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            Abstract
In situ catalysis studies seek insight into species present under reaction conditions to elucidate reaction mechanisms and understand the atomistic details of the active catalyst, both of which are key to optimizing catalyst reactivity and processes. Many reactions follow radical mechanisms, and many catalysts adopt paramagnetic states within their catalytic cycles where the systems exhibit species with unpaired electrons, which provide a sensitive handle to probe their geometric and electronic structure. Electron paramagnetic resonance (EPR) spectroscopy directly probes these unpaired electrons to characterize molecular radicals as well as determine transition metal ion oxidation states and coordination geometries. Here, we introduce the concept of EPR followed by the methodology for in situ EPR studies and discuss high-temperature gas–solid reactions, molecular catalysis, photocatalysis and electrocatalysis. The broad applicability of the approaches is demonstrated through case studies in each area, with a focus on unravelling catalytic mechanisms. We also discuss data sharing and reproducibility issues as well as limitations to the technique. Finally, we identify directions for development to guide interested researchers towards evolving areas including miniaturization and high-frequency analysis.
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                    Fig. 1: Crystal field splitting diagrams for CoII.[image: ]


Fig. 2: Experimental set-ups for in situ EPR measurements during catalytic reactions.[image: ]


Fig. 3: Origin of the shape of EPR spectra.[image: ]


Fig. 4: EPR investigation of FeIII species in zeolites.[image: ]


Fig. 5: Copper/TEMPO-catalysed selective oxidation of benzyl alcohol monitored by coupled in situ EPR/UV–Vis/ATR-IR/XAS.[image: ]


Fig. 6: Photocatalytic water reduction in a homogeneous iron/iridium-containing system with triethylamine as a sacrificial agent.[image: ]


Fig. 7: Heterogeneous photocatalytic formation of radicals from ozone for degradation of waste water pollutants.[image: ]


Fig. 8: Reaction scheme for spin trapping radicals generated during SEC-EPR, and SEC-EPR of a cobalt oxide water oxidation catalyst correlating cobalt oxidation states with catalytic turnover.[image: ]


Fig. 9: SEC-EPR of an immobilized alcohol oxidation catalyst.[image: ]


Fig. 10: Thin film and liquid state EPRoC detection schemes.[image: ]
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Glossary
	Active species
	
                  A key catalyst state in the catalytic cycle that enables catalytic activity, typically existing at or prior to the rate-determining step.

                
	Radicals
	
                  Molecules with one or more unpaired electrons.

                
	Ligand field
	
                  The electronic field of a ligand that affects the valance orbital degeneracy of the metal centre within crystal/ligand field theory.

                
	Relaxation times
	
                  The times characterizing the return of an excited spin system to the ground state, which has a direct consequence on the spectral shape. Short relaxation times broaden the lines, in some cases beyond detection, and vice versa. The longest relaxation times are typically found at cryogenic temperatures.

                
	Freeze quenching
	
                  Rapid cooling of the sample during a reaction, such as by immersing a sample tube in a cryogenic liquid or spraying an aerosol of reaction solution onto a cryogenic surface.

                
	Spin traps
	
                  Organic molecules that react with radicals to form more stable radicals.

                
	Dielectric losses
	
                  Losses of microwave energy stored in the resonator due to electric dipole excitations resulting in heating of the system.

                
	Analyte lifetime
	
                  The lifetime of the species to be analysed.

                
	Rate-determining step
	
                  The slowest step of a catalytic cycle consisting of several reaction steps.

                
	Catalytic turnover
	
                  A single pass of a catalytic cycle after which the catalyst returns to its initial state, from which it can enter into the next cycle.

                
	Dewar
	
                  An evacuated multi-walled quartz glass vessel to reduce heat transfer due to thermal conduction. Metal layers on the glass to supress radiative losses cannot be used inside microwave cavities.

                
	Coherent spectral assignment
	
                  The coherent assignment of spectra from the same sample obtained from different spectroscopic experiments when the different data sets can be explained by the same chemical reaction.

                
	Chronoamperometry
	
                  An electrochemical technique on which a potential difference is applied and the current flow is measured as a function of time.

                
	Zeeman interaction
	
                  The interaction of an unpaired electron with the external magnetic field.

                
	Doublets
	
                  Magnetic resonance splitting patterns in which a signal is split into two lines of the same intensity.

                
	Adducts
	
                  In the context of a spin trap, radical adducts are the molecules resulting from reaction of a radical with a spin trap.

                
	Zero-field splitting (ZFS) constants
	
                  In spin systems with more than one unpaired electron, magnetic interaction between the latter splits the otherwise degenerated spin states already in the absence of an external magnetic field. D and E are a measure for this splitting and depend on the anisotropy of the paramagnetic centre, being zero for isotropic centres.

                
	Free electron g value
	
                  The g value of a free electron in a vacuum, ge = 2.0023.

                
	Helmholtz layer
	
                  (Also known as the electrical double layer). A build up by the ions of a solution being bound to a charged surface.
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