Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Radiocarbon dating

Abstract

Radiocarbon dating uses the decay of a radioactive isotope of carbon (14C) to measure time and date objects containing carbon-bearing material. With a half-life of 5,700 ± 30 years, detection of 14C is a useful tool for determining the age of a specimen formed over the past 55,000 years. In this Primer, we outline key advances in 14C measurement and instrument capacity, as well as optimal sample selection and preparation. We discuss data processing, carbon reservoir age correction, calibration and statistical analyses. We then outline examples of radiocarbon dating across a range of applications, from anthropology and palaeoclimatology to forensics and medical science. Reproducibility and minimum reporting standards are discussed along with potential issues related to accuracy and sensitivity. Finally, we look forwards to the adoption of radiocarbon dating in various fields of research thanks to continued instrument improvement.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Life cycle of 14C.
Fig. 2: AMS radiocarbon analysis process.
Fig. 3: Calibration curve and precision of calendar ages.
Fig. 4: Calibration of radiocarbon ages.
Fig. 5: Bayesian modelling in radiocarbon dating.
Fig. 6: Radiocarbon dating of sedimentary records.
Fig. 7: Distribution of 14C in the human body.
Fig. 8: Radiocarbon analysis of cultural heritage items and detection of forgeries.

References

  1. 1.

    Ruben, S. & Kamen, M. D. Radioactive carbon of long half-life. Phys. Rev. 57, 549 (1940).

    ADS  Google Scholar 

  2. 2.

    Anderson, E. C. et al. Natural radiocarbon from cosmic radiation. Phys. Rev. 72, 931–936 (1947).

    ADS  Google Scholar 

  3. 3.

    Arnold, J. R. & Libby, W. F. Age determinations by radiocarbon content — checks with samples of known age. Science 110, 678–680 (1949).

    ADS  Google Scholar 

  4. 4.

    Libby, W. F., Anderson, E. C. & Arnold, J. R. Age determination by radiocarbon content — world-wide assay of natural radiocarbon. Science 109, 227–228 (1949).

    ADS  Google Scholar 

  5. 5.

    Rom, W. et al. A detailed 2-year record of atmospheric (CO)-C-14 in the temperate northern hemisphere. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 161, 780–785 (2000).

    ADS  Google Scholar 

  6. 6.

    Kutschera, W. Applications of accelerator mass spectrometry. Int. J. Mass. Spectrom. 349, 203–218 (2013).

    Google Scholar 

  7. 7.

    Kutschera, W. The half-life of 14C — why is it so long? Radiocarbon 61, 1135–1142 (2019).

    Google Scholar 

  8. 8.

    Reimer, P. J. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Google Scholar 

  9. 9.

    Hogg, A. G. et al. SHCal20 southern hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62, 759–778 (2020).

    Google Scholar 

  10. 10.

    Heaton, T. J. et al. Marine20 — the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).

    Google Scholar 

  11. 11.

    Santos, G., Southon, J., Griffin, S., Beaupre, S. & Druffel, E. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI facility. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 259, 293–302 (2007).

    ADS  Google Scholar 

  12. 12.

    Ruff, M. et al. A gas ion source for radiocarbon measurements at 200 kV. Radiocarbon 49, 307–314 (2007).

    Google Scholar 

  13. 13.

    Smith, A., Hua, Q., Williams, A., Levchenko, V. & Yang, B. Developments in micro-sample C-14 AMS at the ANTARES AMS facility. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 268, 919–923 (2010).

    ADS  Google Scholar 

  14. 14.

    Steier, P., Liebl, J., Kutschera, W., Wild, E. M. & Golser, R. Preparation methods of µg carbon samples for 14C measurements. Radiocarbon 59, 803 (2017).

    Google Scholar 

  15. 15.

    Eglinton, T. I., Aluwihare, L. I., Bauer, J. E., Druffel, E. R. & McNichol, A. P. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Anal. Chem. 68, 904–912 (1996).

    Google Scholar 

  16. 16.

    Reimer, P. J., Brown, T. A. & Reimer, R. W. Discussion: Reporting and calibration of post-bomb C-14 data. Radiocarbon 46, 1299–1304 (2004).

    Google Scholar 

  17. 17.

    Stuiver, M. & Polach, H. A. Reporting of C-14 data — discussion. Radiocarbon 19, 355–363 (1977).

    Google Scholar 

  18. 18.

    Mook, W. G. & van der Plicht, J. Reporting C-14 activities and concentrations. Radiocarbon 41, 227–239 (1999).

    Google Scholar 

  19. 19.

    van der Plicht, J. & Hogg, A. A note on reporting radiocarbon. Quaternary Geochronol. 1, 237–240 (2006).

    Google Scholar 

  20. 20.

    Stenström, K. E., Skog, G., Georgiadou, E., Genberg, J. & Johansson, A. A Guide to Radiocarbon Units and Calculations Department of Physics Internal Report 1–17 (Lund University, 2011).

  21. 21.

    Paterne, M., et al. in Paleoclimatology (eds Ramstein, G. et al.) 51–71 (Springer International, 2020).

  22. 22.

    Libby, W. F. Radiocarbon dating. Chem. Brit 5, 548–552 (1955).

    Google Scholar 

  23. 23.

    Kromer, B. & Muennich, K. O. in Radiocarbon After Four Decades. An Interdisciplinary Perspective (eds Taylor, R. E., Long, A. & Kra, R. S.) 184–197 (Springer Verlag, 1992).

  24. 24.

    Polach, H. A. in Radiocarbon After Four Decades. An Interdisciplinary Perspective (eds Taylor, R. E., Long, A. & Kra, R. S.) 198–213 (Springer Verlag, 1992).

  25. 25.

    Povinec, P. P., Litherland, A. & von Reden, K. F. Developments in radiocarbon technologies: from the Libby counter to compound-specific AMS analyses. Radiocarbon 51, 45–78 (2009).

    Google Scholar 

  26. 26.

    Tudyka, K. et al. A low level liquid scintillation spectrometer with five counting modules for 14C, 222Rn and delayed coincidence measurements. Radiat. Meas. 105, 1–6 (2017).

    Google Scholar 

  27. 27.

    Theodórsson, P. et al. in LSC 2008, Advances in Liquid Scintillation Spectrometry (eds Eikenberg, J., Jäggi, M., Beer, H. & Baehrle, H.) 253–260 (Packard Instrument Company, 2009).

  28. 28.

    Quiles, A., Kamal, N. S., Abd’el Fatah, M. & Mounir, N. The IFAO Radiocarbon Laboratory: a status report. Radiocarbon 59, 1157 (2017).

    Google Scholar 

  29. 29.

    Gudelis, A., Gaigalaitė, L. & Gvozdaitė, R. Application of the absolute method for determination of tritium and radiocarbon in groundwater from radioactive waste facility. J. Radioanalytical Nucl. Chem. 322, 1391–1396 (2019).

    Google Scholar 

  30. 30.

    Feng, B. et al. Application of synthetic benzoic acid technology in environmental radiocarbon monitoring. J. Environ. Radioactivity 216, 106188 (2020).

    Google Scholar 

  31. 31.

    Cuchet, A. et al. Authentication of the naturalness of wintergreen (Gaultheria genus) essential oils by gas chromatography, isotope ratio mass spectrometry and radiocarbon assessment. Ind. Crop. Products 142, 111873 (2019).

    Google Scholar 

  32. 32.

    Purser, K. H. et al. An attempt to detect stable N-ions from a sputter ion source and some implications of the results for the design of tandems for ultra-sensitive carbon analysis. Rev. de. Phys. Appliquee 12, 1487–1492 (1977).

    Google Scholar 

  33. 33.

    Nelson, D. E., Korteling, R. G. & Stott, W. R. Carbon-14: direct detection at natural concentrations. Science 198, 507–508 (1977).

    ADS  Google Scholar 

  34. 34.

    Bennett, C. L. et al. Radiocarbon dating using electrostatic accelerators: negative ions provide the key. Science 198, 508–510 (1977).

    ADS  Google Scholar 

  35. 35.

    Litherland, A., Zhao, X. L. & Kieser, W. Mass spectrometry with accelerators. Mass. Spectrometry Rev. 30, 1037–1072 (2011).

    ADS  Google Scholar 

  36. 36.

    Synal, H.-A., Jacob, S. & Suter, M. The PSI/ETH small radiocarbon dating system. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 172, 1–7 (2000).

    ADS  Google Scholar 

  37. 37.

    Synal, H.-A., Dobeli, M., Jacob, S., Stocker, M. & Suter, M. Radiocarbon AMS towards its low-energy limits. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 223–224, 339–345 (2004).

    ADS  Google Scholar 

  38. 38.

    Synal, H. A., Schulze-Konig, T., Seiler, M., Suter, M. & Wacker, L. Mass spectrometric detection of radiocarbon for dating applications. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 294, 349–352 (2013).

    ADS  Google Scholar 

  39. 39.

    Salehpour, M., Håkansson, K., Possnert, G., Wacker, L. & Synal, H.-A. Performance report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala University. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 371, 360–364 (2016).

    ADS  Google Scholar 

  40. 40.

    Seiler, M., Maxeiner, S., Wacker, L. & Synal, H.-A. Status of mass spectrometric radiocarbon detection at ETHZ. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 361, 245–249 (2015).

    ADS  Google Scholar 

  41. 41.

    Fahrni, S., Wacker, L., Synal, H.-A. & Szidat, S. Improving a gas ion source for 14C AMS. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 294, 320–327 (2013).

    ADS  Google Scholar 

  42. 42.

    Wacker, L. et al. A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 294, 315–319 (2013).

    ADS  Google Scholar 

  43. 43.

    Wacker, L., Lippold, J., Molnar, M. & Schulz, H. Towards radiocarbon dating of single foraminifera with a gas ion source. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 294, 307–310 (2013).

    ADS  Google Scholar 

  44. 44.

    Haghipour, N. et al. Compound-specific radiocarbon analysis by elemental analyzer–accelerator mass spectrometry: precision and limitations. Anal. Chem. 91, 2042–2049 (2019).

    Google Scholar 

  45. 45.

    Leonard, A., Castle, S., Burr, G. S., Lange, T. & Thomas, J. A wet oxidation method for AMS radiocarbon analysis of dissolved organic carbon in water. Radiocarbon 55, 545–552 (2013).

    Google Scholar 

  46. 46.

    Molnar, M. et al. C-14 analysis of groundwater down to the millilitre level. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 294, 573–576 (2013).

    ADS  Google Scholar 

  47. 47.

    Welte, C. et al. Laser ablation–accelerator mass spectrometry: an approach for rapid radiocarbon analyses of carbonate archives at high spatial resolution. Anal. Chem. 88, 8570–8576 (2016).

    Google Scholar 

  48. 48.

    Freeman, S. P., Shanks, R. P., Donzel, X. & Gaubert, G. Radiocarbon positive-ion mass spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 361, 229–232 (2015).

    ADS  Google Scholar 

  49. 49.

    Bayliss, A. Rolling out revolution: using radiocarbon dating in archaeology. Radiocarbon 51, 123–147 (2009).

    Google Scholar 

  50. 50.

    van der Plicht, J., Scott, E., Alekseev, A. & Zaitseva, G. Radiocarbon, the calibration curve and Scythian chronology. Impact Environ. Hum. Migr. Eurasia 42, 45–61 (2004).

    Google Scholar 

  51. 51.

    Jull, A. Accelerator radiocarbon dating of art, textiles, and artifacts. Nucl. N. 41, 30–38 (1998).

    Google Scholar 

  52. 52.

    Aitken, M. J. Archaeological dating using physical phenomena. Rep. Prog. Phys. 62, 1333–1376 (1999).

    ADS  Google Scholar 

  53. 53.

    Boaretto, E. Radiocarbon and the archaeological record: an integrative approach for building an absolute chronology for the Late Bronze and Iron Ages of Israel. Radiocarbon 57, 207–216 (2015).

    Google Scholar 

  54. 54.

    Brock, F., Higham, T. & Ramsey, C. B. Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones. J. archaeological Sci. 37, 855–865 (2010).

    Google Scholar 

  55. 55.

    D’Elia, M. et al. Evaluation of possible contamination sources in the 14C analysis of bone samples by FTIR spectroscopy. Radiocarbon 49, 201–210 (2007).

    Google Scholar 

  56. 56.

    Brock, F. et al. Testing the effectiveness of protocols for removal of common conservation treatments for radiocarbon dating. Radiocarbon 60, 35–50 (2018).

    Google Scholar 

  57. 57.

    Devièse, T. et al. A multi-analytical approach using FTIR, GC/MS and Py-GC/MS revealed early evidence of embalming practices in Roman catacombs. Microchem. J. 133, 49–59 (2017).

    Google Scholar 

  58. 58.

    Yizhaq, M. et al. Quality controlled radiocarbon dating of bones and charcoal from the early Pre-Pottery Neolithic B (PPNB) of Motza (Israel). Radiocarbon 47, 193–206 (2005).

    Google Scholar 

  59. 59.

    Sponheimer, M. et al. Saving old bones: a non-destructive method for bone collagen prescreening. Sci. Rep. 9, 1–7 (2019).

    ADS  Google Scholar 

  60. 60.

    Naito, Y. I., Yamane, M. & Kitagawa, H. A protocol for using attenuated total reflection Fourier-transform infrared spectroscopy for pre-screening ancient bone collagen prior to radiocarbon dating. Rapid Commun. Mass. Spectrometry 34, e8720 (2020).

    ADS  Google Scholar 

  61. 61.

    Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52, 103–112 (2010).

    Google Scholar 

  62. 62.

    Hajdas, I. The radiocarbon dating method and its applications in Quaternary studies. Quaternary Sci. J. -Eiszeitalt. und Ggw. 57, 2–24 (2008).

    Google Scholar 

  63. 63.

    Ingalls, A. E. & Pearson, A. Compound-specific radiocarbon analysis. Oceanography 18, 18–31 (2005).

    Google Scholar 

  64. 64.

    Ingalls, A. E. et al. HPLC purification of higher plant-derived lignin phenols for compound specific radiocarbon analysis. Anal. Chem. 82, 8931–8938 (2010).

    Google Scholar 

  65. 65.

    Ishikawa, N. F. et al. Improved method for isolation and purification of underivatized amino acids for radiocarbon analysis. Anal. Chem. 90, 12035–12041 (2018).

    Google Scholar 

  66. 66.

    Blattmann, T. M., Montluçon, D. B., Haghipour, N., Ishikawa, N. F. & Eglinton, T. I. Liquid chromatographic isolation of individual amino acids extracted from sediments for radiocarbon analysis. Front. Mar. Sci. 7, 174 (2020).

    ADS  Google Scholar 

  67. 67.

    Mann, W. B. An international reference material for radiocarbon dating. Radiocarbon 25, 519–527 (1983).

    Google Scholar 

  68. 68.

    Rozanski, K. et al. The IAEA 14C intercomparison exercise 1990. Radiocarbon 34, 506–519 (1992).

    Google Scholar 

  69. 69.

    Scott, E. M., Naysmith, P. & Cook, G. T. Why do we need 14C inter-comparisons?: the Glasgow-14C inter-comparison series, a reflection over 30 years. Quaternary Geochronol. 43, 72–82 (2018).

    Google Scholar 

  70. 70.

    Huysecom, E., Hajdas, I., Renold, M.-A., Synal, H.-A. & Mayor, A. The “enhancement” of cultural heritage by AMS dating: ethical questions and practical proposals. Radiocarbon 59, 559–563 (2017).

    Google Scholar 

  71. 71.

    Hajdas, I. et al. Radiocarbon dating and the protection of cultural heritage. Radiocarbon 61, 1133–1134 (2019).

    Google Scholar 

  72. 72.

    Freedman, J., van Dorp, L. & Brace, S. Destructive sampling natural science collections: an overview for museum professionals and researchers. J. Nat. Sci. Collect. 5, 21–34 (2018).

    Google Scholar 

  73. 73.

    American Institute for Conservation of Historic & Artistic Works (AIC). Code of Ethics and Guidelines for Practice. American Institute for Conservation https://www.culturalheritage.org/about-conservation/code-of-ethics (1994).

  74. 74.

    Séguin, F. H., Schneider, R. J., Jones, G. A. & Karl, F. Optimized data analysis for AMS radiocarbon dating. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 92, 176–181 (1994).

    ADS  Google Scholar 

  75. 75.

    Rom, W. et al. Systematic investigations of 14C measurements at the Vienna Environmental Research Accelerator. Radiocarbon 40, 255–263 (1997).

    Google Scholar 

  76. 76.

    McNichol, A. P., Jull, A. J. T. & Burr, G. S. Converting AMS data to radiocarbon values: considerations and conventions. Radiocarbon 43, 313–320 (2001).

    Google Scholar 

  77. 77.

    Wacker, L., Christl, M. & Synal, H. A. BATS: a new tool for AMS data reduction. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 268, 976–979 (2010).

    ADS  Google Scholar 

  78. 78.

    Craig, H. Carbon-13 in plants and the relationships between carbon-13 and carbon-14 variations in nature. J. Geol. 62, 115–149 (1954).

    ADS  Google Scholar 

  79. 79.

    Welte, C. et al. Towards the limits: analysis of microscale 14C samples using EA–AMS. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 437, 66–74 (2018).

    ADS  Google Scholar 

  80. 80.

    Santos, G. M. et al. AMS C-14 sample preparation at the KCCAMS/UCI facility: status report and performance of small samples. Radiocarbon 49, 255–269 (2007).

    Google Scholar 

  81. 81.

    Sookdeo, A. et al. Quality dating: a well-defined protocol implemented at ETH for high-precision 14C-dates tested on late glacial wood. Radiocarbon 62, 891–899 (2020).

    Google Scholar 

  82. 82.

    Alves, E. Q., Macario, K., Ascough, P. & Bronk Ramsey, C. The worldwide marine radiocarbon reservoir effect: definitions, mechanisms, and prospects. Rev. Geophysics 56, 278–305 (2018).

    ADS  Google Scholar 

  83. 83.

    Stuiver, M., Pearson, G. W. & Braziunas, T. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28, 980–1021 (1986).

    Google Scholar 

  84. 84.

    Ascough, P., Cook, G. & Dugmore, A. Methodological approaches to determining the marine radiocarbon reservoir effect. Prog. Phys. Geogr. 29, 532–547 (2005).

    Google Scholar 

  85. 85.

    Reimer, P. J. & Reimer, R. W. A marine reservoir correction database and on-line interface. Radiocarbon 43, 461–463 (2001).

    Google Scholar 

  86. 86.

    Philippsen, B. The freshwater reservoir effect in radiocarbon dating. Herit. Sci. 1, 1–19 (2013).

    Google Scholar 

  87. 87.

    Keaveney, E. M. & Reimer, P. J. Understanding the variability in freshwater radiocarbon reservoir offsets: a cautionary tale. J. Archaeological Sci. 39, 1306–1316 (2012).

    Google Scholar 

  88. 88.

    Cook, G. T. et al. Best practice methodology for 14C calibration of marine and mixed terrestrial/marine samples. Quaternary Geochronol. 27, 164–171 (2015).

    Google Scholar 

  89. 89.

    Arneborg, J. et al. Change of diet of the Greenland Vikings determined from stable carbon isotope analysis and 14C dating of their bones. Radiocarbon 41, 157–168 (1999).

    Google Scholar 

  90. 90.

    MacAvoy, S. E., Macko, S. A. & Garman, G. C. Tracing marine biomass into tidal freshwater ecosystems using stable sulfur isotopes. Sci. Nat. 85, 544–546 (1998).

    Google Scholar 

  91. 91.

    Beesley, L. S. et al. New insights into the food web of an Australian tropical river to inform water resource management. Sci. Rep. 10, 1–12 (2020).

    Google Scholar 

  92. 92.

    Ascough, P. L. et al. Radiocarbon reservoir effects in human bone collagen from northern Iceland. J. Archaeological Sci. 39, 2261–2271 (2012).

    Google Scholar 

  93. 93.

    Fernandes, R., Millard, A. R., Brabec, M., Nadeau, M.-J. & Grootes, P. Food Reconstruction Using Isotopic Transferred Signals (FRUITS): a Bayesian model for diet reconstruction. PLoS ONE 9, e87436 (2014).

    ADS  Google Scholar 

  94. 94.

    Cheng, H. et al. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave. Science 362, 1293–1297 (2018).

    ADS  Google Scholar 

  95. 95.

    Reimer, P. J. et al. Selection and treatment of data for radiocarbon calibration: an update to the International Calibration (IntCal) criteria. Radiocarbon 55, 1923–1945 (2013).

    Google Scholar 

  96. 96.

    Lechleitner, F. A. et al. Hydrological and climatological controls on radiocarbon concentrations in a tropical stalagmite. Geochimica Cosmochimica Acta 194, 233–252 (2016).

    ADS  Google Scholar 

  97. 97.

    Yeman, C. et al. Unravelling quasi-continuous 14C profiles by laser ablation AMS. Radiocarbon 62, 453–465 (2020).

    Google Scholar 

  98. 98.

    Ramsey, C. OxCal 4.4. University of Oxford https://c14.arch.ox.ac.uk/oxcal.html (2021).

  99. 99.

    Stuiver, M., Reimer, P. J. & Reimer, R. W. CALIB 8.2. IntCal http://calib.org/ (2021).

  100. 100.

    Santos, G. M., Granato-Souza, D., Barbosa, A. C., Oelkers, R. & Andreu-Hayles, L. Radiocarbon analysis confirms annual periodicity in Cedrela odorata tree rings from the equatorial Amazon. Quaternary Geochronol. 58, 101079 (2020).

    Google Scholar 

  101. 101.

    Hua, Q., Barbetti, M. & Rakowski, A. Z. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55, 2059–2072 (2013).

    Google Scholar 

  102. 102.

    Buck, C. E., Kenworthy, J. B., Litton, C. D. & Smith, A. F. Combining archaeological and radiocarbon information: a Bayesian approach to calibration. Antiquity 65, 808 (1991).

    Google Scholar 

  103. 103.

    Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Google Scholar 

  104. 104.

    van de Schoot, R. et al. Bayesian statistics and modelling. Nat. Rev. Methods Prim. 1, 1 (2021).

    Google Scholar 

  105. 105.

    Hajdas, I. & Michczynski, A. Age-depth model of Lake Soppensee (Switzerland) based on the high-resolution C-14 chronology compared with varve chronology. Radiocarbon 52, 1027–1040 (2010).

    Google Scholar 

  106. 106.

    Buck, C. E. & Meson, B. On being a good Bayesian. World Archaeol. 47, 567–584 (2015).

    Google Scholar 

  107. 107.

    Ramsey, C. B. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).

    Google Scholar 

  108. 108.

    Buck, C. E., Christen, J. A. & James, G. N. BCal: an on-line Bayesian radiocarbon calibration tool. Internet Archaeology 7, 1192–1201 (1999).

    Google Scholar 

  109. 109.

    Lougheed, B. & Obrochta, S. MatCal: open source Bayesian 14C age calibration in MatLab. J. Open Res. Softw. 4, e42 (2016).

    Google Scholar 

  110. 110.

    Lanos, P. & Dufresne, P. ChronoModel version 2.0 User manual. scanR https://scanr.enseignementsup-recherche.gouv.fr/publication/hal-02427428 (2019).

  111. 111.

    Renfrew, C. Before Civilization (Random House, 2011).

  112. 112.

    Ramsey, C. B., Schulting, R., Bazaliiskii, V., Goriunova, O. & Weber, A. Spatio-temporal patterns of cemetery use among Middle Holocene hunter-gatherers of Cis-Baikal, East Siberia. Archaeol. Res. Asia 25, 100253 (2021).

    Google Scholar 

  113. 113.

    Wood, R. From revolution to convention: the past, present and future of radiocarbon dating. J. Archaeological Sci. 56, 61–72 (2015).

    Google Scholar 

  114. 114.

    Wood, R. et al. Testing the ABOx-SC method: dating known-age charcoals associated with the Campanian Ignimbrite. Quaternary Geochronol. 9, 16–26 (2012).

    Google Scholar 

  115. 115.

    Jacobi, R. M., Higham, T. F. G. & Ramsey, C. B. AMS radiocarbon dating of Middle and Upper Palaeolithic bone in the British Isles: improved reliability using ultrafiltration. J. Quaternary Sci. 21, 557–573 (2006).

    ADS  Google Scholar 

  116. 116.

    Cersoy, S. et al. Radiocarbon dating minute amounts of bone (3–60 mg) with ECHoMICADAS. Sci. Rep. 7, 1–8 (2017).

    Google Scholar 

  117. 117.

    Fewlass, H. et al. Size matters: radiocarbon dates of <200 µg ancient collagen samples with AixMICADAS and its gas ion source. Radiocarbon 60, 425–439 (2017).

    Google Scholar 

  118. 118.

    Fewlass, H. et al. Pretreatment and gaseous radiocarbon dating of 40–100 mg archaeological bone. Sci. Rep. 9, 1–11 (2019).

    Google Scholar 

  119. 119.

    Douka, K., Hedges, R. E. & Higham, T. F. Improved AMS 14C dating of shell carbonates using high-precision X-ray diffraction and a novel density separation protocol (CarDS). Radiocarbon 52, 735–751 (2010).

    Google Scholar 

  120. 120.

    Marom, A., McCullagh, J. S., Higham, T. F., Sinitsyn, A. A. & Hedges, R. E. Single amino acid radiocarbon dating of Upper Paleolithic modern humans. Proc. Natl Acad. Sci. USA 109, 6878–6881 (2012).

    ADS  Google Scholar 

  121. 121.

    Deviese, T. et al. Increasing accuracy for the radiocarbon dating of sites occupied by the first Americans. Quaternary Sci. Rev. 198, 171–180 (2018).

    ADS  Google Scholar 

  122. 122.

    Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).

    ADS  Google Scholar 

  123. 123.

    Fewlass, H. et al. A 14C chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro Cave, Bulgaria. Nat. Ecol. Evolution 4, 794–801 (2020).

    Google Scholar 

  124. 124.

    Spindler, L. et al. Dating the last Middle Palaeolithic of the Crimean Peninsula: new hydroxyproline AMS dates from the site of Kabazi II. J. Hum. Evolution 156, 102996 (2021).

    Google Scholar 

  125. 125.

    Berstan, R. et al. Direct dating of pottery from its organic residues: new precision using compound-specific carbon isotopes. Antiquity 82, 702–713 (2008).

    Google Scholar 

  126. 126.

    Casanova, E. et al. Accurate compound-specific 14C dating of archaeological pottery vessels. Nature 580, 506–510 (2020).

    ADS  Google Scholar 

  127. 127.

    Zuo, X. et al. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proc. Natl Acad. Sci. USA 114, 6486–6491 (2017).

    Google Scholar 

  128. 128.

    Boaretto, E. Dating materials in good archaeological contexts: the next challenge for radiocarbon analysis. Radiocarbon 51, 275–281 (2009).

    Google Scholar 

  129. 129.

    Santos, G. M. et al. The phytolith 14C puzzle: a tale of background determinations and accuracy tests. Radiocarbon 52, 113–128 (2010).

    Google Scholar 

  130. 130.

    Santos, G. M., Masion, A. & Alexandre, A. When the carbon being dated is not what you think it is: insights from phytolith carbon research. Quaternary Sci. Rev. 197, 162–174 (2018).

    ADS  Google Scholar 

  131. 131.

    Charlton, S. et al. Finding Britain’s last hunter-gatherers: a new biomolecular approach to ‘unidentifiable’ bone fragments utilising bone collagen. J. Archaeological Sci. 73, 55–61 (2016).

    Google Scholar 

  132. 132.

    Devièse, T. et al. Compound-specific radiocarbon dating and mitochondrial DNA analysis of the Pleistocene hominin from Salkhit Mongolia. Nat. Commun. 10, 1–7 (2019).

    Google Scholar 

  133. 133.

    Zeidler, J. A., Buck, C. E. & Litton, C. D. Integration of archaeological phase information and radiocarbon results from the Jama River Valley, Ecuador: a Bayesian approach. Latin American Antiquity 9, 160–179 (1998).

    Google Scholar 

  134. 134.

    Crema, E. R. & Kobayashi, K. I. A multi-proxy inference of Jōmon population dynamics using bayesian phase models, residential data, and summed probability distribution of 14C dates. J. Archaeological Sci. 117, 105136 (2020).

    Google Scholar 

  135. 135.

    Gakuhari, T. et al. Radiocarbon dating of one human and two dog burials from the Kamikuroiwa rock shelter site, Ehime Prefecture. Anthropol. Sci. 123, 87–94 (2015).

    Google Scholar 

  136. 136.

    Bayliss, A. et al. Getting to the bottom of it all: a Bayesian approach to dating the start of Çatalhöyük. J. World Prehistory 28, 1–26 (2015).

    Google Scholar 

  137. 137.

    Regev, J. et al. Radiocarbon dating and microarchaeology untangle the history of Jerusalem’s Temple Mount: a view from Wilson’s Arch. PLoS ONE 15, e0233307 (2020).

    Google Scholar 

  138. 138.

    Piotrowska, N., Blaauw, M., Mauquoy, D. & Chambers, F. M. Constructing deposition chronologies for peat deposits using radiocarbon dating. Mires Peat 7, 1–14 (2011).

    Google Scholar 

  139. 139.

    Francisquini, M. I. et al. Cold and humid Atlantic Rainforest during the last glacial maximum, northern Espírito Santo state, southeastern Brazil. Quaternary Sci. Rev. 244, 106489 (2020).

    Google Scholar 

  140. 140.

    Staff, R. et al. The multiple chronological techniques applied to the Lake Suigetsu SG06 sediment core, central Japan. Boreas 42, 259–266 (2013).

    Google Scholar 

  141. 141.

    Broecker, W. et al. Ventilation of the glacial deep Pacific Ocean. Science 306, 1169–1172 (2004).

    ADS  Google Scholar 

  142. 142.

    Sikes, E. L., Samson, C. R., Guilderson, T. P. & Howard, W. R. Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature 405, 555–559 (2000).

    ADS  Google Scholar 

  143. 143.

    Joerin, U., Nicolussi, K., Fischer, A., Stocker, T. & Schluchter, C. Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Swiss Alps. Quaternary Sci. Rev. 27, 337–350 (2008).

    ADS  Google Scholar 

  144. 144.

    Bolton, A., Goodkin, N. F., Druffel, E. R. M., Griffin, S. & Murty, S. A. Upwelling of Pacific intermediate water in the South China Sea revealed by coral radiocarbon record. Radiocarbon 58, 37–53 (2016).

    Google Scholar 

  145. 145.

    Hirabayashi, S. et al. Insight into Western Pacific circulation from South China Sea coral skeletal radiocarbon. Radiocarbon 61, 1923–1937 (2019).

    Google Scholar 

  146. 146.

    Hua, Q. et al. Robust chronological reconstruction for young speleothems using radiocarbon. Quaternary Geochronol. 14, 67–80 (2012).

    ADS  Google Scholar 

  147. 147.

    Akers, P. D. et al. Integrating U-Th, 14C, and 210Pb methods to produce a chronologically reliable isotope record for the Belize River Valley Maya from a low-uranium stalagmite. Holocene 29, 1234–1248 (2019).

    ADS  Google Scholar 

  148. 148.

    Therre, S. et al. Climate-induced speleothem radiocarbon variability on Socotra Island from the Last Glacial Maximum to the Younger Dryas. Clim. Past. 16, 409–421 (2020).

    Google Scholar 

  149. 149.

    Moska, P., Jary, Z., Adamiec, G. & Bluszcz, A. Chronostratigraphy of a loess–palaeosol sequence in Biały Kościół, Poland using OSL and radiocarbon dating. Quaternary Int. 502, 4–17 (2019).

    ADS  Google Scholar 

  150. 150.

    Pigati, J. S., McGeehin, J. P., Muhs, D. R., Grimley, D. A. & Nekola, J. C. Radiocarbon dating loess deposits in the Mississippi Valley using terrestrial gastropod shells (Polygyridae, Helicinidae, and Discidae). Aeolian Res. 16, 25–33 (2015).

    ADS  Google Scholar 

  151. 151.

    Moine, O. et al. The impact of Last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules. Proc. Natl Acad. Sci. USA 114, 6209–6214 (2017).

    ADS  Google Scholar 

  152. 152.

    Bond, G. et al. Correlations between climate records from North-Atlantic sediments and Greenland ice. Nature 365, 143–147 (1993).

    ADS  Google Scholar 

  153. 153.

    Grimm, E. C. et al. Evidence for warm wet Heinrich events in Florida. Quaternary Sci. Rev. 25, 2197–2211 (2006).

    ADS  Google Scholar 

  154. 154.

    Prokopenko, A. A., Williams, D. F., Karabanov, E. B. & Khursevich, G. K. Continental response to Heinrich events and Bond cycles in sedimentary record of Lake Baikal, Siberia. Glob. Planet. Change 28, 217–226 (2001).

    ADS  Google Scholar 

  155. 155.

    Obrochta, S. et al. Mt. Fuji Holocene eruption history reconstructed from proximal lake sediments and high-density radiocarbon dating. Quaternary Sci. Rev. 200, 395–405 (2018).

    ADS  Google Scholar 

  156. 156.

    Vandergoes, M. et al. A revised age for the Kawakawa/Oruanui tephra, a key marker for the Last Glacial Maximum in New Zealand. Quaternary Sci. Rev. 74, 195–201 (2013).

    ADS  Google Scholar 

  157. 157.

    Sevink, J., Bakels, C., Van Hall, R. & Dee, M. Radiocarbon dating distal tephra from the Early Bronze Age Avellino eruption (EU-5) in the coastal basins of southern Lazio (Italy): uncertainties, results, and implications for dating distal tephra. Quaternary Geochronol. 63, 101154 (2021).

    Google Scholar 

  158. 158.

    Danišík, M. et al. Sub-millennial eruptive recurrence in the silicic Mangaone Subgroup tephra sequence, New Zealand, from Bayesian modelling of zircon double-dating and radiocarbon ages. Quaternary Sci. Rev. 246, 106517 (2020).

    Google Scholar 

  159. 159.

    Nicolussi, K., Spötl, C., Thurner, A. & Reimer, P. J. Precise radiocarbon dating of the giant Köfels landslide (Eastern Alps, Austria). Geomorphology 243, 87–91 (2015).

    Google Scholar 

  160. 160.

    Bertolini, G., Casagli, N., Ermini, L. & Malaguti, C. Radiocarbon data on Lateglacial and Holocene landslides in the Northern Apennines. Nat. Hazards 31, 645–662 (2004).

    Google Scholar 

  161. 161.

    Borgatti, L. & Soldati, M. Landslides as a geomorphological proxy for climate change: a record from the Dolomites (northern Italy). Geomorphology 120, 56–64 (2010).

    ADS  Google Scholar 

  162. 162.

    Talling, P. J. Fidelity of turbidites as earthquake records. Nat. Geosci. 14, 113–116 (2021).

    ADS  Google Scholar 

  163. 163.

    Shirahama, Y. et al. Detailed paleoseismic history of the Hinagu fault zone revealed by the high-density radiocarbon dating and trenching survey across a surface rupture of the 2016 Kumamoto earthquake, Kyushu, Japan. Isl. Arc 30, e12376 (2021).

    Google Scholar 

  164. 164.

    Ishizawa, T. et al. Sequential radiocarbon measurement of bulk peat for high-precision dating of tsunami deposits. Quaternary Geochronol. 41, 202–210 (2017).

    Google Scholar 

  165. 165.

    Bondevik, S., Stormo, S. K. & Skjerdal, G. Green mosses date the Storegga tsunami to the chilliest decades of the 8.2 ka cold event. Quaternary Sci. Rev. 45, 1–6 (2012).

    ADS  Google Scholar 

  166. 166.

    Williams, M. et al. Late Quaternary floods and droughts in the Nile valley, Sudan: new evidence from optically stimulated luminescence and AMS radiocarbon dating. Quaternary Sci. Rev. 29, 1116–1137 (2010).

    ADS  Google Scholar 

  167. 167.

    Shen, H., Yu, L., Zhang, H., Zhao, M. & Lai, Z. OSL and radiocarbon dating of flood deposits and its paleoclimatic and archaeological implications in the Yihe River Basin, East China. Quaternary Geochronol. 30, 398–404 (2015).

    Google Scholar 

  168. 168.

    Miyake, F., Nagaya, K., Masuda, K. & Nakamura, T. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486, 240–242 (2012).

    ADS  Google Scholar 

  169. 169.

    Miyake, F. et al. Search for annual C-14 excursions in the past. Radiocarbon 59, 315–320 (2017).

    Google Scholar 

  170. 170.

    Miyake, F., Masuda, K. & Nakamura, T. Another rapid event in the carbon-14 content of tree rings. Nat. Commun. 4, 1–6 (2013).

    Google Scholar 

  171. 171.

    Miyake, F. et al. Large C-14 excursion in 5480 BC indicates an abnormal sun in the mid-Holocene. Proc. Natl Acad. Sci. USA 114, 881–884 (2017).

    ADS  Google Scholar 

  172. 172.

    Quarta, G. et al. Identifying the 993–994 CE Miyake event in the oldest dated living tree in Europe. Radiocarbon 61, 1317–1325 (2019).

    Google Scholar 

  173. 173.

    Park, J., Southon, J., Fahrni, S., Creasman, P. P. & Mewaldt, R. Relationship between solar activity and Δ14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 59, 1147–1156 (2017).

    Google Scholar 

  174. 174.

    Dee, M. W. & Pope, B. J. Anchoring historical sequences using a new source of astro-chronological tie-points. Proc. R. Soc. A: Mathematical, Phys. Eng. Sci. 472, 20160263 (2016).

    Google Scholar 

  175. 175.

    Wacker, L. et al. Radiocarbon dating to a single year by means of rapid atmospheric C-14 changes. Radiocarbon 56, 573–579 (2014).

    Google Scholar 

  176. 176.

    Oppenheimer, C. et al. Multi-proxy dating the ‘Millennium Eruption’ of Changbaishan to late 946 CE. Quaternary Sci. Rev. 158, 164–171 (2017).

    ADS  Google Scholar 

  177. 177.

    Mazaud, A. et al. Geomagnetic-assisted stratigraphy and sea surface temperature changes in core MD94-103 (Southern Indian Ocean): possible implications for north–south climatic relationships around H4. Earth Planet. Sci. Lett. 201, 159–170 (2002).

    ADS  Google Scholar 

  178. 178.

    Cooper, A. et al. A global environmental crisis 42,000 years ago. Science 371, 811–818 (2021).

    Google Scholar 

  179. 179.

    Lister, A. M. & Stuart, A. J. The extinction of the giant deer Megaloceros giganteus (Blumenbach): new radiocarbon evidence. Quaternary Int. 500, 185–203 (2019).

    ADS  Google Scholar 

  180. 180.

    Kosintsev, P. et al. Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions. Nat. Ecol. Evolution 3, 31–38 (2019).

    Google Scholar 

  181. 181.

    Orlova, L. A., Kuzmin, Y. V. & Dementiev, V. N. A review of the evidence for extinction chronologies for five species of Upper Pleistocene megafauna in Siberia. Radiocarbon 46, 301–314 (2004).

    Google Scholar 

  182. 182.

    Roberts, R. G. et al. New ages for the last Australian megafauna: continent-wide extinction about 46,000 years ago. Science 292, 1888–1892 (2001).

    ADS  Google Scholar 

  183. 183.

    Miller, G. H. et al. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309, 287–290 (2005).

    ADS  Google Scholar 

  184. 184.

    Gillespie, R., Brook, B. W. & Baynes, A. Short overlap of humans and megafauna in Pleistocene Australia. Alcheringa: An. Australasian J. Palaeontology 30, 163–186 (2006).

    Google Scholar 

  185. 185.

    Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 1–15 (2021).

    Google Scholar 

  186. 186.

    Turnbull, J. C. et al. Sixty years of radiocarbon dioxide measurements at Wellington, New Zealand: 1954–2014. Atmos. Chem. Phys. 17, 14771–14784 (2017).

    ADS  Google Scholar 

  187. 187.

    Levin, I. & Kromer, B. The tropospheric (CO2)-C-14 level in mid-latitudes of the northern hemisphere (1959–2003). Radiocarbon 46, 1261–1272 (2004).

    Google Scholar 

  188. 188.

    Levin, I. et al. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B: Chem. Phys. Meteorol. 62, 26–46 (2010).

    ADS  Google Scholar 

  189. 189.

    Hammer, S. & Levin, I. Monthly mean atmospheric D14CO2 at Jungfraujoch and Schauinsland from 1986 to 2016. Tellus B 65, 20092 (2017).

    Google Scholar 

  190. 190.

    Hua, Q. & Barbetti, M. Influence of atmospheric circulation on regional (CO2)-C-14 differences. J. Geophys. Res. Atmos. 112, D19102 (2007).

    ADS  Google Scholar 

  191. 191.

    Levin, I. & Hesshaimer, V. Radiocarbon — a unique tracer of global carbon cycle dynamics. Radiocarbon 42, 69–80 (2000).

    Google Scholar 

  192. 192.

    Hua, Q., Barbetti, M., Worbes, M., Head, J. & Levchenko, V. Review of radiocarbon data from atmospheric and tree ring samples for the period 1945–1997 AD. Iawa J. 20, 261–283 (1999).

    Google Scholar 

  193. 193.

    Santos, G. M., Linares, R., Lisi, C. S. & Tomazello Filho, M. Annual growth rings in a sample of Paraná pine (Araucaria angustifolia): toward improving the 14C calibration curve for the southern hemisphere. Quaternary Geochronol. 25, 96–103 (2015).

    Google Scholar 

  194. 194.

    Ancapichún, S. et al. Radiocarbon bomb-peak signal in tree-rings from the tropical Andes register low latitude atmospheric dynamics in the southern hemisphere. Sci. Total. Environ. 774, 145126 (2021).

    ADS  Google Scholar 

  195. 195.

    Graven, H. D., Gruber, N., Key, R., Khatiwala, S. & Giraud, X. Changing controls on oceanic radiocarbon: new insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake. J. Geophys. Res. Oceans 117, C1005 (2012).

    Google Scholar 

  196. 196.

    Graven, H. D. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proc. Natl Acad. Sci. USA 112, 9542–9545 (2015).

    ADS  Google Scholar 

  197. 197.

    Levin, I., Hammer, S., Kromer, B. & Meinhardt, F. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Sci. Total. Environ. 391, 211–216 (2008).

    ADS  Google Scholar 

  198. 198.

    Gamnitzer, U. et al. Carbon monoxide: a quantitative tracer for fossil fuel CO2? J. Geophys. Res. Atmos. https://doi.org/10.1029/2005JD006966 (2006).

    Article  Google Scholar 

  199. 199.

    Graven, H., Hocking, T. & Zazzeri, G. Detection of fossil and biogenic methane at regional scales using atmospheric radiocarbon. Earth’s future 7, 283–299 (2019).

    ADS  Google Scholar 

  200. 200.

    Xiong, X. et al. Time series of atmospheric Δ14CO2 recorded in tree rings from Northwest China (1957–2015). Chemosphere 272, 129921 (2021).

    ADS  Google Scholar 

  201. 201.

    Szidat, S. et al. Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. J. Geophys. Res. Atmos. https://doi.org/10.1029/2005JD006590 (2006).

    Article  Google Scholar 

  202. 202.

    Lim, S. et al. Fossil-driven secondary inorganic PM2. 5 enhancement in the North China Plain: evidence from carbon and nitrogen isotopes. Environ. Pollut. 266, 115163 (2020).

    Google Scholar 

  203. 203.

    Huang, L. et al. Application of the ECT9 protocol for radiocarbon-based source apportionment of carbonaceous aerosols. Atmos. Meas. Tech. 14, 3481–3500 (2021).

    Google Scholar 

  204. 204.

    Dias, C. M. et al. 14CO2 dispersion around two PWR nuclear power plants in Brazil. J. Environ. Radioactivity 100, 574–580 (2009).

    Google Scholar 

  205. 205.

    Major, I. et al. Source identification of PM2.5 carbonaceous aerosol using combined carbon fraction, radiocarbon and stable carbon isotope analyses in Debrecen, Hungary. Sci. Total Environ. 782, 146520 (2021).

    ADS  Google Scholar 

  206. 206.

    Pabedinskas, A. et al. Assessment of the contamination by 14C airborne releases in the vicinity of the Ignalina Nuclear Power Plant. Radiocarbon 61, 1185–1197 (2019).

    Google Scholar 

  207. 207.

    Trumbore, S. Radiocarbon and soil carbon dynamics. Annu. Rev. Earth Planet. Sci. 37, 47–66 (2009).

    ADS  Google Scholar 

  208. 208.

    Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).

    ADS  Google Scholar 

  209. 209.

    Trumbore, S. E. & Zheng, S. Comparison of fractionation methods for soil organic matter 14C analysis. Radiocarbon 38, 219–229 (1996).

    Google Scholar 

  210. 210.

    Rethemeyer, J. et al. Transformation of organic matter in agricultural soils: radiocarbon concentration versus soil depth. Geoderma 128, 94–105 (2005).

    ADS  Google Scholar 

  211. 211.

    Hemingway, J. D. et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570, 228–231 (2019).

    ADS  Google Scholar 

  212. 212.

    Kuzyakov, Y., Bogomolova, I. & Glaser, B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil. Biol. Biochem. 70, 229–236 (2014).

    Google Scholar 

  213. 213.

    Munksgaard, N. C. et al. Partitioning of microbially respired CO2 between indigenous and exogenous carbon sources during biochar degradation using radiocarbon and stable carbon isotopes. Radiocarbon 61, 573–586 (2019).

    Google Scholar 

  214. 214.

    Estop-Aragonés, C. et al. Assessing the potential for mobilization of old soil carbon after permafrost thaw: a synthesis of 14C measurements from the northern permafrost region. Global Biogeochem. Cycles 34, e2020GB006672 (2020).

    ADS  Google Scholar 

  215. 215.

    Moore, S. et al. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493, 660–663 (2013).

    ADS  Google Scholar 

  216. 216.

    Basu, S. et al. Estimating US fossil fuel CO2 emissions from measurements of 14C in atmospheric CO2. Proc. Natl Acad. Sci. USA 117, 13300–13307 (2020).

    ADS  Google Scholar 

  217. 217.

    Cartwright, I., Currell, M. J., Cendón, D. I. & Meredith, K. T. A review of the use of radiocarbon to estimate groundwater residence times in semi-arid and arid areas. J. Hydrol. 580, 124247 (2020).

    Google Scholar 

  218. 218.

    Hobbie, E. A., Weber, N. S., Trappe, J. M. & Van Klinken, G. J. Using radiocarbon to determine the mycorrhizal status of fungi. N. Phytologist 156, 129–136 (2002).

    Google Scholar 

  219. 219.

    Newsham, K. K., Garnett, M. H., Robinson, C. H. & Cox, F. Discrete taxa of saprotrophic fungi respire different ages of carbon from Antarctic soils. Sci. Rep. 8, 1–10 (2018).

    Google Scholar 

  220. 220.

    Briones, M. J. I. & Ineson, P. Use of 14C carbon dating to determine feeding behaviour of enchytraeids. Soil Biology and Biochemistry 34, 881–884 (2002).

    Google Scholar 

  221. 221.

    Ishikawa, N. F. et al. Combined use of radiocarbon and stable carbon isotopes for the source mixing model in a stream food web. Limnol. Oceanogr. 65, 2688–2696 (2020).

    ADS  Google Scholar 

  222. 222.

    Wilson, S. A. et al. Assessing capture of atmospheric CO2 within mine tailings using stable isotopes and C-14. Geochimica Cosmochimica Acta 74, A1135–A1135 (2010).

    Google Scholar 

  223. 223.

    Wilson, S. A. et al. Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining. Int. J. Greenh. Gas. Control. 25, 121–140 (2014).

    Google Scholar 

  224. 224.

    Power, I. M. et al. Magnesite formation in playa environments near Atlin, British Columbia, Canada. Geochimica Cosmochimica Acta 255, 1–24 (2019).

    ADS  Google Scholar 

  225. 225.

    Broecker, W. S. & Peng, T.-H. in Tracers in the Sea 690 (Eldigio, 1982).

  226. 226.

    Broecker, W., Gerard, R., Ewing, M. & Heezen, B. C. Natural radiocarbon in the Atlantic Ocean. J. Geophys. Res. 65, 2903–2931 (1960).

    ADS  Google Scholar 

  227. 227.

    Druffel, E. M. Radiocarbon in annual coral rings from the eastern tropical Pacific Ocean. Geophys. Res. Lett. 8, 59–62 (1981).

    ADS  Google Scholar 

  228. 228.

    Nydal, R. Radiocarbon in the ocean. Radiocarb. 42, 81–98 (2000).

    Google Scholar 

  229. 229.

    Key, R. M. et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles https://doi.org/10.1029/2004GB002247 (2004).

    Article  Google Scholar 

  230. 230.

    Guilderson, T. P., Caldeira, K. & Duffy, P. B. Radiocarbon as a diagnostic tracer in ocean and carbon cycle modeling. Global Biogeochem. Cycles 14, 887–902 (2000).

    ADS  Google Scholar 

  231. 231.

    Barker, S., Knorr, G., Vautravers, M. J., Diz, P. & Skinner, L. C. Extreme deepening of the Atlantic overturning circulation during deglaciation. Nat. Geosci. 3, 567–571 (2010).

    ADS  Google Scholar 

  232. 232.

    Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010).

    ADS  Google Scholar 

  233. 233.

    Walczak, M. H. et al. Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans. Science 370, 716 (2020).

    ADS  Google Scholar 

  234. 234.

    Burke, A. & Robinson, L. F. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 335, 557–561 (2012).

    ADS  Google Scholar 

  235. 235.

    Guilderson, T. P. & Schrag, D. P. Abrupt shift in subsurface temperatures in the tropical Pacific associated with changes in El Niño. Science 281, 240–243 (1998).

    ADS  Google Scholar 

  236. 236.

    McNichol, A. P. & Aluwihare, L. I. The power of radiocarbon in biogeochemical studies of the marine carbon cycle: insights from studies of dissolved and particulate organic carbon (DOC and POC). Chem. Rev. 107, 443–466 (2007).

    Google Scholar 

  237. 237.

    Williams, P. M. & Druffel, E. R. Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330, 246–248 (1987).

    ADS  Google Scholar 

  238. 238.

    Bauer, J. E., Williams, P. M. & Druffel, E. R. 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea. Nature 357, 667–670 (1992).

    ADS  Google Scholar 

  239. 239.

    Druffel, E. R. & Bauer, J. E. Radiocarbon distributions in Southern Ocean dissolved and particulate organic matter. Geophys. Res. Lett. 27, 1495–1498 (2000).

    ADS  Google Scholar 

  240. 240.

    Ishikawa, N. F., Butman, D. & Raymond, P. A. Radiocarbon age of different photoreactive fractions of freshwater dissolved organic matter. Org. Geochem. 135, 11–15 (2019).

    Google Scholar 

  241. 241.

    Beaupré, S. R., Walker, B. D. & Druffel, E. R. M. The two-component model coincidence: evaluating the validity of marine dissolved organic radiocarbon as a stable-conservative tracer at Station M. Deep. Sea Res. Part. II: Topical Stud. Oceanography 173, 104737 (2020).

    Google Scholar 

  242. 242.

    Druffel, E. R. & Williams, P. M. Identification of a deep marine source of particulate organic carbon using bomb 14C. Nature 347, 172–174 (1990).

    ADS  Google Scholar 

  243. 243.

    Druffel, E. R., Bauer, J. E., Griffin, S. & Hwang, J. Penetration of anthropogenic carbon into organic particles of the deep ocean. Geophys. Res. Lett. https://doi.org/10.1029/2003GL017423 (2003).

    Article  Google Scholar 

  244. 244.

    Verdugo, P. et al. The oceanic gel phase: a bridge in the DOM–POM continuum. Mar. Chem. 92, 67–85 (2004).

    Google Scholar 

  245. 245.

    Spalding, K. L., Bhardwaj, R. D., Buchholz, B. A., Druid, H. & Frisen, J. Retrospective birth dating of cells in humans. Cell 122, 133–143 (2005).

    Google Scholar 

  246. 246.

    Bergmann, O. et al. The age of olfactory bulb neurons in humans. Neuron 74, 634–639 (2012).

    Google Scholar 

  247. 247.

    Bhardwaj, R. D. et al. Neocortical neurogenesis in humans is restricted to development. Proc. Natl Acad. Sci. USA 103, 12564–12568 (2006).

    ADS  Google Scholar 

  248. 248.

    Huttner, H. B. et al. The age and genomic integrity of neurons after cortical stroke in humans. Nat. Neurosci. 17, 801–803 (2014).

    Google Scholar 

  249. 249.

    Spalding, K. L. et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219–1227 (2013).

    Google Scholar 

  250. 250.

    Ernst, A. et al. Neurogenesis in the striatum of the adult human brain. Cell 156, 1072–1083 (2014).

    Google Scholar 

  251. 251.

    Yeung, M. S. et al. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159, 766–774 (2014).

    Google Scholar 

  252. 252.

    Réu, P. et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 20, 779–784 (2017).

    Google Scholar 

  253. 253.

    Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    ADS  Google Scholar 

  254. 254.

    Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).

    Google Scholar 

  255. 255.

    Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008).

    ADS  Google Scholar 

  256. 256.

    Huttner, H. B. et al. Meningioma growth dynamics assessed by radiocarbon retrospective birth dating. Ebiomedicine 27, 176–181 (2018).

    Google Scholar 

  257. 257.

    Mold, J. E. et al. Cell generation dynamics underlying naive T-cell homeostasis in adult humans. PLoS Biol. 17, e3000383 (2019).

    Google Scholar 

  258. 258.

    Arner, P. et al. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478, 110–113 (2011).

    ADS  Google Scholar 

  259. 259.

    Spalding, K. L. et al. Impact of fat mass and distribution on lipid turnover in human adipose tissue. Nat. Commun. 8, 1–9 (2017).

    Google Scholar 

  260. 260.

    Arner, P. et al. Adipose lipid turnover and long-term changes in body weight. Nat. Med. 25, 1385–1389 (2019).

    Google Scholar 

  261. 261.

    Libby, W. F. Radiocarbon dates. 2. Science 114, 291–296 (1951).

    ADS  Google Scholar 

  262. 262.

    Jull, A. J. T. et al. Radiocarbon dating and intercomparison of some early historical radiocarbon samples. Radiocarbon 60, 535–548 (2018).

    Google Scholar 

  263. 263.

    Kasso, T. M., Oinonen, M. J., Mizohata, K., Tahkokallio, J. K. & Heikkilä, T. M. Volumes of worth — delimiting the sample size for radiocarbon dating parfchment. Radiocarb. 63, 105–120 (2021).

    Google Scholar 

  264. 264.

    Brock, F. Radiocarbon dating of historical parchments. Radiocarbon 55, 353–363 (2013).

    Google Scholar 

  265. 265.

    Brock, F., Ostapkowicz, J., Wiedenhoeft, A. C. & Bull, I. D. Radiocarbon dating wooden carvings and skeletal remains from Pitch Lake, Trinidad. Radiocarbon 59, 1447–1461 (2017).

    Google Scholar 

  266. 266.

    Liccioli, L., Fedi, M., Carraresi, L. & Mando, P. A. Characterization of the chloroform-based pretreatment method for C-14 dating of restored wooden samples. Radiocarbon 59, 757–764 (2017).

    Google Scholar 

  267. 267.

    Solís, C. et al. AMS 14C dating of the Mayan codex of Mexico revisited. Radiocarbon 62, 1543–1550 (2020).

    Google Scholar 

  268. 268.

    Ringbom, A., Lindroos, A., Heinemeier, J. & Sonck-Koota, P. 19 Years of mortar dating: learning from experience. Radiocarbon 56, 619–635 (2014).

    Google Scholar 

  269. 269.

    Urbanová, P., Boaretto, E. & Artioli, G. The state-of-the-art of dating techniques applied to ancient mortars and binders: a review. Radiocarbon 62, 503–525 (2020).

    Google Scholar 

  270. 270.

    Michalska, D., Czernik, J. & Goslar, T. Methodological aspect of mortars dating (Poznań, Poland, MODIS). Radiocarbon 59, 1891–1906 (2017).

    Google Scholar 

  271. 271.

    Caroselli, M., Hajdas, I. & Cassitti, P. Radiocarbon dating of Dolomitic mortars from the Convent Saint John, Müstair (Switzerland): first results. Radiocarbon 62, 601–615 (2020).

    Google Scholar 

  272. 272.

    Barrett, G. T. et al. Ramped pyroxidation: a new approach for radiocarbon dating of lime mortars. J. Archaeological Sci. 129, 105366 (2021).

    Google Scholar 

  273. 273.

    Derrick, M. R., Stulik, D. & Landry, J. M. Infrared Spectroscopy in Conservation Science 236 (Getty Publications, 2000).

  274. 274.

    Ford, T., Rizzo, A., Hendriks, E., Frøysaker, T. & Caruso, F. A non-invasive screening study of varnishes applied to three paintings by Edvard Munch using portable diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Herit. Sci. 7, 1–13 (2019).

    Google Scholar 

  275. 275.

    Vitali, F. et al. The vernacular sculpture of Saint Anthony the Abbot of Museo Colle del Duomo in Viterbo (Italy). Diagnostic and wood dating. J. Cultural Herit. 48, 299–304 (2021).

    Google Scholar 

  276. 276.

    Colombini, M. P. & Modugno, F. Organic Mass Spectrometry in Art and Archaeology 483 (Wiley, 2009).

  277. 277.

    Hendriks, L. et al. Microscale radiocarbon dating of paintings. Applied Phys. A 122, 1–10 (2016).

    ADS  Google Scholar 

  278. 278.

    Quarta, G., D’Elia, M., Paparella, S., Serra, A. & Calcagnile, L. Characterisation of lead carbonate white pigments submitted to AMS radiocarbon dating. J. Cultural Herit. 46, 102–107 (2020).

    Google Scholar 

  279. 279.

    Fiorillo, F., Hendriks, L., Hajdas, I., Vandini, M. & Huysecom, E. The rediscovery of Jan Ruyscher and its consequence. J. Am. Inst. Conserv. https://doi.org/10.1080/01971360.2020.1822702 (2021).

    Article  Google Scholar 

  280. 280.

    Hajdas, I. et al. Bomb C-14 on paper and detection of the forged paintings of T’ang Haywen. Radiocarbon 61, 1905–1912 (2019).

    Google Scholar 

  281. 281.

    Hüls, M., Grootes, P. M. & Nadeau, M.-J. Sampling iron for radiocarbon dating: influence of modern steel tools on 14C dating of ancient iron artifacts. Radiocarbon 53, 151–160 (2011).

    Google Scholar 

  282. 282.

    Claggett, D. et al. Modern or medieval? Analysis of an iron anchor from Camuscross, Scotland and direct dating methods for metal artefacts. J. Archaeological Science: Rep. 25, 144–152 (2019).

    Google Scholar 

  283. 283.

    Hüls, C. M., Petri, I. & Föll, H. Absolute dating of early iron objects from the Ancient Orient: radiocarbon dating of Luristan Iron Mask Swords. Radiocarbon 61, 1229–1238 (2019).

    Google Scholar 

  284. 284.

    Durier, M. et al. Radiocarbon dating of legacy music instrument collections: example of traditional indian Vina from the Musée De La Musique, Paris. Radiocarbon 61, 1357–1366 (2019).

    Google Scholar 

  285. 285.

    Patrut, A. et al. The demise of the largest and oldest African baobabs. Nat. Plants 4, 423–426 (2018).

    Google Scholar 

  286. 286.

    Patrut, A. et al. African baobabs with false inner cavities: the radiocarbon investigation of the Lebombo Eco Trail baobab. PLoS ONE 10, e0117193 (2015).

    Google Scholar 

  287. 287.

    Patrut, A. et al. The growth stop phenomenon of baobabs (Adansonia spp.) identified by radiocarbon dating. Radiocarb. 59, 435–448 (2017).

    Google Scholar 

  288. 288.

    Piovesan, G. et al. Dating old hollow trees by applying a multistep tree-ring and radiocarbon procedure to trunk and exposed roots. MethodsX 5, 495–502 (2018).

    Google Scholar 

  289. 289.

    Wild, E. M. First 14C results from archaeological and forensic studies at the Vienna Environmental Research Accelerator. Radiocarbon 40, 273–281 (1998).

    Google Scholar 

  290. 290.

    Jørkov, M. L. S., Heinemeier, J. & Lynnerup, N. The petrous bone — a new sampling site for identifying early dietary patterns in stable isotopic studies. Am. J. Phys. Anthropology 138, 199–209 (2009).

    Google Scholar 

  291. 291.

    Spalding, K. L., Buchholz, B. A., Bergman, L. E., Druid, H. & Frisen, J. Forensics: age written in teeth by nuclear tests. Nature 437, 333–334 (2005).

    ADS  Google Scholar 

  292. 292.

    Speller, C. F. et al. Personal identification of cold case remains through combined contribution from anthropological, mt DNA, and bomb-pulse dating analyses. J. Forensic Sci. 57, 1354–1360 (2012).

    Google Scholar 

  293. 293.

    Alkass, K., Buchholz, B., Druid, H. & Spalding, K. Analysis of 14C and 13C in teeth provides precise birth dating and clues to geographical origin. Forensic Sci. Int. 209, 34–41 (2011).

    Google Scholar 

  294. 294.

    Alkass, K. et al. Age estimation in forensic sciences: application of combined aspartic acid racemization and radiocarbon analysis. Mol. Cell. Proteom. 9, 1022–1030 (2010).

    Google Scholar 

  295. 295.

    Cook, G. T., Dunbar, E., Black, S. M. & Xu, S. A preliminary assessment of age at death determination using the nuclear weapons testing 14C activity of dentine and enamel. Radiocarbon 48, 305–313 (2006).

    Google Scholar 

  296. 296.

    Buchholz, B. & Spalding, K. Year of birth determination using radiocarbon dating of dental enamel. Surf. Interface Analysis: An. Int. J. devoted Dev. application Tech. Anal. surfaces, interfaces thin films 42, 398–401 (2010).

    Google Scholar 

  297. 297.

    Alkass, K. et al. Analysis of radiocarbon, stable isotopes and DNA in teeth to facilitate identification of unknown decedents. PLoS ONE 8, e69597 (2013).

    ADS  Google Scholar 

  298. 298.

    Saitoh, H. et al. Estimation of birth year by radiocarbon dating of tooth enamel: approach to obtaining enamel powder. J. Forensic Leg. Med. 62, 97–102 (2019).

    Google Scholar 

  299. 299.

    Kjeldsen, H., Heinemeier, J., Heegaard, S., Jacobsen, C. & Lynnerup, N. Dating the time of birth: a radiocarbon calibration curve for human eye-lens crystallines. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 268, 1303–1306 (2010).

    ADS  Google Scholar 

  300. 300.

    Lynnerup, N., Kjeldsen, H., Heegaard, S., Jacobsen, C. & Heinemeier, J. Radiocarbon dating of the human eye lens crystallines reveal proteins without carbon turnover throughout life. PLoS ONE 3, e1529 (2008).

    ADS  Google Scholar 

  301. 301.

    Uno, K. T. et al. Bomb-curve radiocarbon measurement of recent biologic tissues and applications to wildlife forensics and stable isotope (paleo)ecology. Proc. Natl Acad. Sci. USA 110, 11736 (2013).

    ADS  Google Scholar 

  302. 302.

    Cerling, T. E. et al. Radiocarbon dating of seized ivory confirms rapid decline in African elephant populations and provides insight into illegal trade. Proc. Natl Acad. Sci. USA 113, 13330–13335 (2016).

    ADS  Google Scholar 

  303. 303.

    Schmidberger, A., Durner, B., Gehrmeyer, D. & Schupfner, R. Development and application of a method for ivory dating by analyzing radioisotopes to distinguish legal from illegal ivory. Forensic Sci. Int. 289, 363–367 (2018).

    Google Scholar 

  304. 304.

    Quarta, G., D’Elia, M., Braione, E. & Calcagnile, L. Radiocarbon dating of ivory: potentialities and limitations in forensics. Forensic Sci. Int. 299, 114–118 (2019).

    Google Scholar 

  305. 305.

    Wild, E. M., Kutschera, W., Meran, A. & Steier, P. 14C bomb peak analysis of African elephant tusks and its relation to cites. Radiocarbon 61, 1619–1624 (2019).

    Google Scholar 

  306. 306.

    Dormontt, E. E. et al. Forensic timber identification: it’s time to integrate disciplines to combat illegal logging. Biol. Conserv. 191, 790–798 (2015).

    Google Scholar 

  307. 307.

    Lowe, A. J. et al. Opportunities for improved transparency in the timber trade through scientific verification. BioScience 66, 990–998 (2016).

    Google Scholar 

  308. 308.

    Retief, K., West, A. G. & Pfab, M. F. Can stable isotopes and radiocarbon dating provide a forensic solution for curbing illegal harvesting of threatened cycads? J. Forensic Sci. 59, 1541–1551 (2014).

    Google Scholar 

  309. 309.

    Köhler, P. Using the Suess effect on the stable carbon isotope to distinguish the future from the past in radiocarbon. Env. Res. Lett. 11, 124016 (2016).

    Google Scholar 

  310. 310.

    Quarta, G., Calcagnile, L., Giffoni, M., Braione, E. & D’Elia, M. Determination of the biobased content in plastics by radiocarbon. Radiocarbon 55, 1834–1844 (2013).

    Google Scholar 

  311. 311.

    Dijs, I. J., Van der Windt, E., Kaihola, L. & van der Borg, K. Quantitative determination by 14C analysis of the biological component in fuels. Radiocarbon 48, 315–323 (2006).

    Google Scholar 

  312. 312.

    Varga, T. et al. High-precision biogenic fraction analyses of liquid fuels by 14C AMS at HEKAL. Radiocarbon 60, 1317–1325 (2018).

    Google Scholar 

  313. 313.

    Palstra, S. W. L., Rabou, L. P. L. M. & Meijer, H. A. J. Radiocarbon-based determination of biogenic and fossil carbon partitioning in the production of synthetic natural gas. Fuel 157, 177–182 (2015).

    Google Scholar 

  314. 314.

    Calcagnile, L., Quarta, G., D’Elia, M., Ciceri, G. & Martinotti, V. Radiocarbon AMS determination of the biogenic component in CO2 emitted from waste incineration. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 269, 3158–3162 (2011).

    ADS  Google Scholar 

  315. 315.

    Quarta, G. et al. AMS-14C determination of the biogenic-fossil fractions in flue gases. Radiocarbon 60, 1327–1333 (2018).

    Google Scholar 

  316. 316.

    Bronić, I. K., Barešić, J., Horvatinčić, N. & Sironić, A. Determination of biogenic component in liquid fuels by the 14C direct LSC method by using quenching properties of modern liquids for calibration. Radiat. Phys. Chem. 137, 248–253 (2017).

    ADS  Google Scholar 

  317. 317.

    ISO. ISO 13833:2013: stationary source emissions – determination of the ratio of biomass (biogenic) and fossil-derived carbon dioxide–radiocarbon sampling and determination. ISO https://www.iso.org/standard/54332.html (2013).

  318. 318.

    ASTM International. ASTM D6866-21: standard test methods for determining the biobased content of solid, liquid, and gaseous samples using radiocarbon analysis. ASTM International https://www.astm.org/Standards/D6866.htm (2021).

  319. 319.

    Nilsson, M. et al. Analysis of the putative remains of a European Patron Saint — St. Birgitta. PLoS ONE 5, e8986 (2010).

    ADS  Google Scholar 

  320. 320.

    Damon, P. E. et al. Radiocarbon dating of the Shroud of Turin. Nature 337, 611–615 (1989).

    ADS  Google Scholar 

  321. 321.

    De Vries, H. & Oakley, K. P. Radiocarbon dating of the Piltdown skull and jaw. Nature 184, 224–226 (1959).

    ADS  Google Scholar 

  322. 322.

    De Groote, I. et al. New genetic and morphological evidence suggests a single hoaxer created ‘Piltdown man’. R. Soc. Open. Sci. 3, 160328 (2016).

    Google Scholar 

  323. 323.

    Caforio, L. et al. Discovering forgeries of modern art by the C-14 bomb peak. Eur. Phys. J. Plus 129, 1–5 (2014).

    Google Scholar 

  324. 324.

    Petrucci, F. et al. Radiocarbon dating of twentieth century works of art. Appl. Phys. A 122, 983 (2016).

    ADS  Google Scholar 

  325. 325.

    Hendriks, L. et al. Uncovering modern paint forgeries by radiocarbon dating. Proc. Natl Acad. Sci. USA 116, 13210–13214 (2019).

    Google Scholar 

  326. 326.

    Olsson, I. U. Radiocarbon dating history: early days, questions, and problems met. Radiocarbon 51, 1–43 (2009).

    Google Scholar 

  327. 327.

    Scott, E. M., Cook, G. T. & Naysmith, P. The Fifth International Radiocarbon Intercomparison (VIRI): an assessment of laboratory performance in stage 3. Radiocarbon 52, 859–865 (2010).

    Google Scholar 

  328. 328.

    Naysmith, P. et al. A cremated bone intercomparison study. Radiocarbon 49, 403–408 (2007).

    Google Scholar 

  329. 329.

    Kuzmin, Y. V. et al. A laboratory inter-comparison of AMS 14C dating of bones of the Miesenheim IV elk (Rhineland, Germany) and its implications for the date of the Laacher See eruption. Quaternary Geochronology 48, 7–16 (2018).

    Google Scholar 

  330. 330.

    Scott, E., Cook, G., Naysmith, P. & Staff, R. Learning from the wood samples in ICS, TIRI, FIRI, VIRI and SIRI. Radiocarbon 61, 1293–1304 (2019).

    Google Scholar 

  331. 331.

    Quiles, A. et al. Second Radiocarbon Intercomparison Program for the Chauvet-Pont D’arc Cave, Ardeche, France. Radiocarbon 56, 833–850 (2014).

    Google Scholar 

  332. 332.

    Millard, A. R. Conventions for reporting radiocarbon determinations. Radiocarbon 56, 555–559 (2014).

    Google Scholar 

  333. 333.

    Bayliss, A. Quality in Bayesian chronological models in archaeology. World Archaeol. 47, 677–700 (2015).

    Google Scholar 

  334. 334.

    Johnson, F. Radiocarbon dating lists and their use. Am. Antiquity 21, 312–313 (1956).

    Google Scholar 

  335. 335.

    Johnson, F. J. R. A bibliography of radiocarbon dating. Radiocarbon 1, 199–214 (1959).

    Google Scholar 

  336. 336.

    Hedges, R., Housley, R., Ramsey, C. B. & Van Klinken, G. J. A. Radiocarbon dates from the Oxford AMS system: archaeometry datelist 18. Archaeometry 36, 337–374 (1994).

    Google Scholar 

  337. 337.

    Broecker, W. S., Kulp, J. L. & Tucek, C. S. Lamont natural radiocarbon measurements. 3. Science 124, 154–165 (1956).

    ADS  Google Scholar 

  338. 338.

    Olson, E. A. & Broecker, W. S. Lamont natural radiocarbon measurements. 5. Am. J. Sci. 257, 1–28 (1959).

    ADS  Google Scholar 

  339. 339.

    Broecker, W. S. & Olson, E. A. Lamont radiocarbon measurements VIII. Radiocarbon 3, 176–204 (1961).

    Google Scholar 

  340. 340.

    Vermeersch, P. M. Radiocarbon Palaeolithic Europe database: a regularly updated dataset of the radiometric data regarding the Palaeolithic of Europe, Siberia included. Data Brief. 31, 105793–105793 (2020).

    Google Scholar 

  341. 341.

    Loftus, E., Mitchell, P. J. & Ramsey, C. B. An archaeological radiocarbon database for southern Africa. Antiquity 93, 870–885 (2019).

    Google Scholar 

  342. 342.

    Gajewski, K. et al. The Canadian Archaeological Radiocarbon Database (CARD): archaeological 14C dates in North America and their paleoenvironmental context. Radiocarbon 53, 371–394 (2011).

    Google Scholar 

  343. 343.

    Bryson, R., Bryson, R. & Ruter, A. A calibrated radiocarbon database of late Quaternary volcanic eruptions. eEarth Discuss. 1, 123–134 (2006).

    ADS  Google Scholar 

  344. 344.

    Lawrence, C. R. et al. An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0. Earth Syst. Sci. Data 12, 61–76 (2020).

    ADS  Google Scholar 

  345. 345.

    Herrando-Pérez, S. Bone need not remain an elephant in the room for radiocarbon dating. R. Soc. Open. Sci. 8, 201351 (2021).

    ADS  Google Scholar 

  346. 346.

    van der Voort, T. S. et al. MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon): a (radio)carbon-centric database for seafloor surficial sediments. Earth Syst. Sci. Data 13, 2135–2146 (2021).

    ADS  Google Scholar 

  347. 347.

    Sánchez Goñi, M. F. et al. The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth Syst. Sci. Data 9, 679–695 (2017).

    ADS  Google Scholar 

  348. 348.

    Guilderson, T. P., Reimer, P. J. & Brown, T. A. The boon and bane of radiocarbon dating. Science 307, 362–364 (2005).

    Google Scholar 

  349. 349.

    Svetlik, I. et al. The best possible time resolution: how precise could a radiocarbon dating method be? Radiocarbon 61, 1729–1740 (2019).

    Google Scholar 

  350. 350.

    Ramsey, C. B., van der Plicht, J. & Weninger, B. ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43, 381–389 (2001).

    Google Scholar 

  351. 351.

    Mol, D. et al. Results of the CERPOLEX/Mammuthus Expeditions on the Taimyr Peninsula, Arctic Siberia, Russian Federation. Quaternary Int. 142–143, 186–202 (2006).

    ADS  Google Scholar 

  352. 352.

    Maruccio, L., Quarta, G., Braione, E. & Calcagnile, L. Measuring stable carbon and nitrogen isotopes by IRMS and 14C by AMS on samples with masses in the microgram range: performances of the system installed at CEDAD — University of Salento. Int. J. Mass. Spectrom. 421, 1–7 (2017).

    Google Scholar 

  353. 353.

    McIntyre, C. P. et al. Online C-13 and C-14 gas measurements by EA–IRMS–AMS at ETH Zurich. Radiocarbon 59, 893–903 (2017).

    Google Scholar 

  354. 354.

    Blattmann, T. M. & Ishikawa, N. F. Theoretical amino acid-specific radiocarbon content in the environment: hypotheses to be tested and opportunities to be taken. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00302 (2020).

    Article  Google Scholar 

  355. 355.

    Deviese, T., Comeskey, D., McCullagh, J., Bronk Ramsey, C. & Higham, T. New protocol for compound-specific radiocarbon analysis of archaeological bones. Rapid Commun. Mass. Spectrometry 32, 373–379 (2018).

    ADS  Google Scholar 

  356. 356.

    Hamady, L. L., Natanson, L. J., Skomal, G. B. & Thorrold, S. R. Vertebral bomb radiocarbon suggests extreme longevity in white sharks. PLoS ONE 9, e84006 (2014).

    ADS  Google Scholar 

  357. 357.

    Nielsen, J. et al. Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353, 702–704 (2016).

    ADS  Google Scholar 

  358. 358.

    Loader, N. J. et al. Tree ring dating using oxygen isotopes: a master chronology for central England. J. Quaternary Sci. 34, 475–490 (2019).

    ADS  Google Scholar 

  359. 359.

    Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015).

    ADS  Google Scholar 

  360. 360.

    Brehm, N. et al. Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings. Nat. Geosci. 14, 10–15 (2021).

    ADS  Google Scholar 

  361. 361.

    Land, A., Kromer, B., Remmele, S., Brehm, N. & Wacker, L. Complex imprint of solar variability on tree rings. Environ. Res. Commun. 2, 101003 (2020).

    Google Scholar 

  362. 362.

    Libby, W. F. in Radiocarbon dating (ed. Libby, W. F.) 34–42 (University of Chicago Press, 1952).

  363. 363.

    Godwin, H. Half-life of radiocarbon. Nature 195, 984 (1962).

    ADS  Google Scholar 

  364. 364.

    Buck, C. E. & Sahu, S. K. Bayesian models for relative archaeological chronology building. J. R. Stat. Soc. Ser. C-Applied Stat. 49, 423–440 (2000).

    MathSciNet  MATH  Google Scholar 

  365. 365.

    Ramsey, C. B. Deposition models for chronological records. Quaternary Sci. Rev. 27, 42–60 (2008).

    ADS  Google Scholar 

  366. 366.

    Hajdas, I., Sojc, U., Ivy-Ochs, S., Akçar, N. & Deline, P. Radiocarbon dating for the reconstruction of the 1717 CE Triolet rock avalanche in the Mont Blanc Massif, Italy. Front. Earth Sci. https://doi.org/10.3389/feart.2020.580293 (2021).

    Article  Google Scholar 

  367. 367.

    Yamamoto, S. et al. Compound-specific radiocarbon analysis of organic compounds from Mount Fuji Proximal Lake (Lake Kawaguchi) sediment, Central Japan. Radiocarbon 62, 439–451 (2020).

    Google Scholar 

  368. 368.

    Gierga, M. et al. Long-stored soil carbon released by prehistoric land use: evidence from compound-specific radiocarbon analysis on Soppensee lake sediments. Quaternary Sci. Rev. 144, 123–131 (2016).

    ADS  Google Scholar 

  369. 369.

    Heinemeier, K. M., Schjerling, P., Heinemeier, J., Magnusson, S. P. & Kjaer, M. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C. FASEB J. 27, 2074–2079 (2013).

    Google Scholar 

  370. 370.

    Heinemeier, K. M. et al. Radiocarbon dating reveals minimal collagen turnover in both healthy and osteoarthritic human cartilage. Sci. Transl. Med. 8, 346ra390–346ra390 (2016).

    Google Scholar 

  371. 371.

    Ubelaker, D. H. Radiocarbon analysis of human remains: a review of forensic applications. J. Forensic Sci. 59, 1466–1472 (2014).

    Google Scholar 

  372. 372.

    Castro, K. et al. Multianalytical approach to the analysis of English polychromed alabaster sculptures: μRaman, μEDXRF, and FTIR spectroscopies. Anal. Bioanal. Chem. 392, 755–763 (2008).

    Google Scholar 

  373. 373.

    Casadio, F., Daher, C. & Bellot-Gurlet, L. in Analytical Chemistry for Cultural Heritage (ed. Mazzeo, R.) 161–211 (Springer International, 2017).

  374. 374.

    Švarcová, S., Kočí, E., Bezdička, P., Hradil, D. & Hradilová, J. Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science. Anal. Bioanal. Chem. 398, 1061–1076 (2010).

    Google Scholar 

  375. 375.

    Marzaioli, F. et al. Characterisation of a new protocol for mortar dating: 14C evidences. Open J. Archaeometry 2, 55–59 (2014).

    Google Scholar 

  376. 376.

    Yates, T. Studies of non-marine mollusks for the selection of shell samples for radiocarbon dating. Radiocarbon 28, 457–463 (1986).

    Google Scholar 

  377. 377.

    Gianfrate, G. et al. Qualitative application based on IR spectroscopy for bone sample quality control in radiocarbon dating. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. Accelerator Mass. Spectrometry - Proc. Tenth Int. Conf. Accelerator Mass Spectrometry 259, 316–319 (2007).

    ADS  Google Scholar 

  378. 378.

    Zazzo, A., Saliège, J.-F., Person, A. & Boucher, H. Radiocarbon dating of calcined bones: where does the carbon come from? Radiocarbon 51, 601–611 (2009).

    Google Scholar 

  379. 379.

    Alon, D., Mintz, G., Cohen, I., Weiner, S. & Boaretto, E. The use of Raman spectroscopy to monitor the removal of humic substances from charcoal: quality control for 14C dating of charcoal. Radiocarbon 44, 1–11 (2002).

    Google Scholar 

  380. 380.

    Ospitali, F., Smith, D. C. & Lorblanchet, M. Preliminary investigations by Raman microscopy of prehistoric pigments in the wall-painted cave at Roucadour, Quercy, France. J. Raman Spectroscopy: An. Int. J. Original Work. all Asp. Raman Spectroscopy, Including High. Order Processes, also BrillouRayleigh Scattering 37, 1063–1071 (2006).

    ADS  Google Scholar 

  381. 381.

    Boaretto, E. et al. Radiocarbon dating of charcoal and bone collagen associated with early pottery at Yuchanyan Cave, Hunan Province, China. Proc. Natl Acad. Sci. USA 106, 9595–9600 (2009).

    ADS  Google Scholar 

  382. 382.

    Lahlil, S. et al. The first in situ micro-Raman spectroscopic analysis of prehistoric cave art of Rouffignac St-Cernin, France. J. Raman Spectrosc. 43, 1637–1643 (2012).

    ADS  Google Scholar 

  383. 383.

    Hendriks, L. et al. Selective dating of paint components: radiocarbon dating of lead white pigment. Radiocarbon 61, 473–493 (2019).

    Google Scholar 

  384. 384.

    Bird, M., Ascough, P., Young, I., Wood, C. & Scott, A. X-ray microtomographic imaging of charcoal. J. Archaeological Sci. 35, 2698–2706 (2008).

    Google Scholar 

  385. 385.

    Huang, Y., Li, B., Bryant, C., Bol, R. & Eglinton, G. Radiocarbon dating of aliphatic hydrocarbons a new approach for dating passive-fraction carbon in soil horizons. Soil. Sci. Soc. Am. J. 63, 1181–1187 (1999).

    ADS  Google Scholar 

  386. 386.

    Santos, G., De La Torre, H., Boudin, M., Bonafini, M. & Saverwyns, S. Improved radiocarbon analyses of modern human hair to determine the year-of-death by cross-flow nanofiltered amino acids: common contaminants, implications for isotopic analysis, and recommendations. Rapid Commun. Mass. Spectrometry 29, 1765–1773 (2015).

    ADS  Google Scholar 

  387. 387.

    Van Strydonck, M. et al. 14C-dating of the skeleton remains and the content of the lead coffin attributed to the Blessed Idesbald (Abbey of the Dunes, Koksijde, Belgium). J. Archaeological Science: Rep. 5, 276–284 (2016).

    Google Scholar 

  388. 388.

    Teetaert, D., Boudin, M., Saverwyns, S. & Crombé, P. Food and soot: organic residues on outer pottery surfaces. Radiocarbon 59, 1609 (2017).

    Google Scholar 

  389. 389.

    Cersoy, S., Daheur, G., Zazzo, A., Zirah, S. & Sablier, M. Pyrolysis comprehensive gas chromatography and mass spectrometry: a new tool to assess the purity of ancient collagen prior to radiocarbon dating. Anal. Chim. Acta 1041, 131–145 (2018).

    Google Scholar 

  390. 390.

    Wagner, T. V. et al. Molecular characterization of charcoal to identify adsorbed SOM and assess the effectiveness of common SOM-removing pretreatments prior to radiocarbon dating. Quaternary Geochronol. 45, 74–84 (2018).

    Google Scholar 

  391. 391.

    Casanova, E., Knowles, T. D., Williams, C., Crump, M. P. & Evershed, R. P. Use of a 700 MHz NMR microcryoprobe for the identification and quantification of exogenous carbon in compounds purified by preparative capillary gas chromatography for radiocarbon determinations. Anal. Chem. 89, 7090–7098 (2017).

    Google Scholar 

  392. 392.

    Boudin, M., Boeckx, P., Vandenabeele, P., Mitschke, S. & Strydonck, M. V. A. N. Monitoring the presence of humic substances in wool and silk by the use of nondestructive fluorescence spectroscopy: quality control for 14C dating of wool and silk. Radiocarbon 53, 429–442 (2011).

    Google Scholar 

  393. 393.

    Bird, M. I. et al. Radiocarbon dating of “old” charcoal using a wet oxidation, stepped-combustion procedure. Radiocarbon 41, 127–140 (1999).

    Google Scholar 

  394. 394.

    Broecker, W. S. & Farrand, W. R. Radiocarbon age of the Two Creeks forest bed, Wisconsin. Geol. Soc. Am. Bull. 74, 795–802 (1963).

    ADS  Google Scholar 

  395. 395.

    Nemec, M., Wacker, L., Hajdas, I. & Gaggeler, H. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52, 1358–1370 (2010).

    Google Scholar 

  396. 396.

    Czimczik, C. I., Trumbore, S. E., Xu, X., Carbone, M. S. & Richardson, A. D. Extraction of nonstructural carbon and cellulose from wood for radiocarbon analysis. Bio Protoc. 4, e1169–e1169 (2014).

    Google Scholar 

  397. 397.

    Hajdas, I., Hendriks, L., Fontana, A. & Monegato, G. Evaluation of preparation methods in radiocarbon dating of old woods. Radiocarbon 59, 727–737 (2017).

    Google Scholar 

  398. 398.

    Eglinton, T. I. et al. Compound specific radiocarbon analysis as a tool to quantitatively apportion modern and fossil sources of polycyclic aromatic hydrocarbons in environmental matrices. Abstr. Pap. Am. Chem. Soc. 212, 65–ENVR (1996).

    Google Scholar 

  399. 399.

    Dahl, K. A. et al. Terrigenous plant wax inputs to the Arabian Sea: implications for the reconstruction of winds associated with the Indian Monsoon. Geochimica Cosmochimica Acta 69, 2547–2558 (2005).

    ADS  Google Scholar 

  400. 400.

    Ohkouchi, N., Eglinton, T., Hughen, K., Roosen, E. & Keigwin, L. Radiocarbon dating of alkenones from marine sediments: III. Influence of solvent extraction procedures on C-14 measurements of foraminifera. Radiocarbon 47, 425–432 (2005).

    Google Scholar 

  401. 401.

    Sun, S. W. et al. C-14 blank assessment in small-scale compound-specific radiocarbon analysis of lipid biomarkers and lignin phenols. Radiocarbon 62, 207–218 (2020).

    Google Scholar 

  402. 402.

    Ya, M., Wu, Y., Wang, X., Li, Y. & Su, G. The importance of compound-specific radiocarbon analysis in source identification of polycyclic aromatic hydrocarbons: a critical review. Crit. Rev. Environ. Sci. Technol. https://doi.org/10.1080/10643389.2020.1843305 (2020).

    Article  Google Scholar 

  403. 403.

    Hendriks, L. et al. The ins and outs of C-14 dating lead white paint for artworks application. Anal. Chem. 92, 7674–7682 (2020).

    Google Scholar 

  404. 404.

    Beck, L. et al. Thermal decomposition of lead white for radiocarbon dating of paintings. Radiocarbon 61, 1345–1356 (2019).

    Google Scholar 

  405. 405.

    Toffolo, M. B. et al. Structural characterization and hermal decomposition of lime binders allow accurate radiocarbon age determinations of aerial lime plaster. Radiocarbon 62, 633–655 (2020).

    Google Scholar 

  406. 406.

    McGeehin, J. et al. Stepped-combustion C-14 dating of sediment: a comparison with established techniques. Radiocarbon 43, 255–261 (2001).

    Google Scholar 

  407. 407.

    Hajdas, I., Maurer, M. & Röttig, M. B. Development of 14C dating of mortars at ETH Zurich. Radiocarbon 62, 591–600 (2020).

    Google Scholar 

  408. 408.

    Hua, Q. et al. Progress in radiocarbon target preparation at the ANTARES AMS Centre. Radiocarbon 43, 275–282 (2001).

    Google Scholar 

  409. 409.

    Aerts-Bijma, A. T., van der Plicht, J. & Meijer, H. Automatic AMS sample combustion and CO2 collection. Radiocarbon 43, 293–298 (2001).

    Google Scholar 

  410. 410.

    Nemec, M., Wacker, L. & Gaggeler, H. Optimization of the graphitization process at AGE-1. Radiocarbon 52, 1380–1393 (2010).

    Google Scholar 

  411. 411.

    Salazar, G., Zhang, Y., Agrios, K. & Szidat, S. Development of a method for fast and automatic radiocarbon measurement of aerosol samples by online coupling of an elemental analyzer with a MICADAS AMS. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 361, 163–167 (2015).

    ADS  Google Scholar 

  412. 412.

    Steier, P. et al. A new UV oxidation setup for small radiocarbon samples in solution. Radiocarbon 55, 373–382 (2013).

    Google Scholar 

  413. 413.

    Murseli, S. et al. The preparation of water (DIC, DOC) and gas (CO2, CH4) samples for radiocarbon analysis at AEL-AMS, Ottawa, Canada. Radiocarbon 61, 1563–1571 (2019).

    Google Scholar 

  414. 414.

    Burr, G. S., Edwards, R. L., Donahue, D. J., Druffel, E. R. M. & Taylor, F. W. Mass-spectrometric C-14 and U–Th measurements in coral. Radiocarbon 34, 611–618 (1992).

    Google Scholar 

  415. 415.

    Wacker, L., Fulop, R., Hajdas, I., Molnar, M. & Rethemeyer, J. A novel approach to process carbonate samples for radiocarbon measurements with helium carrier gas. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 294, 214–217 (2013).

    ADS  Google Scholar 

  416. 416.

    Garnett, M. & Murray, C. Processing of CO2 samples collected using zeolite molecular sieve for 14C analysis at the NERC Radiocarbon Facility (East Kilbride, UK). Radiocarbon 55, 410–415 (2013).

    Google Scholar 

  417. 417.

    Gaudinski, J. B., Trumbore, S. E., Davidson, E. A. & Zheng, S. Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51, 33–69 (2000).

    Google Scholar 

  418. 418.

    Russ, J., Hyman, M., Shafer, H. J. & Rowe, M. W. Radiocarbon dating of prehistoric rock paintings by selective oxidation of organic carbon. Nature 348, 710–711 (1990).

    ADS  Google Scholar 

  419. 419.

    Rowe, M. et al. Application of supercritical carbon dioxide-co-solvent mixtures for removal of organic material from archeological artifacts for radiocarbon dating. J. Supercrit. Fluids 79, 314–323 (2013).

    Google Scholar 

  420. 420.

    Vogel, J. S., Southon, J. R., Nelson, D. E. & Brown, T. A. Performance of catalytically condensed carbon for use in accelerator mass-spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 233, 289–293 (1984).

    ADS  Google Scholar 

  421. 421.

    Wacker, L., Nemec, M. & Bourquin, J. A revolutionary graphitisation system: fully automated, compact and simple. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 268, 931–934 (2010).

    ADS  Google Scholar 

  422. 422.

    Marzaioli, F. et al. Zinc reduction as an alternative method for AMS radiocarbon dating: process optimization at CIRCE. Radiocarbon 50, 139–149 (2008).

    Google Scholar 

  423. 423.

    Xu, X. M., Gao, P. & Salamanca, E. G. Ultra small-mass graphitization by sealed tube zinc reduction method for AMS C-14 measurements. Radiocarbon 55, 608–616 (2013).

    Google Scholar 

  424. 424.

    Rinyu, L., Orsovszki, G., Futo, I., Veres, M. & Molnar, M. Application of zinc sealed tube graphitization on sub-milligram samples using EnvironMICADAS. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 361, 406–413 (2015).

    ADS  Google Scholar 

  425. 425.

    Janovics, R., Futó, I. & Molnár, M. Sealed tube combustion method with MnO2 for AMS 14C measurement. Radiocarbon 60, 1347–1355 (2018).

    Google Scholar 

  426. 426.

    Siegenthaler, U., Heimann, M. & Oeschger, H. C-14 variations caused by changes in the global carbon-cycle. Radiocarbon 22, 177–191 (1980).

    Google Scholar 

  427. 427.

    Suess, H. E. Radiocarbon concentration in modern wood. Science 122, 415–417 (1955).

    ADS  Google Scholar 

  428. 428.

    Levin, I., Kromer, B. & Hammer, S. Atmospheric Δ(CO2)-C-14 trend in Western European background air from 2000 to 2012. Tellus B Chem. Phys. Meteorol. 65, 20092 (2013).

    ADS  Google Scholar 

  429. 429.

    Barisevičiūtė, R. et al. Distribution of radiocarbon in sediments of the cooling pond of RBMK type Ignalina Nuclear Power Plant in Lithuania. PLoS ONE 15, e0237605 (2020).

    Google Scholar 

  430. 430.

    Rakowski, A. Z., Kuc, T., Nakamura, T. & Pazdur, A. Radiocarbon concentration in urban area. Geochronometria 24, 63–68 (2005).

    Google Scholar 

  431. 431.

    Svetlik, I. et al. Radiocarbon in the air of central Europe: long-term investigations. Radiocarbon 52, 823–834 (2010).

    Google Scholar 

  432. 432.

    Hancock, G. J., Tims, S. G., Fifield, L. K. & Webster, I. T. The release and persistence of radioactive anthropogenic nuclides. Stratigraphical Basis for the Anthropocene 395, 265–281 (2014).

    Google Scholar 

  433. 433.

    Waters, C. N. et al. Can nuclear weapons fallout mark the beginning of the Anthropocene Epoch? Bull. At. Scientists 71, 46–57 (2015).

    Google Scholar 

Download references

Acknowledgements

The authors apologize to the authors of numerous papers that could not be cited owing to limited space. The authors acknowledge monumental contributions of generations of radiocarbon (14C) researchers and researchers using 14C in this flourishing and exciting field. Comments from reviewers and discussions with numerous colleagues in the field were most helpful, much appreciated and improved this publication. I.H. acknowledges support for her research by the Laboratory of Ion Beam Physics, ETH Zurich. Thanks to laboratory technical support for their dedicated work. Numerous researchers from various disciplines and countries are thanked for fruitful collaborations. P.A. and M.H.G. acknowledge the UK Natural Environment Research Council (NE/S011854/1; NEIF) and the Scottish Universities Environmental Research Centre (SUERC) for funding and support. They express their gratitude to colleagues at the SUERC for stimulating discussion and ideas, providing dedicated technical support and fruitful academic collaborations. S.J.F. acknowledges support from the Research School of Earth Sciences and the Australian National University (ANU), and R. Wood and R. Esmay for their dedication to and support of the ANU Radiocarbon Laboratory. C.L.P. acknowledges support from the Malcolm H. Wiener Foundation, University of Arizona and members of the IntCal Working Group. K.L.S. acknowledges support of her research from the Swedish Research Council (542-2013-8358), Strategic Research Program for Diabetes at Karolinska Institutet (C5471152), Novo Nordisk Foundation (NNF12OC1016064, NNF20OC0063944), Vallee Foundation Vallee Scholar Award (C5471234) and Karolinska Institutet/AstraZeneca Integrated Cardiometabolic Centre (H725701603). G.Q. expresses gratitude to colleagues of the Centre of Applied Physics, Dating and Diagnostics at University of Salento for their friendship, continued support, and restless and dedicated work. H.Y. and M.Y. thank the Laboratory of Radiocarbon Dating team at the University Museum of The University of Tokyo for their relentless effort to improve the precision and accuracy of radiocarbon dating together with field archaeologists and researchers in Japan and the world. I.H. and G.Q. acknowledge the inspiration and stimulating discussions with International Atomic Energy Agency (IAEA) staff and colleagues within the Coordinated Research Projects: Enhancing Nuclear Analytical Techniques to Meet the Needs of Forensic Sciences.

Author information

Affiliations

Authors

Contributions

Introduction (I.H., P.A., C.L.P. and G.Q.); Experimentation (I.H., P.A., M.H.G., C.L.P. and G.Q.); Results (I.H., P.A., M.H.G., C.L.P. and G.Q.); Applications (I.H., P.A., M.H.G., S.J.F., C.L.P., G.Q., K.L.S., H.Y. and M.Y.); Reproducibility and data deposition (I.H., P.A., M.H.G., C.L.P. and G.Q.); Limitations and optimizations (I.H., P.A., M.H.G., C.L.P., G.Q. and K.L.S.); Outlook (I.H., P.A., M.H.G., C.L.P., G.Q. and K.L.S.); Overview of the Primer (I.H.).

Corresponding author

Correspondence to Irka Hajdas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Methods Primers thanks R. Bhushan, L. Regev, P. Reimer, S. Woodborne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

14CARHU: https://www.oasisnorth.org/carhu.html

CALIBomb: http://calib.org/CALIBomb/

Gliwice Radiocarbon Laboratory: http://www.carbon14.pl/IB_Grdb/index.html

IntCal data: http://intcal.org/

New Zealand Radiocarbon Database: https://www.waikato.ac.nz/nzcd/

ORAU: https://c14.arch.ox.ac.uk/databases.html

radiocarbon.org: https://radiocarbon.webhost.uits.arizona.edu/node/11

Royal Institute for Cultural Heritage: http://c14.kikirpa.be/search.php

Supplementary information

Glossary

Global carbon cycle

Exchanges of carbon between carbon reservoirs, including the atmosphere, biosphere, oceans and sedimentary deposits.

Radiocarbon calibration curves

Experimental reconstructions of past atmospheric radiocarbon (14C) recorded in tree rings and other independently dated samples such as speleothems, marine corals and laminated sediments.

Compound-specific radiocarbon analysis

(CSRA). Radiocarbon analysis of individual organic compounds (biomarkers) such as lipids, fatty acids, proteins and waxes of a specific molecular size after chromatographic separation.

Isobar

An atom of different elements or molecules with the same atomic mass as another.

Archives

Natural records of information about the past environment, such as sediments, soils, peat bogs, cave deposits, corals and tree rings.

Reservoir effect

An apparent age of material due to mixed carbon sources when old carbon is added to atmospheric CO2.

Speleothem

A secondary mineral deposit such as calcite, aragonite or gypsum formed in caves by flowing or dripping water.

Isotope fractionation

The enrichment of one isotope relative to another owing to chemical reactions or physical processes.

Constant mass contamination correction

The mass and radiocarbon (14C) signature of contamination as evaluated for a specific preparation process to correct for exogenous carbon introduced to samples containing tens of micrograms of carbon.

Marine radiocarbon reservoir effect

(MRE). An offset in radiocarbon (14C) age between contemporaneous organisms from the terrestrial environment and organisms that derive their carbon from the marine environment.

Freshwater radiocarbon reservoir effect

(FRE). Anomalously old radiocarbon ages of samples from lakes and rivers due to water rich in dissolved radiocarbon (14C)-free calcium carbonates.

Dead carbon fraction

The amount of radioactively dead carbon that reduces the radiocarbon (14C) content in speleothems.

Diagenesis

A combination of physical, chemical and biological processes that occur in a sample after deposition.

Phytolith

A silica structure formed in plant tissues by the uptake and storage of silica from soil, which occludes and preserves organic carbon.

Proxy data

Data gathered from natural archives of climate variability, such as tree rings, ice cores, fossil pollen, ocean sediments, coral and historical data.

Solar energetic particle

A high-energy particle such as protons, electrons and high-energy nuclei coming from the Sun.

Mycorrhizal

The exchange of photosynthesized carbon for mineral nutrients obtained by symbiotic fungi.

Saprotrophic

Describes an organism that feeds on non-living organic matter and has the ability to decompose.

Ventilation

The amount of time since a water molecule last interacted with the atmosphere.

Curve of knowns

The first radiocarbon ages of well-dated historic items and wood published in 1949 by Arnold and Libby, proving the principle of the method.

Vinci and Stradivarius age plateaus

The time periods 1450–1650 Common Era (CE) and 1700–1950 CE marked by a flattening of the calibration curve where calibrated ages result in multiple intervals.

Bayesian wiggle-matching

The calibration of a sequence of radiocarbon ages with a known time gap between them, such as the number of tree rings.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hajdas, I., Ascough, P., Garnett, M.H. et al. Radiocarbon dating. Nat Rev Methods Primers 1, 62 (2021). https://doi.org/10.1038/s43586-021-00058-7

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing