Abstract
Adaptive optics (AO) is a technique that corrects for optical aberrations. It was originally proposed to correct for the blurring effect of atmospheric turbulence on images in ground-based telescopes and was instrumental in the work that resulted in the Nobel prize-winning discovery of a supermassive compact object at the centre of our galaxy. When AO is used to correct for the eye’s imperfect optics, retinal changes at the cellular level can be detected, allowing us to study the operation of the visual system and to assess ocular health in the microscopic domain. By correcting for sample-induced blur in microscopy, AO has pushed the boundaries of imaging in thick tissue specimens, such as when observing neuronal processes in the brain. In this primer, we focus on the application of AO for high-resolution imaging in astronomy, vision science and microscopy. We begin with an overview of the general principles of AO and its main components, which include methods to measure the aberrations, devices for aberration correction, and how these components are linked in operation. We present results and applications from each field along with reproducibility considerations and limitations. Finally, we discuss future directions.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Contribution of Intravital Neuroimaging to Study Animal Models of Multiple Sclerosis
Neurotherapeutics Open Access 18 January 2023
-
Recent advances in optical imaging through deep tissue: imaging probes and techniques
Biomaterials Research Open Access 22 October 2022
-
Towards higher-dimensional structured light
Light: Science & Applications Open Access 05 July 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$99.00 per year
only $99.00 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout












References
Booth, M. J. Adaptive optical microscopy: the ongoing quest for a perfect image. Light. Sci. Appl. 3, e165 (2014).
Ji, N. Adaptive optical fluorescence microscopy. Nat. Methods 14, 374–380 (2017).
Beckers, J. M. Adaptive optics for astronomy: principles, performance, and applications. Annu. Rev. Astron. Astr. 31, 13–62 (1993).
Porter, J., Queener, H. M., Lin, J. E., Thorn, K. & Awwal, A. Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, 2006).
Kubby, J., Gigan, S. & Cui, M. Adaptive Optical Microscopy for Biological Imaging (Cambridge Univ. Press, 2019).
Roddier, F. Adaptive Optics in Astronomy (Cambridge Univ. Press, 1999).
Davies, R. & Kasper, M. Adaptive optics for astronomy. Annu. Rev. Astron. Astr. 50, 305–351 (2012).
Ji, N., Sato, T. R. & Betzig, E. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc. Natl Acad. Sci. USA 109, 22–27 (2012).
Liu, R., Li, Z., Marvin, J. S. & Kleinfeld, D. Direct wavefront sensing enables functional imaging of infragranular axons and spines. Nat. Methods 16, 615–618 (2019).
Miller, D. T. & Kurokawa, K. Cellular scale imaging of transparent retinal structures and processes using adaptive optics optical coherence tomography. Annu. Rev. Vis. Sci. 6, 115–148 (2020).
Burns, S. A., Elsner, A. E., Sapoznik, K. A., Warner, R. L. & Gast, T. J. Adaptive optics imaging of the human retina. Prog. Retin. Eye Res. 68, 1–30 (2019).
Georgiou, M. et al. Adaptive optics imaging of inherited retinal diseases. Brit. J. Ophthalmol. 102, 1028 (2018).
Roorda, A. & Duncan, J. L. Adaptive optics ophthalmoscopy. Annu. Rev. Vis. Sci. 1, 1–32 (2014).
Gill, J. S., Moosajee, M. & Dubis, A. M. Cellular imaging of inherited retinal diseases using adaptive optics. Eye 33, 1683–1698 (2019).
Babcock, H. W. The possibility of compensating astronomical seeing. Publ. Astron. Soc. Pac. 65, 229 (1953).
Tyson, R. K. Principles of Adaptive Optics (CRC Press, 2015).
Vangindertael, J. et al. An introduction to optical super-resolution microscopy for the adventurous biologist. Methods Appl. Fluores. 6, 022003 (2018).
Dai, Y. et al. Active compensation of extrinsic polarization errors using adaptive optics. Opt. Express 27, 35797–35810 (2019).
He, C., Hu, Q., Dai, Y. & Booth, M. J. Vectorial adaptive optics - correction of polarization and phase. in Adaptive Optics and Wavefront Control for Biological Systems VI Vol. 11248 1124808 (OSA Publishing, 2020).
Felberer, F., Kroisamer, J.-S., Hitzenberger, C. K. & Pircher, M. Lens based adaptive optics scanning laser ophthalmoscope. Opt. Express 20, 17297–17310 (2012).
Liu, Z., Kocaoglu, O. P. & Miller, D. T. In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors. Biomed. Opt. Express 4, 3007–3029 (2013).
Young, L. K., Morris, T. J., Saunter, C. D. & Smithson, H. E. Compact, modular and in-plane AOSLO for high-resolution retinal imaging. Biomed. Opt. Express 9, 4275–4293 (2018).
Thaung, J., Knutsson, P., Popovic, Z. & Owner-Petersen, M. Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging. Opt. Express 17, 4454–4467 (2009).
Hampson, K. M. et al. Closed-loop multiconjugate adaptive optics for microscopy. in Adaptive Optics and Wavefront Control for Biological Systems VI Vol. 11248 1124809 (OSA Publishing, 2020).
Rigaut, F. & Neichel, B. Multiconjugate adaptive optics for astronomy. Annu. Rev. Astron. Astr. 56, 277–314 (2018).
Hardy, J. W. Adaptive Optics for Astronomical Telescopes (Oxford Univ. Press, 1998).
Bedggood, P., Daaboul, M., Ashman, R., Smith, G. & Metha, A. Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging. J. Biomed. Opt. 13, 024008 (2008).
Wang, K. et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat. Commun. 6, 7276 (2015).
Wang, C. et al. Multiplexed aberration measurement for deep tissue imaging in vivo. Nat. Methods 11, 1037–1040 (2014).
Wang, K. et al. Rapid adaptive optical recovery of optimal resolution over large volumes. Nat. Methods 11, 625–628 (2014).
Lin, R., Kipreos, E. T., Zhu, J., Khang, C. H. & Kner, P. Subcellular three-dimensional imaging deep through multicellular thick samples by structured illumination microscopy and adaptive optics. Nat. Comm. 12, 3148 (2021).
Mertz, J., Paudel, H. & Bifano, T. G. Field of view advantage of conjugate adaptive optics in microscopy applications. Appl. Opt. 54, 3498–3506 (2015).
Wilson, R. N., Franza, F. & Noethe, L. Adaptive optics: I. A system for optimizing the optical quality and reducing the costs of large telescopes. J. Mod. Opt. 34, 485–509 (1987).
Lakshminarayanan, V. & Fleck, A. Zernike polynomials: a guide. J. Mod. Optic. 58, 1678–1678 (2011).
Noll, R. J. Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 66, 207–210 (1976).
Hampson, K., Antonello, J., Lane, R. & Booth, M. Sensorless adaptive optics. Zenodo https://doi.org/10.5281/zenodo.4066425 (2020).
Thibos, L. N. et al. Standards for reporting the optical aberrations of eyes. J. Refract. Surg. 18, S652–S660 (2002).
Kolmogorov, A. N. Dissipation of energy in the locally isotropic turbulence. Proc. R. Soc. Lond. Math. Phys. Sci. 434, 15–17 (1991).
Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. Lond. Math. Phys. Sci. 434, 9–13 (1991).
Thibos, L. N., Hong, X., Bradley, A. & Cheng, X. Statistical variation of aberration structure and image quality in a normal population of healthy eyes. J. Opt. Soc. Am. A 19, 2329 (2002).
Devaney, N. et al. Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors. Appl. Opt. 47, 6550 (2008).
Cantalloube, F. et al. Wind-driven halo in high-contrast images. Astron. Astrophys. 638, A98 (2020).
Males, J. R. & Guyon, O. Ground-based adaptive optics coronagraphic performance under closed-loop predictive control. J. Astron. Telesc. Instrum. Syst. 4, 019001 (2018).
Conan, J.-M., Rousset, G. & Madec, P.-Y. Wave-front temporal spectra in high-resolution imaging through turbulence. J. Opt. Soc. Am. A 12, 1559–1570 (1995).
Roddier, F., Roddier, D., Northcott, M. J., Graves, J. E. & McKenna, D. L. One-dimensional spectra of turbulence-induced Zernike aberrations: time-delay and isoplanicity error in partial adaptive compensation. J. Opt. Soc. Am. A 10, 957–965 (1993).
Salmon, T. O. & van de Pol, C. Normal-eye Zernike coefficients and root-mean-square wavefront errors. J. Cataract. Refract. Surg. 32, 2064–2074 (2006).
Hofer, H., Artal, P., Singer, B., Aragón, J. L. & Williams, D. R. Dynamics of the eye’s wave aberration. J. Opt. Soc. Am. A 18, 497 (2001).
Diaz-Santana, L., Torti, C., Munro, I., Gasson, P. & Dainty, C. Benefit of higher closed-loop bandwidths in ocular adaptive optics. Opt. Express 11, 2597–2605 (2003).
Jarosz, J. et al. High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget. Biomed. Opt. Express 8, 2088–2105 (2017).
Schmitt, J. M. & Kumar, G. Turbulent nature of refractive-index variations in biological tissue. Opt. Lett. 21, 1310–1312 (1996).
Porter, J., Guirao, A., Cox, I. G. & Williams, D. R. Monochromatic aberrations of the human eye in a large population. J. Opt. Soc. Am. A 18, 1793–1803 (2001).
Verstraete, H. R. G. W. et al. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited]. Biomed. Opt. Express 8, 2261–2275 (2017).
Shack, R. V. & Platt, B. C. Production and use of a lenticular Hartmann screen. J. Opt. Soc. Am. 61, 656–660 (1971).
Thomas, S. et al. Comparison of centroid computation algorithms in a Shack–Hartmann sensor. Mon. Not. R. Astron. Soc. 371, 323–336 (2006).
Geng, Y. et al. Optical properties of the mouse eye. Biomed. Opt. Express 2, 717–738 (2011).
Akondi, V. & Dubra, A. Multi-layer Shack-Hartmann wavefront sensing in the point source regime. Biomed. Opt. Express 12, 409–432 (2021).
Rahman, S. A. & Booth, M. J. Direct wavefront sensing in adaptive optical microscopy using backscattered light. Appl. Opt. 52, 5523–5532 (2013).
Poyneer, L. A. Scene-based Shack-Hartmann wave-front sensing: analysis and simulation. Appl. Opt. 42, 5807–5815 (2003).
Ashida, Y. et al. Imaging performance of microscopy adaptive-optics system using scene-based wavefront sensing. J. Biomed. Opt. 25, 123707 (2020).
Tatulli, E. & Ramaprakash, A. N. Laser tomography adaptive optics: a performance study. J. Opt. Soc. Am. A 30, 2482 (2013).
Laslandes, M., Salas, M., Hitzenberger, C. K. & Pircher, M. Influence of wave-front sampling in adaptive optics retinal imaging. Biomed. Opt. Express 8, 1183–1200 (2017).
Ragazzoni, R. Pupil plane wavefront sensing with an oscillating prism. J. Mod. Opt. 43, 289–293 (1996).
Engler, B., Weddell, S. & Clare, R. Wavefront sensing with prisms for astronomical imaging with adaptive optics. in 2017 International Conference on Image and Vision Computing New Zealand 1–7 (IEEE, 2017).
Chamot, S. R., Dainty, C. & Esposito, S. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor. Opt. Express 14, 518–526 (2006).
Iglesias, I. Pyramid phase microscopy. Opt. Lett. 36, 3636–3638 (2011).
Berto, P., Rigneault, H. & Guillon, M. Wavefront sensing with a thin diffuser. Opt. Lett. 42, 5117–5120 (2017).
Nishizaki, Y. et al. Deep learning wavefront sensing. Opt. Express 27, 240–251 (2019).
Antonello, J., Barbotin, A., Chong, E. Z., Rittscher, J. & Booth, M. J. Multi-scale sensorless adaptive optics: application to stimulated emission depletion microscopy. Opt. Express 28, 16749–16763 (2020).
Facomprez, A., Beaurepaire, E. & Débarre, D. Accuracy of correction in modal sensorless adaptive optics. Opt. Express 20, 2598–2612 (2012).
Ji, N., Milkie, D. E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods 7, 141–147 (2009).
Milkie, D. E., Betzig, E. & Ji, N. Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination. Opt. Lett. 36, 4206–4208 (2011).
Gonsalves, R. A. Phase retrieval and diversity in adaptive optics. Opt. Eng. 21, 215829 (1982).
Turcotte, R. et al. Dynamic super-resolution structured illumination imaging in the living brain. Proc. Natl Acad. Sci. USA 116, 9586–9591 (2019).
Sauvage, J.-F., Fusco, T., Rousset, G. & Petit, C. Calibration and precompensation of noncommon path aberrations for extreme adaptive optics. J. Opt. Soc. Am. A 24, 2334–2346 (2007).
Maurer, C., Jesacher, A., Bernet, S. & Ritsch-Marte, M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev. 5, 81–101 (2011).
Bonora, S. et al. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens. Opt. Express 23, 21931–21941 (2015).
Banerjee, K., Rajaeipour, P., Ataman, Ç. & Zappe, H. Optofluidic adaptive optics. Appl. Opt. 57, 6338–6344 (2018).
Doble, N., Miller, D. T., Yoon, G. & Williams, D. R. Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes. Appl. Opt. 46, 4501–4514 (2007).
Guyon, O. Extreme adaptive optics. Annu. Rev. Astron. Astr. 56, 315–355 (2018).
Duffner, R. W. The Adaptive Optics Revolution: A History (Univ. New Mexico Press, 2009).
Wizinowich, P. et al. First light adaptive optics images from the Keck II telescope: a new era of high angular resolution imagery. Publ. Astron. Soc. Pac. 112, 315–319 (2000).
Lenzen, R. et al. NAOS-CONICA first on sky results in a variety of observing modes. in Instrument Design and Performance for Optical/Infrared Ground-based Telescopes Vol. 4841 944–952 (SPIE, 2003).
Rousset, G. et al. NAOS, the first AO system of the VLT: on-sky performance. Adaptive Optics Systems Technology II 4839, 140–149 (2003).
Wizinowich, P. L. et al. The W. M. Keck observatory laser guide star adaptive optics system: overview. Publ. Astron. Soc. Pac. 118, 297–309 (2006).
Johansson, E. M. et al. Upgrading the Keck AO wavefront controllers. in Adaptive Optics Systems Vol. 7015 70153E (SPIE, 2008).
van Dam, M. A. et al. The W. M. Keck observatory laser guide star adaptive optics system: performance characterization. Publ. Astron. Soc. Pac. 118, 310–318 (2006).
Mawet, D. et al. Keck Planet Imager and Characterizer: concept and phased implementation. in Adaptive Optics Systems V Vol. 9909 99090D (SPIE, 2016).
Plantet, C. et al. Adaptive optics with an infrared pyramid wavefront sensor at Keck. J. Astron. Telesc. Instruments Syst. 6, 039003 (2020).
Ragazzoni, R. & Farinato, J. Sensitivity of a pyramidic wave front sensor in closed loop adaptive optics. Astron. Astrophys. 350, L23–L26 (1999).
Vérinaud, C. On the nature of the measurements provided by a pyramid wave-front sensor. Opt. Commun. 233, 27–38 (2004).
Close, L. M. et al. Diffraction-limited visible light images of orion trapezium cluster with the magellan adaptive secondary AO system (MagAO). Astrophys. J. 774, 94 (2013).
Wall, M. New telescope tech takes sharpest night sky photos ever. Space https://www.space.com/22467-telescope-takes-sharpest-night-sky-images.html (2021).
d’Orgeville, C. et al. Gemini South multi-conjugate adaptive optics (GeMS) laser guide star facility on-sky performance results. in Adaptive Optics Systems III Vol. 8447 84471Q (SPIE, 2012).
Schmidt, D., Rimmele, T., Marino, J. & Wöger, F. A review of solar adaptive optics. in Adaptive Optics Systems V Vol. 9909 99090X (SPIE, 2016).
Johnson, L. C. et al. First light with adaptive optics: the performance of the DKIST high-order adaptive optics. in Adaptive Optics Systems VII Vol. 11448 114480T (SPIE, 2020).
Collins, G. P. Making stars to see stars: DOD adaptive optics work is declassified. Phys. Today 45, 17–21 (1992).
Fugate, R. Q. The Starfire Optical Range 3.5-m adaptive optical telescope. in Large Ground-based Telescopes Vol. 4837 934–943 (SPIE, 2003).
Liang, J., Williams, D. R. & Miller, D. T. Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. 14, 2884–2892 (1997).
Hunter, J. J., Merigan, W. H. & Schallek, J. B. Imaging retinal activity in the living eye. Annu. Rev. Vis. Sci. 5, 15–45 (2019).
Paques, M. et al. Adaptive optics ophthalmoscopy: Application to age-related macular degeneration and vascular diseases. Prog. Retin. Eye Res. 66, 1–16 (2018).
Hampson, K. M. Introduction to Adaptive Optics for Vision Science (CRC Press, in the press).
Kocaoglu, O. P., Turner, T. L., Liu, Z. & Miller, D. T. Adaptive optics optical coherence tomography at 1 MHz. Biomed. Opt. Express 5, 4186–4200 (2014).
Liu, Y. et al. High-speed adaptive optics for imaging the living human eye with optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 61, 222 (2020).
Gofas-Salas, E. et al. High loop rate adaptive optics flood illumination ophthalmoscope with structured illumination capability. Appl. Opt. 57, 5635–5642 (2018).
Marcos, S. et al. Vision science and adaptive optics, the state of the field. Vis. Res. 132, 3–33 (2017).
Li, K. Y., Mishra, S., Tiruveedhula, P. & Roorda, A. Comparison of control algorithms for a MEMS-based adaptive optics scanning laser ophthalmoscope. Proc. Am. Control. Conf. https://doi.org/10.1109/ACC.2009.5159832 (2009).
Jonnal, R. S. CIAO: community inspired adaptive optics. Zenodo https://doi.org/10.5281/zenodo.3903941 (2020).
ALPAO. ALPAO Core Engine. ALPAO https://www.alpao.com/adaptive-optics/ao-softwares.html (2020).
Imagine Eyes. WaveTuneTM. Imagine Eyes https://www.imagine-eyes.com/products/aokit/ (2020).
Imagine Eyes. RTX1 Adaptive Optics Retinal Camera. Imagine Eyes https://www.imagine-eyes.com/products/rtx1/ (2020).
Boston Micromachines Corporation. The ApaerosTM AOSLO. Boston Micromachines Corporation https://bostonmicromachines.com/retinal-imaging/ (2020).
Physical Sciences Inc. Compact Adaptive Optics Retinal Imager. Physical Sciences Inc. http://www.psicorp.com/products/laser-based-sensors/compact-adaptive-optics-retinal-imager-caori (2020).
Booth, M. J., Neil, M. A. A., Juškaitis, R. & Wilson, T. Adaptive aberration correction in a confocal microscope. Proc. Natl Acad. Sci. USA 99, 5788–5792 (2002).
Booth, M., Andrade, D., Burke, D., Patton, B. & Zurauskas, M. Aberrations and adaptive optics in super-resolution microscopy. Microscopy 64, 251–261 (2015).
Denk, W., Strickler, J. & Webb, W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).
Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).
Liu, T.-L. et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 (2018).
Burke, D., Patton, B., Huang, F., Bewersdorf, J. & Booth, M. J. Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy. Optica 2, 177–185 (2015).
Melia, F. & Falcke, H. The supermassive black hole at the galactic center. Annu. Rev. Astron. Astr. 39, 309–352 (2001).
Genzel, R. et al. The stellar cusp around the supermassive black hole in the galactic center. Astrophys. J. 594, 812–832 (2003).
Ghez, A. M. et al. The first laser guide star adaptive optics observations of the Galactic Center: Sgr A*’s infrared color and the extended red emission in its vicinity. Astrophys. J. 635, 1087–1094 (2005).
Ghez, A. M. et al. Measuring distance and properties of the milky way’s central supermassive black hole with stellar orbits. Astrophys. J. 689, 1044–1062 (2008).
Gezari, S. et al. Adaptive optics near-infrared spectroscopy of the sagittarius A* cluster. Astrophys. J. 576, 790–797 (2002).
Eisenhauer, F. et al. SINFONI in the galactic center: young stars and infrared flares in the central light-month. Astron. J. 628, 246–259 (2005).
Collaboration, G. et al. First light for GRAVITY: phase referencing optical interferometry for the very large telescope interferometer. Astron. Astrophys. 602, A94 (2017).
Collaboration, G. et al. Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 615, L15 (2018).
Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995).
Bowler, B. P. Imaging extrasolar giant planets. Publ. Astron. Soc. Pac. 128, 102001 (2016).
Milli, J. et al. Near-infrared scattered light properties of the HR 4796 A dust ring. A measured scattering phase function from 13.6° to 166.6°. Astron. Astrophys. 599, A108 (2017).
Macintosh, B. et al. First light of the gemini planet imager. Proc. Natl Acad. Sci. USA 111, 12661–12666 (2014).
Chauvin, G. et al. A giant planet candidate near a young brown dwarf: direct VLT/NACO observations using IR wavefront sensing. Astron. Astrophys. 425, L29–L32 (2004).
Marois, C. et al. Direct Imaging of multiple planets orbiting the star HR 8799. Science 322, 1348–1352 (2008).
Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B. & Barman, T. Images of a fourth planet orbiting HR 8799. Nature 468, 1080–1083 (2010).
Lagrange, A.-M. et al. A probable giant planet imaged in the β Pictoris disk: VLT/NaCo deep L’-band imaging. Astron. Astrophys. 493, L21–L25 (2008).
Lagrange, A.-M. et al. A giant planet imaged in the disk of the young star beta Pictoris. Science 329, 57–59 (2010).
Bonnefoy, M. et al. High angular resolution detection of β Pictoris b at 2.18 μm. Astron. Astrophys. 528, L15 (2011).
Males, J. R. et al. Magellan adaptive optics first-light observations of the exoplanet β pic b. I. direct imaging in the far-red optical with MagAO + VisAO and in the near-ir with nici. Astrophys. J. 786, 32 (2014).
Baudino, J.-L. et al. Interpreting the photometry and spectroscopy of directly imaged planets: a new atmospheric model applied to β Pictoris b and SPHERE observations. Astron. Astrophys. 582, A83 (2015).
Morzinski, K. M. et al. Magellan Adaptive Optics first-light observations of the exoplanet beta Pic b. II. 3-5 micron direct imaging with MagAO + Clio, and the empirical bolometric luminosity of a self-luminous giant planet. Astrophys. J. 815, 108 (2015).
Chilcote, J. et al. 1–2.4 μm Near-IR spectrum of the giant planet β pictoris b obtained with the gemini planet imager. Astrophys. J. 153, 182 (2017).
Nielsen, E. L. et al. The gemini planet imager exoplanet survey: dynamical mass of the exoplanet β pictoris b from combined direct imaging and astrometry. Astrophys. J. 159, 71 (2020).
Bowler, B. P., Liu, M. C., Dupuy, T. J. & Cushing, M. C. Near-infrared spectroscopy of the extrasolar planet HR 8799 b. Astrophys. J. 723, 850 (2010).
Currie, T. et al. A combined Subaru/VLT/MMT 1–5 μm study of planets orbiting HR 8799: Implications for atmospheric properties, masses, and formation. Astrophys. J. 729, 128 (2011).
Ingraham, P. et al. Gemini planet imager spectroscopy of the HR 8799 planets c and d. Astrophys. J. 794, L15 (2014).
Skemer, A. J. et al. Directly imaged LT transition exoplanets in the mid-infrared. Astrophys. J. 792, 17 (2014).
Barman, T. S., Konopacky, Q. M., Macintosh, B. & Marois, C. Simultaneous detection of water, methane, and carbon monoxide in the atmosphere of exoplanet hr 8799 b. Astrophys. J. 804, 61 (2015).
Wang, J. J. et al. Dynamical constraints on the HR 8799 planets with GPI. Astrophys. J. 156, 192 (2018).
Rameau, J. et al. Discovery of a probable 4-5 Jupiter-mass exoplanet to HD 95086 by direct-imaging. Astrophys. J. Lett. 772, L15 (2013).
Bailey, V. et al. HD 106906 b: A planetary-mass companion outside a massive debris disk. Astrophys. J. 780, L4 (2013).
Macintosh, B. et al. Discovery and spectroscopy of the young jovian planet 51 Eri b with the gemini planet imager. Science 350, 64–67 (2015).
Keppler, M. et al. Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70. Astron. Astrophys. 617, A44 (2018).
Haffert, S. Y. et al. Two accreting protoplanets around the young star PDS 70. Nat. Astron. 3, 749–754 (2019).
Stone, J. M. et al. The LEECH exoplanet imaging survey: limits on planet occurrence rates under conservative assumptions. Astrophys. J. 156, 286 (2018).
Nielsen, E. L. et al. The gemini planet imager exoplanet survey: giant planet and brown dwarf demographics from 10 to 100 au. Astrophys. J. 158, 13 (2019).
Chen, C. et al. Multiband GPI imaging of the HR 4796A debris disk. Astrophys. J. 898, 55 (2020).
Jovanovic, N. et al. The subaru coronagraphic extreme adaptive optics system: enabling high-contrast imaging on solar-system scales. Publ. Astron. Soc. Pac. 127, 890–910 (2015).
Males, J. R. et al. MagAO-X: project status and first laboratory results. in Adaptive Optics Systems VI Vol. 10703 1070309 (SPIE, 2018).
Roorda, A. & Williams, D. R. The arrangement of the three cone classes in the living human eye. Nature 397, 520–522 (1999).
Laforest, T. et al. Transscleral optical phase imaging of the human retina. Nat. Photonics 14, 439–445 (2020).
Tam, J., Tiruveedhula, P. & Roorda, A. Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope. Biomed. Opt. Express 2, 781–793 (2011).
Mo, S. et al. Imaging foveal microvasculature: optical coherence tomography angiography versus adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest. Ophth. Vis. Sci. 57, OCT130–OCT40 (2016).
Cunefare, D. et al. RAC-CNN: multimodal deep learning based automatic detection and classification of rod and cone photoreceptors in adaptive optics scanning light ophthalmoscope images. Biomed. Opt. Express 10, 3815–3832 (2019).
Ivers, K. M. et al. In vivo changes in lamina cribrosa microarchitecture and optic nerve head structure in early experimental glaucoma. PLoS ONE 10, e0134223 (2015).
Burns, S. A. et al. In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed. Opt. Express 5, 961–974 (2014).
Zhang, F. et al. Revealing how color vision phenotype and genotype manifest in individual cone cells. Investig. Ophthalmol. Vis. Sci. 62, 8 (2021).
Bedggood, P. & Metha, A. Mapping flow velocity in the human retinal capillary network with pixel intensity cross correlation. PLoS ONE 14, e0218918 (2019).
Bek, T. Fine structure in diabetic retinopathy lesions as observed by adaptive optics imaging. A qualitative study. Acta Ophthalmol. 92, 753–758 (2014).
Bedggood, P. & Metha, A. Direct visualization and characterization of erythrocyte flow in human retinal capillaries. Biomed. Opt. Express 3, 3264–3277 (2012).
Rha, J. et al. Adaptive optics flood-illumination camera for high speed retinal imaging. Opt. Express 14, 4552–4569 (2006).
Rossi, E. A. et al. Imaging individual neurons in the retinal ganglion cell layer of the living eye. Proc. Natl Acad. Sci. USA 114, 586–591 (2017).
Guevara-Torres, A., Joseph, A. & Schallek, J. B. Label free measurement of retinal blood cell flux, velocity, hematocrit and capillary width in the living mouse eye. Biomed. Opt. Express 7, 4228–4249 (2016).
Guevara-Torres, A., Williams, D. R. & Schallek, J. B. Imaging translucent cell bodies in the living mouse retina without contrast agents. Biomed. Opt. Express 6, 2106–2119 (2015).
Scoles, D., Sulai, Y. N. & Dubra, A. In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. Biomed. Opt. Express 4, 1710–23 (2013).
Qin, Z. et al. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo. Light Sci. Appl. 9, 79 (2020).
Cua, M. et al. Coherence-gated sensorless adaptive optics multiphoton retinal imaging. Sci. Rep. 6, 32223 (2016).
Sharma, R., Williams, D. R., Palczewska, G., Palczewski, K. & Hunter, J. J. Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye. Invest. Ophth. Vis. Sci. 57, 632–46 (2016).
Yin, L. et al. Imaging light responses of retinal ganglion cells in the living mouse eye. J. Neurophysiol. 109, 2415–2421 (2013).
Yin, L. et al. Imaging light responses of foveal ganglion cells in the living macaque eye. J. Neurosci. 34, 6596–6605 (2014).
Zawadzki, R. J. et al. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina. Biomed. Opt. Express 6, 2191–2210 (2015).
Jung, H., Liu, T., Liu, J., Huryn, L. A. & Tam, J. Combining multimodal adaptive optics imaging and angiography improves visualization of human eyes with cellular-level resolution. Commun. Biol. 1, 189 (2018).
Morgan, J. I. W., Dubra, A., Wolfe, R., Merigan, W. H. & Williams, D. R. In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. Invest. Ophth. Vis. Sci. 50, 1350 (2009).
Rossi, E. A. et al. In vivo imaging of retinal pigment epithelium cells in age related macular degeneration. Biomed. Opt. Express 4, 2527–2539 (2013).
Xu, X. et al. Retinal pigment epithelium degeneration associated with subretinal drusenoid deposits in age-related macular degeneration. Am. J. Ophthalmol. 175, 87–98 (2017).
Takayama, K. et al. High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy. PLoS ONE 7, e33158 (2012).
Huang, G. et al. Imaging glaucomatous damage across the temporal raphe. Invest. Ophth. Vis. Sci. 56, 3496–504 (2015).
Jonnal, R. S. et al. A Review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future. Invest. Ophth. Vis. Sci. 57, OCT51–OCT68 (2016).
Pircher, M. & Zawadzki, R. J. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited]. Biomed. Opt. Express 8, 2536–2562 (2017).
Zdankowski, P., McGloin, D. & Swedlow, J. R. Full volume super-resolution imaging of thick mitotic spindle using 3D AO STED microscope. Biomed. Opt. Express 10, 1999–2009 (2019).
Patton, B. R. et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. Opt. Express 24, 8862 (2016).
Huang, F. et al. Ultra-high resolution 3D imaging of whole cells. Cell 166, 1028–1040 (2016).
Turcotte, R., Liang, Y. & Ji, N. Adaptive optical versus spherical aberration corrections for in vivo brain imaging. Biomed. Opt. Express 8, 3891–3902 (2017).
Sun, W., Tan, Z., Mensh, B. D. & Ji, N. Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs. Nat. Neurosci. 19, 308–315 (2015).
Li, K. Y., Tiruveedhula, P. & Roorda, A. Intersubject variability of foveal cone photoreceptor density in relation to eye length. Invest. Ophth. Vis. Sci. 51, 6858–6867 (2010).
Song, H., Chui, T. Y. P., Zhong, Z., Elsner, A. E. & Burns, S. A. Variation of cone photoreceptor packing density with retinal eccentricity and age. Invest. Ophth. Vis. Sci. 52, 7376–7384 (2011).
Wang, Y. et al. Human foveal cone photoreceptor topography and its dependence on eye length. eLife 8, e47148 (2019).
Curcio, C. A., Sloan, K. R., Kalina, R. E. & Hendrickson, A. E. Human photoreceptor topography. J. Comp. Neurol. 292, 497–523 (1990).
Bedggood, P. A., Ashman, R., Smith, G. & Metha, A. B. Multiconjugate adaptive optics applied to an anatomically accurate human eye model. Opt. Express 14, 8019–8030 (2006).
Laslandes, M., Salas, M., Hitzenberger, C. K. & Pircher, M. Increasing the field of view of adaptive optics scanning laser ophthalmoscopy. Biomed. Opt. Express 8, 4811–4826 (2017).
Zawadzki, R. J. et al. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction. Opt. Express 16, 8126–8143 (2008).
Laser Institute of America. American National Standard for Safe Use of Lasers (2014).
Sredar, N., Fagbemi, O. E. & Dubra, A. Sub-airy confocal adaptive optics scanning ophthalmoscopy. Transl. Vis. Sci. Technol. 7, 17 (2018).
Shroff, S. A., Fienup, J. R. & Williams, D. R. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution. J. Opt. Soc. Am. A 26, 413–424 (2009).
DuBose, T. B., LaRocca, F., Farsiu, S. & Izatt, J. A. Super-resolution retinal imaging using optically reassigned scanning laser ophthalmoscopy. Nat. Photonics 13, 257–262 (2019).
Paudel, H. P., Taranto, J., Mertz, J. & Bifano, T. Axial range of conjugate adaptive optics in two-photon microscopy. Opt. Express 23, 20849–20857 (2015).
Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics 9, 563–571 (2015).
Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283–292 (2012).
Yoon, S. et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2, 141–158 (2020).
McCarthy, P. J. et al. Overview and status of the giant magellan telescope project. in Ground-based and Airborne Telescopes VII Vol. 10700 1070012 (SPIE, 2018).
Skidmore, W., Anupama, G. C. & Srianand, R. The Thirty Meter Telescope International Observatory facilitating transformative astrophysical science. Curr. Sci. 113, 639–648 (2017).
Marchiori, G., Rampini, F., Ghedin, L. & Bressan, R. ELT design status: the most powerful ground telescope. in Ground-based and Airborne Telescopes VII Vol. 10700 1070021 (SPIE, 2018).
Vernet, E. et al. Adaptive optics at the ESO ELT. in Adaptive Optics Systems VI Vol. 10703 1070310 (SPIE, 2018).
Crane, J. et al. NFIRAOS adaptive optics for the thirty meter telescope. in Adaptive Optics Systems VI Vol. 10703 107033V (SPIE, 2018).
Bouchez, A. H. et al. An overview and status of GMT active and adaptive optics. in Adaptive Optics Systems VI Vol. 10703 107030W (SPIE, 2018).
Cunefare, D. et al. Deep learning based detection of cone photoreceptors with multimodal adaptive optics scanning light ophthalmoscope images of achromatopsia. Biomed. Opt. Express 9, 3740–3756 (2018).
Kyono, T. et al. Machine learning for quality assessment of ground-based optical images of satellites. Opt. Eng. 59, 051403 (2020).
Cumming, B. P. & Gu, M. Direct determination of aberration functions in microscopy by an artificial neural network. Opt. Express 28, 14511–14521 (2020).
Saha, D. et al. Practical sensorless aberration estimation for 3D microscopy with deep learning. Opt. Express 28, 29044 (2020).
Andersen, T., Owner-Petersen, M. & Enmark, A. Image-based wavefront sensing for astronomy using neural networks. J. Astron. Telesc. Instrum. Syst. 6, 1 (2020).
Kam, Z., Hanser, B., Gustafsson, M. G. L., Agard, D. A. & Sedat, J. W. Computational adaptive optics for live three-dimensional biological imaging. Proc. Natl Acad. Sci. USA. 98, 3790–3795 (2001).
Iyer, R. R., Liu, Y.-Z. & Boppart, S. A. Automated sensorless single-shot closed-loop adaptive optics microscopy with feedback from computational adaptive optics. Opt. Express 27, 12998–13014 (2019).
Kner, P. Phase diversity for three-dimensional imaging. J. Opt. Soc. Am. 30, 1980 (2013).
Tyson, R. K. Adaptive optics and ground-to-space laser communications. Appl. Opt. 35, 3640–3646 (1996).
Chang, H. et al. Performance analysis of adaptive optics with a phase retrieval algorithm in orbital-angular-momentum-based oceanic turbulence links. Appl. Opt. 58, 6085–6090 (2019).
Salter, P. S. & Booth, M. J. Adaptive optics in laser processing. Light Sci. Appl. 8, 110 (2019).
Lubeigt, W., Grol, P. van, Valentine, G. & Burns, D. Use of intracavity adaptive optics in solid-state lasers operation at 1 µm. in Adaptive Optics for Industry and Medicine 217–227 (Springer, 2005).
Acknowledgements
D.T.M. and K.K. acknowledge support from the NIH grants R01 EY018339 and R01 EY029808. N.J. acknowledges support from the NIH grant U01NS103489. M.J.B., K.M.H. and R.T. acknowledge support from the European Research Council 695140.
Author information
Authors and Affiliations
Contributions
Introduction (M.J.B., K.M.H. and R.T.); Experimentation (M.J.B., K.M.H. and R.T.); Results (M.J.B., D.T.M., K.K., J.R.M. and N.J.); Applications (M.J.B., D.T.M., K.K., J.R.M. and N.J.); Reproducibility and data deposition (M.J.B., R.T., D.T.M., K.K., J.R.M. and N.J.); Limitations and optimizations (M.J.B., D.T.M., K.K., J.R.M. and N.J.); Outlook (M.J.B., K.M.H. and R.T.); Overview of the Primer (M.J.B.).
Corresponding author
Ethics declarations
Competing interests
D.T.M. and K.K. have a patent on AO-OCT technology. Both authors stand to benefit financially from any commercialization of the technology. N.J. has two patents on AO microscopy technology. M.J.B. holds patents on adaptive optics technology and has significant interests in the companies Opsydia Ltd and Aurox Ltd. Otherwise, the authors are not aware of any affiliations, memberships, funding or financial holdings that might be perceived as affecting the objectivity of this publication. K.M.H., R.T. and J.R.M. declare no competing interests.
Additional information
Peer review information
Nature Reviews Methods Primers thanks V. Chambouleyron, B. Neichel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
AOmicroscopy: https://aomicroscopy.org/
GPI: http://docs.planetimager.org/pipeline/
Keck NIRC2 imager: https://www2.keck.hawaii.edu/inst/nirc2/post_observing.html
SPHERE: http://www.eso.org/sci/software/pipelines/
The Gemini Science Archive: https://archive.gemini.edu/searchform
The Keck Observatory Archive: https://www2.keck.hawaii.edu/koa/public/koa.php
The Subaru Telescope Archive System: https://stars2.naoj.hawaii.edu/stars1min.html
The ESO Science Archive Facility: http://archive.eso.org/cms.html
Supplementary information
Glossary
- Optical field
-
Describes the distribution of light as an electrical field across space and time in terms of amplitude, phase, frequency and polarization.
- Compensation
-
Reduction of an effect by modulation of the optical field through introducing the opposite effect.
- Focusing
-
All rays being brought to meet at one point.
- Optical path length
-
The length of the path followed by a light ray multiplied by the refractive index of the medium.
- Pupil plane
-
Aperture stop location.
- Collimated
-
All rays are parallel to each other.
- Diffraction-limited
-
There are no aberrations present in the focus. The minimum focal diameter is limited by diffraction owing to the wave nature of light.
- Focal length
-
The distance between a lens and where the rays meet the optical axis for incoming collimated light.
- Strehl ratio
-
The ratio of the intensity of the peak of the aberrated point spread function (PSF) to that of the diffraction-limited PSF.
- Noll convention
-
Mathematical description of aberrated wavefront shapes as proposed by Noll.
- Lenslets
-
Miniature lenses usually as part of an array.
- Actuators
-
Elements that deform the mirror.
- Dynamic range
-
The range between the smallest and largest measurable values.
- Wavelet
-
A mathematical function basis that is confined in both space and frequency.
- Influence function
-
The shape of modulation produced by a device when a signal, such as voltage, is sent to one actuator or pixel.
- Monochromatic polarized light
-
Light of a single wavelength with a structured oscillation of the electric field.
- Stroke
-
Maximal physical distance that an adaptive element can move, which limits the optical path length of phase modulation that can be imparted.
- Phase wrapping
-
Representation of the phase information within the range [0,2π] or [−π, π] radians by adding or subtracting multiples of 2π.
- Closed-loop bandwidth
-
The maximum frequency fluctuation that an adaptive optics system can fully or partially correct.
- Flood illumination
-
A traditional ophthalmoscopy modality based on flash photography in which the image of the illuminated retina is captured by an area detector.
- Clathrin
-
100 nm-sized vesicles that are used to bring substances inside the cell.
- Organelle
-
Specialized subunit within a cell with a specific function such as the Golgi complex, the endoplasmic reticulum or the mitochondrion.
- Growth cone
-
Subcellular machinery used for cell migration.
- Synapses
-
Junctions between neurons through which information flows.
Rights and permissions
About this article
Cite this article
Hampson, K.M., Turcotte, R., Miller, D.T. et al. Adaptive optics for high-resolution imaging. Nat Rev Methods Primers 1, 68 (2021). https://doi.org/10.1038/s43586-021-00066-7
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-021-00066-7
This article is cited by
-
Contribution of Intravital Neuroimaging to Study Animal Models of Multiple Sclerosis
Neurotherapeutics (2023)
-
Recent advances in optical imaging through deep tissue: imaging probes and techniques
Biomaterials Research (2022)
-
Towards higher-dimensional structured light
Light: Science & Applications (2022)
-
Multiphoton intravital microscopy of rodents
Nature Reviews Methods Primers (2022)
-
Towards the non-invasive imaging of brain networks and functions at high resolution
Nature Biotechnology (2022)