167 (2007).

    Article  Google Scholar 

  304. Srivastava, P., Singh, I. B., Sharma, M. & Singhvi, A. K. Luminescence chronometry and Late Quaternary geomorphic history stratigraphic record of the Ganga plains, India: a review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 197, 13–41 (2003).

    Article  Google Scholar 

  305. Townsend, K. F., Nelson, M. S., Rittenour, T. M. & Pederson, J. L. Anatomy and evolution of a dynamic arroyo system, Kanab Creek, southern Utah, USA. GSA Bulletin 131, 2094–2109 (2019).

    Article  Google Scholar 

  306. Shen, H., Yu, L., Zhang, H., Zhao, T. M. & Lai, Z. OSL and radiocarbon dating of flood deposits and its paleoclimatic and archaeological implications in the Yihe River Basin, East China. Quat. Geochronol. 30, 398–404 (2015).

    Article  Google Scholar 

  307. Rémillard, A. M. et al. Quartz OSL dating of Late Holocene beach ridges from the Magdalen Islands (Quebec, Canada). Quat. Geochronol. 30, 264–269 (2015).

    Article  Google Scholar 

  308. Jacobs, Z. Luminescence chronologies for coastal and marine sediments. Boreas 37, 508–535 (2008).

    Article  Google Scholar 

  309. Bateman, M. D. et al. The evolution of coastal barrier systems: a case study of the Middle–Late Pleistocene Wilderness barriers, South Africa. Quat. Sci. Rev. 30, 63–81 (2010).

    Article  ADS  Google Scholar 

  310. Tamura, T. et al. Luminescence dating of beach ridges for characterizing multi-decadal to centennial deltaic shoreline changes during Late Holocene, Mekong River delta. Mar. Geol. 326–328, 140–153 (2012).

    Article  ADS  Google Scholar 

  311. Murari, M. K., Achyuthan, H. & Singhvi, A. K. Luminescence studies on the sediments laid down by the December 2004 tsunami event: prospects for the dating of palaeo tsunamis and for the estimation of sediment fluxes. Curr. Sci. 92, 367–371 (2007).

    Google Scholar 

  312. Cunha, P. P. et al. Optical dating of clastic deposits generated by an extreme marine coastal flood: the 1755 tsunami deposits in the Algarve (Portugal). Quat. Geochronol. 5, 329–335 (2010).

    Article  Google Scholar 

  313. Tamura, T., Sawai, Y. & Ito, K. OSL dating of the AD 869 Jogan tsunami deposit, northeastern Japan. Quat. Geochronol. 30, 294–298 (2015).

    Article  Google Scholar 

  314. Fan, Y. et al. History and mechanisms for the expansion of the Badain Jaran Desert, northern China, since 20 ka: geological and luminescence chronological evidence. Holocene 26, 532–548 (2015).

    Article  ADS  Google Scholar 

  315. Yu, L., Lai, Z., An, P., Pan, T. & Chang, Q. Aeolian sediments evolution controlled by fluvial processes, climate change and human activities since LGM in the Qaidam Basin, Qinghai–Tibetan Plateau. Quat. Int. 372, 23–32 (2015).

    Article  Google Scholar 

  316. Hesse, P. P. How do longitudinal dunes respond to climate forcing? Insights from 25 years of luminescence dating of the Australian desert dunefields. Quat. Int. 410, 11–29 (2016).

    Article  Google Scholar 

  317. Wang, X. F., Zhao, H., Yang, H. Y. & Wang, K. Q. Optical dating reveals that the height of Earth’s tallest megadunes in the Badain Jaran Desert of NW China is increasing. J. Asian Earth Sci. 185, 104025 (2019).

    Article  Google Scholar 

  318. Xu, Z. et al. Critical transitions in Chinese dunes during the past 12,000 years. Sci. Adv. 6, 8020 (2020).

    Article  ADS  Google Scholar 

  319. Kocurek, G. et al. White Sands Dune Field, New Mexico: age, dune dynamics and recent accumulations. Sediment. Geol. 197, 313–331 (2007).

    Article  ADS  Google Scholar 

  320. Li, G. Q. et al. Environmental changes in the Ulan Buh Desert, southern Inner Mongolia, China since the Middle Pleistocene based on sedimentology, chronology and proxy indexes. Quat. Sci. Rev. 128, 69–80 (2015).

    Article  ADS  Google Scholar 

  321. Tamura, T. et al. Seasonal control on coastal dune morphostratigraphy under a monsoon climate, Mui Ne dunefield, SE Vietnam. Geomorphology 370, 107371 (2020).

    Article  Google Scholar 

  322. Yang, L., Wang, T., Long, H. & He, Z. Late Holocene dune mobilization in the Horqin dunefield of northern China. J. Asian Earth Sci. 138, 136–147 (2017).

    Article  ADS  Google Scholar 

  323. Roberts, H. M., Wintle, A. G., Maher, B. A. & Hu, M. Holocene sediment-accumulation rates in the western Loess Plateau, China, and a 2500-year record of agricultural activity, revealed by OSL dating. Holocene 11, 477–483 (2001).

    Article  ADS  Google Scholar 

  324. Lai, Z. P. & Wintle, A. G. Locating the boundary between the Pleistocene and the Holocene in Chinese loess using luminescence. Holocene 16, 893–899 (2006).

    Article  ADS  Google Scholar 

  325. Kang, S. et al. Increasing effective moisture during the Holocene in the semiarid regions of the Yili Basin, Central Asia: evidence from loess sections. Quat. Sci. Rev. 246, 106553 (2020).

    Article  Google Scholar 

  326. Tecsa, V. et al. Revisiting the chronostratigraphy of Late Pleistocene loess–paleosol sequences in southwestern Ukraine: OSL dating of Kurortne section. Quat. Int. 542, 65–79 (2020).

    Article  Google Scholar 

  327. Xu, Z., Stevens, T., Yi, S., Mason, J. A. & Lu, H. Seesaw pattern in dust accumulation on the Chinese Loess Plateau forced by late glacial shifts in the East Asian monsoon. Geology 46, 871–874 (2018).

    Article  ADS  Google Scholar 

  328. Constantin, D. et al. High-resolution OSL dating of the Costineşti section (Dobrogea, SE Romania) using fine and coarse quartz. Quat. Int. 334–335, 20–29 (2014).

    Article  Google Scholar 

  329. Fuchs, M. et al. The loess sequence of Dolní Veˇstonice, Czech Republic: a new OSL-based chronology of the last climatic cycle. Boreas 42, 664–677 (2013).

    Article  Google Scholar 

  330. Roberts, H. M., Muhs, D. R., Wintle, A. G., Duller, G. A. T. & Bettis, E. A. III Unprecedented last-glacial mass accumulation rates determined by luminescence dating of loess from western Nebraska. Quat. Res. 59, 411–419 (2003).

    Article  Google Scholar 

  331. Bosq, M. et al. Chronostratigraphy of two Late Pleistocene loess-palaeosol sequences in the Rhône Valley (southeast France). Quat. Sci. Rev. 245, 106473 (2020).

    Article  Google Scholar 

  332. Lukas, S., Preusser, F., Anselmetti, F. S. & Tinner, W. Testing the potential of luminescence dating of high-alpine lake sediments. Quat. Geochronol. 8, 23–32 (2012).

    Article  Google Scholar 

  333. Fu, X., Cohen, T. J. & Arnold, L. J. Extending the record of lacustrine phases beyond the last interglacial for Lake Eyre in central Australia using luminescence dating. Quat. Sci. Rev. 162, 88–110 (2017).

    Article  ADS  Google Scholar 

  334. Kemp, C. W. et al. Climates of the last three interglacials in subtropical eastern Australia inferred from wetland sediment geochemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 538, 109463 (2020).

    Article  Google Scholar 

  335. Lewis, R. et al. Insights into subtropical Australian aridity from Welsby Lagoon, North Stradbroke Island, over the past 80,000 years. Quat. Sci. Rev. 234, 106262 (2020).

    Article  Google Scholar 

  336. Wallinga, J. & Bos, I. J. Optical dating of fluvio-deltaic clastic lake-fill sediments — a feasibility study in the Holocene Rhine delta (western Netherlands). Quat. Geochronol. 5, 602–610 (2010).

    Article  Google Scholar 

  337. Kortekaas, M., Murray, A. S., Sandgren, P. & Björck, S. OSL chronology for a sediment core from the southern Baltic Sea: a continuous sedimentation record since deglaciation. Quat. Geochronol. 2, 95–101 (2007).

    Article  Google Scholar 

  338. Gutiérrez, F. et al. Late Holocene evolution of playa lakes in the central sector of the Ebro Depression based on geophysical surveys and morpho-stratigraphic analysis of lacustrine terraces. Geomorphology 196, 177–197 (2013).

    Article  ADS  Google Scholar 

  339. Long, H., Shen, J., Wang, Y., Gao, L. & Frechen, M. High-resolution OSL dating of a late Quaternary sequence from Xingkai Lake (NE Asia): chronological challenge of the “MIS 3a Mega-paleolake” hypothesis in China. Earth Planet. Sci. Lett. 428, 281–292 (2015).

    Article  ADS  Google Scholar 

  340. Smith, L. N. et al. Timing of lake-level changes for a deep last-glacial Lake Missoula: optical dating of the Garden Gulch area, Montana, USA. Quat. Sci. Rev. 183, 23–35 (2018).

    Article  ADS  Google Scholar 

  341. Olley, J. M. et al. Optical dating of deep-sea sediments using single grains of quartz: a comparison with radiocarbon. Sediment. Geol. 169, 175–189 (2004).

    Article  ADS  Google Scholar 

  342. Armitage, S. J. Optically stimulated luminescence dating of Ocean Drilling Program core 658B: complications arising from authigenic uranium uptake and lateral sediment movement. Quat. Geochronol. 30, 270–274 (2015).

    Article  Google Scholar 

  343. Houmark-Nielsen, M. Testing OSL failures against a regional Weichselian glaciation chronology from southern Scandinavia. Boreas 37, 660–677 (2008).

    Article  Google Scholar 

  344. Hu, G., Yi, C.-L., Zhang, J.-F., Liu, J.-H. & Jiang, T. Luminescence dating of glacial deposits near the eastern Himalayan syntaxis using different grain-size fractions. Quat. Sci. Rev. 124, 124–144 (2015).

    Article  ADS  Google Scholar 

  345. Ou, X. et al. Single grain optically stimulated luminescence dating of glacial sediments from the Baiyu Valley, southeastern Tibet. Quat. Geochronol. 30, 314–319 (2015).

    Article  Google Scholar 

  346. Fuchs, M. & Owen, L. A. Luminescence dating of glacial and associated sediments: review, recommendations and future directions. Boreas 37, 636–659 (2008).

    Article  Google Scholar 

  347. Alexanderson, H. & Murray, A. S. Luminescence signals from modern sediments in a glaciated bay, NW Svalbard. Quat. Geochronol. 10, 250–256 (2012).

    Article  Google Scholar 

  348. Demuro, M., Froese, D. G., Arnold, L. J. & Roberts, R. G. Single-grain OSL dating of glaciofluvial quartz constrains Reid glaciation in NW Canada to MIS 6. Quat. Res. 77, 305–316 (2012).

    Article  Google Scholar 

  349. Rowan, A. V. et al. Optically stimulated luminescence dating of glaciofluvial sediments on the Canterbury Plains, South Island, New Zealand. Quat. Geochronol. 8, 10–22 (2012).

    Article  Google Scholar 

  350. Thomas, P. J., Murray, A. S., Kjær, K. H., Funder, S. & Larsen, E. Optically stimulated luminescence (OSL) dating of glacial sediments from Arctic Russia — depositional bleaching and methodological aspects. Boreas 35, 587–599 (2006).

    Article  Google Scholar 

  351. Demuro, M. et al. Optically stimulated luminescence dating of single and multiple grains of quartz from perennially-frozen loess in western Yukon Territory, Canada: comparison with radiocarbon chronologies for the Late Pleistocene Dawson tephra. Quat. Geochronol. 3, 346–364 (2008).

    Article  Google Scholar 

  352. Bateman, M. D., Murton, J. B. & Boulter, C. The source of De variability in periglacial sand wedges: depositional processes versus measurement issues. Quat. Geochronol. 5, 250–256 (2010).

    Article  Google Scholar 

  353. Liu, X. J. & Lai, Z. P. Optical dating of sand wedges and ice-wedge casts from Qinghai Lake area on the northeastern Qinghai–Tibetan Plateau and its palaeoenvironmental implications. Boreas 42, 333–341 (2013).

    Article  Google Scholar 

  354. Johnson, M. O. et al. Quantifying the rate and depth dependence of bioturbation based on optically-stimulated luminescence (OSL) dates and meteoric 10Be. Earth Surf. Process. Landf. 39, 1188–1196 (2014).

    Article  ADS  Google Scholar 

  355. Furbish, D. J. et al. Soil particle transport and mixing near a hillslope crest: 2. Cosmogenic nuclide and optically stimulated luminescence tracers. J. Geophys. Res. Earth Surf. 123, 1078–1093 (2018).

    Article  ADS  Google Scholar 

  356. Liu, J. F. et al. OSL and AMS dating of the penultimate earthquake at the Leigu Trench along the Beichuan Fault, Longmen Shan, in the northeast margin of the Tibetan Plateau. Bull. Seismol. Soc. Am. 100, 2681–2688 (2010).

    Article  Google Scholar 

  357. Yang, H. L., Chen, J., Thompson, J. A. & Liu, J. F. Optical dating of the 12 May 2008, Ms 8.0 Wenchuan earthquake-related sediments: tests of zeroing assumptions. Quat. Geochronol. 10, 273–279 (2012).

    Article  Google Scholar 

  358. Torabi, M., Fattahi, M., Amini, H., Ghassemi, M. R. & Karimi, N. OSL dating of landslide-dammed-lake deposits in the North of Tehran, Iran: 958 Ray-Taleghan/Ruyan earthquake. Quat. Int. 562, 46–57 (2020).

    Article  Google Scholar 

  359. Rizza, M. et al. Using luminescence dating of coarse matrix material to estimate the slip rate of the Astaneh fault, Iran. Quat. Geochronol. 6, 390–406 (2011).

    Article  Google Scholar 

  360. Chen, Y., Li, S.-H., Sun, J. & Fu, B. OSL dating of offset streams across the Altyn Tagh Fault: channel deflection, loess deposition and implication for the slip rate. Tectonophysics 594, 182–194 (2013).

    Article  ADS  Google Scholar 

  361. Gong, Z. J., Li, S.-H. & Li, B. Late Quaternary faulting on the Manas and Hutubi reverse faults in the northern foreland basin of Tian Shan, China. Earth Planet. Sci. Lett. 424, 212–225 (2015).

    Article  ADS  Google Scholar 

  362. Stockmeyer, J. M. et al. Active thrust sheet deformation over multiple rupture cycles: a quantitative basis for relating terrace folds to fault slip rates. Geol. Soc. Am. Bull. 129, 1337–1356 (2017).

    Google Scholar 

  363. Peltzer, G. et al. Stable rate of slip along the Karakax section of the Altyn Tagh Fault from observation of interglacial and postglacial offset morphology and surface dating. J. Geophys. Res. Solid. Earth 125, e2019JB018893 (2020).

    Article  ADS  Google Scholar 

  364. Sohbati, R., Borella, J., Murray, A., Quigley, M. & Buylaert, J.-P. Optical dating of loessic hillslope sediments constrains timing of prehistoric rockfalls, Christchurch, New Zealand. J. Quat. Sci. 31, 678–690 (2016).

    Article  Google Scholar 

  365. Preusser, F., Rufer, D. & Schreurs, G. Direct dating of Quaternary phreatic maar eruptions. Geology 39, 1135–1138 (2011).

    Article  ADS  Google Scholar 

  366. Rittenour, T. M., Riggs, N. R. & Kennedy, L. E. Application of single-grain OSL to quartz xenocrysts within a basalt flow, San Francisco volcanic field, northern Arizona, USA. Quat. Geochronol. 10, 300–307 (2012).

    Article  Google Scholar 

  367. Liu, Z., Zhao, H., Wang, C. M. & Li, S. H. Estimation of paleo-firing temperatures using luminescence signals for the volcanic lava baked layer in Datong, China. Quat. Geochronol. 30, 363–368 (2015).

    Article  Google Scholar 

  368. Froese, D. G. et al. Fossil and genomic evidence constrains the timing of bison arrival in North America. Proc. Natl Acad. Sci. USA 114, 3457–3462 (2017).

    Article  ADS  Google Scholar 

  369. Westgate, J. A. et al. Changing ideas on the identity and stratigraphic significance of the Sheep Creek tephra beds in Alaska and the Yukon Territory, northwestern North America. Quat. Int. 178, 183–209 (2008).

    Article  Google Scholar 

  370. Anechitei-Deacu, V., Timar-Gabor, A., Fitzsimmons, K. E., Veres, D. & Hambach, U. Multi-method luminescence investigations on quartz grains of different sizes extracted from a loess section in southeast Romania interbedding the campanian ignimbrite ash layer. Geochronometria 41, 1–14 (2014).

    Article  Google Scholar 

  371. Arnold, L. J., Demuro, M., Navazo Ruiz, M., Benito-Calvo, A. & Pérez-González, A. OSL dating of the Middle Palaeolithic Hotel California site, Sierra de Atapuerca, north-central Spain. Boreas 42, 285–305 (2013).

    Article  Google Scholar 

  372. Li, Z.-Y. et al. Late Pleistocene archaic human crania from Xuchang, China. Science 355, 969–972 (2017).

    Article  ADS  Google Scholar 

  373. Feathers, J. K., Rhodes, E. J., Huot, S. & Mcavoy, J. M. Luminescence dating of sand deposits related to late Pleistocene human occupation at the Cactus Hill Site, Virginia, USA. Quat. Geochronol. 1, 167–187 (2006).

    Article  Google Scholar 

  374. Méndez-Quintas, E. et al. First evidence of an extensive Acheulean large cutting tool accumulation in Europe from Porto Maior (Galicia, Spain). Sci. Rep. 8, 3082 (2018).

    Article  ADS  Google Scholar 

  375. Susino, G. J. Optical dating and microwaste — archaeological applications. Quat. Geochronol. 5, 306–310 (2010).

    Article  Google Scholar 

  376. Bate, S. et al. Pottery versus sediment: optically stimulated luminescence dating of the Neolithic Vinča culture, Serbia. Quat. Int. 429, 45–53 (2017).

    Article  Google Scholar 

  377. Bailiff, I. K. Methodological developments in the luminescence dating of brick from English late-medieval and post-medieval buildings. Archaeometry 49, 827–851 (2007).

    Article  Google Scholar 

  378. Urbanová, P. et al. A novel interdisciplinary approach for building archaeology: the integration of mortar “single grain” luminescence dating into archaeological research, the example of Saint Seurin Basilica, Bordeaux. J. Archaeol. Sci. Rep. 20, 307–323 (2018).

    Google Scholar 

  379. Feathers, J. K., Johnson, J. & Kembel, S. R. Luminescence dating of monumental stone architecture at Chavín de Huántar, Perú. J. Archaeol. Method. Theory 15, 266–296 (2008).

    Article  Google Scholar 

  380. Arnold, L. J. et al. Optical dating of perennially frozen deposits associated with preserved ancient plant and animal DNA in north-central Siberia. Quat. Geochronol. 3, 114–136 (2008).

    Article  Google Scholar 

  381. Fuchs, M. & Lang, A. Luminescence dating of hillslope deposits — a review. Geomorphology 109, 17–26 (2009).

    Article  ADS  Google Scholar 

  382. Guerrero, J. et al. Landslide-dam paleolakes in the central Pyrenees, Upper Gállego River Valley, NE Spain: timing and relationship with deglaciation. Landslides 15, 1975–1989 (2018).

    Article  Google Scholar 

  383. Völkel, J., Murray, A., Leopold, M. & Hürkamp, K. Colluvial filling of a glacial bypass channel near the Chiemsee (Stöttham) and its function as geoarchive. Z. für Geomorphologie 56, 371–386 (2012).

    Article  ADS  Google Scholar 

  384. Herman, F., Rhodes, E. J., Braun, J. & Heiniger, L. Uniform erosion rates and relief amplitude during glacial cycles in the Southern Alps of New Zealand, as revealed from OSL-thermochronology. Earth Planet. Sci. Lett. 297, 183–189 (2010).

    Article  ADS  Google Scholar 

  385. Guralnik, B. et al. OSL-thermochronometry using bedrock quartz: a note of caution. Quat. Geochronol. 25, 37–48 (2015).

    Article  Google Scholar 

  386. Vandenberghe, D., Derese, C. & Houbrechts, G. Residual doses in recent alluvial sediments from the Ardenne (S Belgium). Geochronometria 28, 1–8 (2007).

    Article  Google Scholar 

  387. Murray, A. S. & Funder, S. OSL dating of a Danish Eemian coastal marine deposit: a test of accuracy. Quat. Sci. Rev. 22, 1177–1183 (2003).

    Article  ADS  Google Scholar 

  388. Sanguino, J. & Montes, R. in Neandertales cantábricos, estado de la cuestión 489–504 (Museo de Altamira, 2005).

  389. Curry, C. W., Bennett, R. H., Hulbert, M. H., Curry, K. J. & Faas, R. W. Comparative study of sand porosity and a technique for determining porosity of undisturbed marine sediment. Mar. Georesources Geotechnol. 22, 231–252 (2004).

    Article  Google Scholar 

  390. Nelson, M. S. & Rittenour, T. M. Using grain-size characteristics to model soil water content: application to dose-rate calculation for luminescence dating. Radiat. Meas. 81, 142–149 (2015).

    Article  Google Scholar 

  391. Zimmerman, D. W. Thermoluminescent dating using fine grains from pottery. Archaeometry 13, 29–52 (1971).

    Article  Google Scholar 

  392. Lawson, M. J., Daniels, J. T. M. & Rhodes, E. J. Assessing optically stimulated luminescence (OSL) signal contamination within small aliquots and single grain measurements utilizing the composition test. Quat. Int. 362, 34–41 (2015).

    Article  Google Scholar 

  393. Antohi-Trandafir, O. et al. Luminescence properties of natural muscovite relevant to optical dating of contaminated quartz samples. Radiat. Meas. 109, 1–7 (2018).

    Article  Google Scholar 

  394. Banerjee, D., Murray, A. S., Bøtter-Jensen, L. & Lang, A. Equivalent dose estimation from a single aliquot of polymineral fine-grains. Radiat. Meas. 33, 73–93 (2001).

    Article  Google Scholar 

  395. Denby, P. M., Bøtter-Jensen, L., Murray, A. S. & Moska, P. Application of pulsed OSL to the separation of the luminescence components from a mixed quartz/feldspar sample. Radiat. Meas. 41, 774–779 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their useful suggestions, which certainly improved the manuscript. A.K.S. acknowledges the Science and Engineering Research Board (DST), India, for a Year of Science Chair Professorship. J.-P.B. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC-2014-StG 639904 — RELOS). G.G. received funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (ERC Grant agreement No. 851793 — QuinaWorld). J.Q. is funded by the National Natural Science Foundation of China (NSFC41671008).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.M., L.J.A., J.-P.B., G.G., J.Q., A.K.S., R.S. and K.J.T.); Experimentation (A.M., L.J.A., J.-P.B., G.G., J.Q., A.K.S., R.S. and K.J.T.); Results (A.M., L.J.A., J.-P.B., G.G., J.Q., A.K.S., R.S. and K.J.T.); Applications (A.M., L.J.A., J.-P.B., G.G., J.Q., A.K.S., R.S. and K.J.T.); Reproducibility and data deposition (A.M., L.J.A., J.-P.B., G.G., J.Q., A.K.S., R.S. and K.J.T.); Limitations and optimizations (A.M., L.J.A., J.-P.B., G.G., J.Q., A.K.S., R.S. and K.J.T.); Outlook (A.M., L.J.A., J.-P.B., G.G., J.Q., A.K.S., R.S. and K.J.T.); Overview of the Primer (A.M.).

Corresponding author

Correspondence to Andrew Murray.

Ethics declarations

Competing interests

K.J.T. and J.-P.B. are both employees of the Technical University of Denmark, a producer of luminescence dating instrumentation. The remaining authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Methods Primers thanks Ian Bailiff, Lily Bossin, James Feathers, Michelle Nelson and Eduardo Yukihara for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

BRITICE-CHRONO project: http://www.britice-chrono.group.shef.ac.uk/

INQUA Dunes Atlas: http://www.dri.edu/inquadunesatlas/

Lund/LBNL Nuclear Data Search: http://nucleardata.nuclear.lu.se/toi/

The National Nuclear Data Center: https://www.nndc.bnl.gov/nudat2/

Supplementary information

Glossary

Radiocarbon dating

A dating technique based on the decay of radiocarbon. Can only be applied to material of organic origin.

Cosmogenic radionuclide dating

Any one of several methods to date the length of exposure of minerals at the surface (or sometimes length of burial) using the build up or decay of radioactivity induced by cosmic rays.

Uranium-series dating

A dating method based on the change in concentration with time of members of the 238U decay series (particularly 230Th, 226Ra and 210Pb), from some initial disequilibrium towards secular equilibrium.

Argon–argon dating

(Or potassium–argon dating). A dating technique based on the decay of 40K to 40Ar.

Neolithic

The most recent division of the Stone Age (past ~12 thousand years ago (ka)), associated with the development of farming.

ka

(Thousands of years ago). Period of time in age in calendar years (a).

Quartz

The most common natural form of the compound SiO2, making up about 20% of the Earth’s crust.

Feldspar

A group of potassium-, sodium- and calcium-rich aluminosilicate minerals, making up ~40% of the Earth’s crust.

Reset

In the case of luminescence, set to zero or ‘bleached’.

Bleached

In the case of luminescence, set to zero or reset.

Thermoluminescence

The thermally stimulated luminescence signal observed when a sample is heated to evict stored charge from traps.

Optically stimulated luminescence

(OSL). The luminescence signal observed when stored charge is stimulated (evicted from traps) by visible or near-visible light.

Dose

The total amount of energy absorbed per unit mass from ionizing radiation (grays).

Dose rate

The rate of energy absorption from ionizing radiation during burial (grays per thousand years ago).

cal. BP

Calibrated radiocarbon age before present, that is, converted into calendar years (a) by calibration, and referred to AD 1950. As it indicates that the age was derived using radiocarbon, cal. BP should not be used for ages derived from other methods.

Crotovina

An animal burrow that has been back-filled with material from overlying sediments.

Sedimentological boundaries

Strictly, distinct breaks (unconformities) between bodies of sediment. Often used more informally to describe gradational boundaries.

γ-Ray

Ionizing radiation in the form of an energetic photon produced by nuclear decay.

Overburden

The material covering some geological feature of interest.

α-Particles

Ionizing radiation in the form of energetic helium nuclei produced by nuclear decay.

β-Particle

Ionizing radiation in the form of an energetic electron produced by nuclear decay.

Bq

(Becquerel). A nuclear disintegration per second.

Secular equilibrium

Where the production and decay rates of each nuclide in a decay chain are almost identical.

Gy

(Grays). The energy absorbed per unit mass from ionizing radiation: 1 Gy = 1 J kg−1.

Quantum efficiency

The ratio of the number of detected events to the number of incident photons in a photon detector such as a photomultiplier tube (PMT).

Full width at half maximum

A numerical description of the width of a peak in data or response.

Dark count rate

The count rate from a photon detector completely obscured from light (per second).

Half-life

The period of time taken for 50% of a particular radionuclide to undergo radioactive decay and change into another element (seconds). Often written as τ½.

D e

Equivalent dose. The laboratory dose that induces the same luminescence response as the natural dose (grays).

λ

The nuclide-specific probability of a nuclear decay (per second).

Fast component

The part of the optically stimulated luminescence (OSL) signal that decays most rapidly during stimulation.

D c

(Or Do). A constant used to describe the curvature of the luminescence response to the dose D, usually in an expression of the form Y = A [1– exp(–D/Dc)] where A is a constant describing the upper limit to Y (grays).

Central limits theorem

Theory stating that the sum of independent random variables tends towards a normal distribution, even when the original variables themselves are not normally distributed.

Single aliquot regenerative dose

(SAR). A single aliquot procedure for determining the equivalent dose De, based on resetting the luminescence signal to zero between each measurement of luminescence, whether resulting from natural or laboratory doses

Single aliquot added dose

A single aliquot procedure for determining the equivalent dose De, by adding doses to the natural dose and measuring the growth of the resulting luminescence signal.

Loess

Wind-blown dust, predominantly consisting of silt-sized (4–63 µm) grains.

Igneous rocks

Rocks formed by the solidification (crystallization) of magma or lava.

Primary rock

Any rock that formed by solidification (crystallization) from the melt.

Infrared stimulated luminescence

The luminescence signal observed when stored charge is stimulated (evicted from traps) by infrared light.

Arrhenius kinetics

If an electron escaping a trap has a minimum energy Ea, the rate of escape is \(A{{\rm{e}}}^{-\frac{{E}_{{\rm{a}}}}{{k}_{{\rm{B}}}T}}\). The ‘frequency factor’ A is interpreted as the number of escape attempts (per second) made by the electron, and \({{\rm{e}}}^{-\frac{{E}_{{\rm{a}}}}{{k}_{{\rm{B}}}T}}\) as the probability, at temperature T, that any attempt will result in escape. kB is Boltzmann’s constant.

Thresholds

In climate science, the points at which a small change in a physical or chemical parameter (such as global temperature) can lead to a tipping point in outcome and a shift to a new equilibrium state or range of average conditions (such as massive loss of global ice mass)

Leads and lags

In climate science, the difference in timing between changes in two correlated climate phenomena (for example, build up of global ice and changes in regional dust deposition).

Sand wedges

Cracks formed in frozen ground and then filled with sand; this preserves them in the sedimentary record.

Bioturbation

After initial deposition, the reworking of sediment by biota (plants, animals and so on).

Pedoturbation

After initial deposition, the reworking of sediment by the geochemical and biological processes of soil formation.

Cryoturbation

After initial deposition, the reworking of sediment by the freeze/thaw cycle.

Anthropocene

A proposed geological epoch covering the period of significant impact on Earth’s geology and ecosystems by humans.

Palaeosol

A fossil soil (that is, one no longer forming); usually found buried within a sequence of sedimentary units.

Middens

In archaeology, refuse piles of domestic waste.

Ejecta

Material thrown out by volcanic eruption.

Vadose zone

In a porous body (of sediment), the part lying between the ground surface and the water table.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, A., Arnold, L.J., Buylaert, JP. et al. Optically stimulated luminescence dating using quartz. Nat Rev Methods Primers 1, 72 (2021). https://doi.org/10.1038/s43586-021-00068-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-021-00068-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing