Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Parallel nuclear magnetic resonance spectroscopy

Subjects

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a principal analytical technique used for the structure elucidation of molecules. This Primer covers different approaches to accelerate data acquisition and increase sensitivity of NMR measurements through parallelization, enabled by hardware design and/or pulse sequence development. Starting with hardware-based methods, we discuss coupling multiple detectors to multiple samples so each detector/sample combination provides unique information. We then cover spatio-temporal encoding, which uses magnetic field gradients and frequency-selective manipulations to parallelize multidimensional acquisition and compress it into a single shot. We also consider the parallel manipulation of different magnetization reservoirs within a sample to yield new, information-rich pulse schemes using either homonuclear or multinuclear detection. The Experimentation section describes the set-up of parallel NMR techniques. Practical examples revealing improvements in speed and sensitivity offered by the parallel methods are demonstrated in Results. Examples of use of parallelization in small-molecule analysis are discussed in Applications, with experimental constraints addressed under the Limitations and optimizations and Reproducibility and data deposition sections. The most promising future developments are considered in the Outlook, where the largest gains are expected to emerge once the discussed techniques are combined.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Approach to multiple microcoil NMR using radiofrequency coils connected in parallel.
Fig. 2: Approach using radiofrequency coils that are electrically and magnetically separate from one another.
Fig. 3: Comparison of data acquisition schemes in conventional versus ultra-fast 2D NMR.
Fig. 4: Exploiting isotope-specific magnetization.
Fig. 5: Multinuclear acquisition techniques.
Fig. 6: Spectra recorded with basic dual-receiver pulse schemes.
Fig. 7: Interleaved H–H COSY and P–P/P–H PANSY–COSY spectra of a mixture of ATP and GTP in D2O.
Fig. 8: Step-by-step manual structure elucidation from the PANACEA spectra.
Fig. 9: Ultra-fast H–H and H–F PUFSY–COSY spectra recorded in parallel.
Fig. 10: Parallel studies of protein samples.
Fig. 11: Single-shot 2D NMR spectra.
Fig. 12: NOAH data recorded for the pharmaceutical zolmitriptan.

References

  1. 1.

    Tucker, T., Marra, M. & Friedman, J. M. Massively parallel sequencing: the next big thing in genetic medicine. Am. J. Hum. Genet. 85, 142–154 (2009).

    Google Scholar 

  2. 2.

    Roemer, P. B., Edelstein, W. A., Hayes, C. E., Souza, S. P. & Mueller, O. M. The NMR phased array. Magn. Reson. Med. 16, 192–225 (1990).

    Google Scholar 

  3. 3.

    Pruessmann, K. P., Weiger, M., Scheidegger, M. B. & Boesiger, P. SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. 42, 952–962 (1999).

    Google Scholar 

  4. 4.

    Griswold, M. A. et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47, 1202–1210 (2002).

    Google Scholar 

  5. 5.

    Webb, A. G., Sweedler, J. V. & Raftery, D. in On-Line LC-NMR and Related Techniques (ed. Albert, K.) 259–279 (Wiley, 2002).

  6. 6.

    Webb, A. G. Radiofrequency microcoils for magnetic resonance imaging and spectroscopy. J. Magn. Reson. 229, 55–66 (2013).

    ADS  Google Scholar 

  7. 7.

    Frydman, L., Scherf, T. & Lupulescu, A. The acquisition of multidimensional NMR spectra within a single scan. Proc. Natl Acad. Sci. USA 99, 15858–15862 (2002). This paper introduces the basic idea underlying the execution of 2D NMR acquisitions in a single shot by spatio-temporal encoding.

    ADS  Google Scholar 

  8. 8.

    Gal, M. & Frydman, L. in Multidimensional NMR Methods for the Solution State (eds Morris, G. A. & Emsley, J. W.) 43–60 (Wiley, 2009). This paper includes numerous practical details on how to set up and process 2D homonuclear and heteronuclear NMR acquisitions in commercial spectrometers.

  9. 9.

    Mishkovsky, M. & Frydman, L. Principles and progress in ultrafast multidimensional nuclear magnetic resonance. Ann. Rev. Phys. Chem. 60, 429–448 (2009).

    ADS  Google Scholar 

  10. 10.

    Tal, A. & Frydman, L. Single-scan multidimensional magnetic resonance. Progr. NMR Spectrosc. 57, 241–292 (2010). This paper contains descriptions of the physical principles underlying the main tools involved in single-scan spatio-temporally encoded NMR and MRI, paying attention to the effects of the frequency-swept manipulations underlying these experiments.

    Google Scholar 

  11. 11.

    Giraudeau, P. & Frydman, L. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy. Ann. Rev. Anal. Chem. 7, 129–161 (2014). This paper highlights various applications enabled by single-scan 2D NMR for chemical and biophysical scenarios.

    Google Scholar 

  12. 12.

    Ardenkjaer-Larsen, J. H. et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl Acad. Sci. USA 100, 10158–10163 (2003).

    ADS  Google Scholar 

  13. 13.

    Kupče, Ē., Freeman, R. & John, R. B. K. Parallel acquisition of two-dimensional NMR spectra of several nuclear species. J. Am. Chem. Soc 128, 9606–9607 (2006). This paper introduces the direct multinuclear detection and parallel NMR spectroscopy (PANSY) technique, with PANSY–COSY and HETCOR/TOCSY experiments used as a proof of principle.

    Google Scholar 

  14. 14.

    Kovacs, H. & Kupče, Ē. Parallel NMR spectroscopy with simultaneous detection of 1H and 19F nuclei. Magn. Reson. Chem. 54, 544–560 (2016). This paper modifies various conventional small-molecule experiments to include direct multinuclear detection involving protons and 19F. Basic principles of multinuclear detection techniques are discussed.

    Google Scholar 

  15. 15.

    Nolis, P., Pérez-Trujillo, M. & Parella, T. Multiple FID acquisition of complementary HMBC data. Angew. Chem. Int. Ed. 46, 7495–7497 (2007).

    Google Scholar 

  16. 16.

    Kupče, Ē. & Claridge, T. D. W. NOAH: NMR supersequences for small molecule analysis and structure elucidation. Angew. Chem. Int. Ed. 56, 11779–11783 (2017). This paper introduces the NOAH technique, and describes how various heteronuclear and homonuclear 2D NMR experiments can be combined into a supersequence by careful manipulation of magnetization pools.

    Google Scholar 

  17. 17.

    Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions 148–158 (Oxford Univ. Press, 1987).

  18. 18.

    deGraaf, R. A. In Vivo NMR Spectroscopy, Principles and Techniques 6–8 (Wiley, 1998).

  19. 19.

    Kovacs, H., Moskau, D. & Spraul, M. Cryogenically cooled probes — a leap in NMR technology. Prog. NMR Spectrosc. 46, 131–155 (2005).

    Google Scholar 

  20. 20.

    Martin, G. E. Small-sample cryoprobe NMR applications. Encycl. Magnetic Reson. https://doi.org/10.1002/9780470034590.emrstm1300 (2012).

    Article  Google Scholar 

  21. 21.

    Cheatham, S., Gierth, P., Bermel, W. & Kupče, Ē. HCNMBC — a pulse sequence for H–(C)–N multiple bond correlations at natural isotopic abundance. J. Magn. Reson. 247, 38–41 (2014).

    ADS  Google Scholar 

  22. 22.

    Aramini, J. M., Rossi, P., Anklin, C., Xiao, R. & Montelione, G. T. Microgram-scale protein structure determination by NMR. Nat. Methods 4, 491–493 (2007).

    Google Scholar 

  23. 23.

    MacNamara, E., Hou, T., Fisher, G., Williams, S. & Raftery, D. Multiplex sample NMR: an approach to high-throughput NMR using a parallel coil probe. Anal. Chim. Acta. 397, 9–16 (1999). This paper shows for the first time that multiple samples can be studied at once using an arrangement in which radiofrequency coils are connected in parallel.

    Google Scholar 

  24. 24.

    Hou, T., Smith, J., MacNamara, E., Macnaughtan, M. & Raftery, D. Analysis of multiple samples using multiplex sample NMR: selective excitation and chemical shift imaging approaches. Anal. Chem. 73, 2541–2546 (2001).

    Google Scholar 

  25. 25.

    Macnaughtan, M. A., Hou, T., Xu, J. & Raftery, D. High-throughput nuclear magnetic resonance analysis using a multiple coil flow probe. Anal. Chem. 75, 5116–5123 (2003).

    Google Scholar 

  26. 26.

    Macnaughtan, M. A., Hou, T., MacNamara, E., Santini, R. & Raftery, D. NMR difference probe: a dual-coil probe for NMR difference spectroscopy. J. Magn. Reson. 156, 97–103 (2002).

    ADS  Google Scholar 

  27. 27.

    Dumez, J.-N. Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 116, 101–134 (2018).

    Google Scholar 

  28. 28.

    Loening, N. M., Thrippleton, M. J., Keeler, J. & Griffin, R. G. Single-scan longitudinal relaxation measurements in high-resolution NMR spectroscopy. J. Magn. Reson. 164, 321–328 (2003).

    ADS  Google Scholar 

  29. 29.

    Pelta, M. D., Morris, G. A., Stchedroff, M. J. & Hammond, S. J. A one-shot sequence for high-resolution diffusion-ordered spectroscopy. Magn. Reson. Chem. 40, S147–S152 (2002).

    Google Scholar 

  30. 30.

    Zangger, K. Pure shift NMR. Prog. Nucl. Magn. Reson. Spectrosc. 86–87, 1–20 (2015).

    Google Scholar 

  31. 31.

    Li, Y., Wolters, A., Malaway, P., Sweedler, J. V. & Webb, A. G. Multiple solenoidal microcoil probes for high-sensitivity, high-throughput nuclear magnetic resonance spectroscopy. Anal. Chem. 71, 4815–4820 (1999). This paper is the first to demonstrate that multiple independent coils and samples can be used to acquire high-resolution NMR spectra with full efficiency and S/N.

    Google Scholar 

  32. 32.

    Zhang, X., Sweedler, J. V. & Webb, A. G. A probe design for the acquisition of homonuclear, heteronuclear, and inverse detected NMR spectra from multiple samples. J. Magn. Reson. 153, 254–258 (2001). This paper is the first to show that heteronuclear 2D NMR spectra can be obtained from different protein samples simultaneously.

    ADS  Google Scholar 

  33. 33.

    Wang, H., Ciobanu, L., Edison, A. S. & Webb, A. G. An eight-coil high-frequency probehead design for high-throughput nuclear magnetic resonance spectroscopy. J. Magn. Reson. 170, 206–212 (2004).

    ADS  Google Scholar 

  34. 34.

    Wolters, A. M., Jayawickrama, D. A., Webb, A. G. & Sweedler, J. V. NMR detection with multiple solenoidal microcoils for continuous-flow capillary electrophoresis. Anal. Chem. 74, 5550–5555 (2002).

    Google Scholar 

  35. 35.

    Ciobanu, L., Jayawickrama, D. A., Zhang, X., Webb, A. G. & Sweedler, J. V. Measuring reaction kinetics by using multiple microcoil NMR spectroscopy. Angew. Chem. Int. Ed. 42, 4669–4672 (2003).

    Google Scholar 

  36. 36.

    Frydman, L., Lupulescu, A. & Scherf, T. Principles and features of single-scan two-dimensional NMR spectroscopy. J. Am. Chem. Soc. 125, 9204–9217 (2003).

    Google Scholar 

  37. 37.

    Shrot, Y. & Frydman, L. Single-scan NMR spectroscopy at arbitrary dimensions. J. Am. Chem. Soc. 125, 11385–11396 (2003).

    Google Scholar 

  38. 38.

    Jeener, J. Pulse pair technique in high resolution NMR. Lecture presented at Ampere International Summer School II, Basko Polje, Yugoslavia (1971).

  39. 39.

    Aue, W. P., Bartholdi, E. & Ernst, R. R. Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 64, 2229–2246 (1976).

    ADS  Google Scholar 

  40. 40.

    Mansfield, P. Spatial mapping of the chemical shift in NMR. Magn. Reson. Med. 1, 370–386 (1984).

    Google Scholar 

  41. 41.

    Smith, P. E. S. et al. T1 relaxation measurements: probing molecular properties in real time. ChemPhysChem 14, 3138–3145 (2013).

    Google Scholar 

  42. 42.

    Shrot, Y. & Frydman, L. Single scan 2D DOSY NMR. J. Magn. Reson. 195, 226–231 (2008).

    ADS  Google Scholar 

  43. 43.

    Shrot, Y. & Frydman, L. The effects of molecular diffusion in single-scan 2D NMR. J. Chem. Phys. 128, 164513 (2008).

    ADS  Google Scholar 

  44. 44.

    Yon, M. et al. Diffusion tensor distribution imaging of an in vivo mouse brain at ultra-high magnetic field by spatiotemporal encoding. NMR Biomed, 33, e4355 (2020).

    Google Scholar 

  45. 45.

    Solomon, E. et al. Diffusion-weighted MR breast imaging with submillimeter resolution and immunity to artifacts by spatio-temporal encoding at 3T. Magn. Reson. Med. 84, 1391–1403 (2020).

    Google Scholar 

  46. 46.

    Bao, Q., Solomon, E., Liberman, G. & Frydman, L. High-resolution diffusion MRI studies of development in pregnant mice visualized by novel spatiotemporal encoding schemes. NMR Biomed. 33, e4208 (2020).

    Google Scholar 

  47. 47.

    Cousin, S. F., Liberman, G., Solomon, E., Otikovs, M. & Frydman, L. A regularized reconstruction pipeline for high definition diffusion MRI in challenging regions incorporating a per-shot image correction. Magn. Reson. Med. 81, 3080–3093 (2019).

    Google Scholar 

  48. 48.

    Liberman, G., Solomon, E., Lustig, M. & Frydman, L. Mulitple coil k-space interpolation enhances resolution in single-shot spatiotemporal MRI. Magn. Reson. Med. 79, 796–805 (2018).

    Google Scholar 

  49. 49.

    Solomon, E., Liberman, G., Zhang, Z. & Frydman, L. Diffusion MRI measurements in challenging head and brain regions via cross-term spatiotemporally encoding. Sci. Rep. 7, 18010 (2017).

    ADS  Google Scholar 

  50. 50.

    Garbow, J. R., Weitekamp, D. P. & Pines, A. Bilinear rotation decoupling of homonuclear scalar interactions. Chem. Phys. Lett. 93, 504–509 (1982).

    ADS  Google Scholar 

  51. 51.

    Wimperis, S. & Freeman, R. An excitation sequence which discriminates between direct and long-range CH coupling. J. Magn. Reson. 58, 348–353 (1984).

    ADS  Google Scholar 

  52. 52.

    Briand, J. & Sørensen, O. W. Simultaneous and independent rotations with arbitrary flip angles and phases for I, ISα, and ISβ spin systems. J. Magn. Reson. 135, 44–49 (1998).

    ADS  Google Scholar 

  53. 53.

    Kupče, Ē. & Claridge, T. D. W. Molecular structure from a single NMR supersequence. Chem. Commun. 54, 7139–7142 (2018). This paper is the first demonstration of how parallelized NMR experiments can be combined with computer-assisted structural elucidation, allowing unknown molecular frameworks to be determined in a far shorter time than previously possible.

    Google Scholar 

  54. 54.

    Kupče, Ē. & Claridge, T. D. W. New NOAH modules for structure elucidation at natural isotopic abundance. J. Magn. Reson. 307, 106568 (2019).

    Google Scholar 

  55. 55.

    Parella, T. & Nolis, P. Time-shared NMR experiments. Concepts Magn. Reson. 36A, 1–23 (2010). This review on time-shared sequences with a focus on small-molecule applications goes into detail about sensitivity considerations as well as numerous experimental variants and improvements on the basic time-shared concept.

    Google Scholar 

  56. 56.

    Sørensen, O. W. Aspects and prospects of multidimensional time-domain spectroscopy. J. Magn. Reson. 89, 210–216 (1990).

    ADS  Google Scholar 

  57. 57.

    Claridge, T. D. W., Mayzel, M. & Kupče, Ē. Triplet NOAH supersequences optimised for small molecule structure characterisation. Magn. Reson. Chem. 57, 946–952 (2019).

    Google Scholar 

  58. 58.

    Kakita, V. M. R., Rachineni, K., Bopardikar, M. & Hosur, R. V. NMR supersequences with real-time homonuclear broadband decoupling: sequential acquisition of protein and small molecule spectra in a single experiment. J. Magn. Reson. 297, 108–112 (2018).

    ADS  Google Scholar 

  59. 59.

    Kakita, V. M. R. & Hosur, R. V. All-in-one NMR spectroscopy of small organic molecules: complete chemical shift assignment from a single NMR experiment. RSC Adv. 10, 21174–21179 (2020).

    ADS  Google Scholar 

  60. 60.

    Cavanagh, J. & Rance, M. Sensitivity-enhanced NMR techniques for the study of biomolecules. Annu. Rep. NMR Spectrosc. 27, 1–58 (1993).

    Google Scholar 

  61. 61.

    Palmer, A. G., Cavanagh, J., Wright, P. E. & Rance, M. Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J. Magn. Reson. 93, 151–170 (1991).

    ADS  Google Scholar 

  62. 62.

    Cavanagh, J. & Rance, M. Sensitivity improvement in isotropic mixing (TOCSY) experiments. J. Magn. Reson. 88, 72–85 (1990).

    ADS  Google Scholar 

  63. 63.

    Nolis, P., Motiram-Corral, K., Pérez-Trujillo, M. & Parella, T. Interleaved dual NMR acquisition of equivalent transfer pathways in TOCSY and HSQC experiments. ChemPhysChem 20, 356–360 (2019).

    Google Scholar 

  64. 64.

    Nolis, P. & Parella, T. Practical aspects of the simultaneous collection of COSY and TOCSY spectra. Magn. Reson. Chem. 57, S85–S94 (2019).

    Google Scholar 

  65. 65.

    Nolis, P., Motiram-Corral, K., Pérez-Trujillo, M. & Parella, T. Simultaneous acquisition of two 2D HSQC spectra with different 13C spectral widths. J. Magn. Reson. 300, 1–7 (2019).

    ADS  Google Scholar 

  66. 66.

    Nagy, T. M., Kövér, K. E. & Sørensen, O. W. Double and adiabatic BANGO for concatenating two NMR experiments relying on the same pool of magnetization. J. Magn. Reson. 316, 106767 (2020).

    Google Scholar 

  67. 67.

    Motiram-Corral, K., Pérez-Trujillo, M., Nolis, P. & Parella, T. Implementing one-shot multiple-FID acquisition into homonuclear and heteronuclear NMR experiments. Chem. Commun. 54, 13507–13510 (2018).

    Google Scholar 

  68. 68.

    Bermel, W., Bertini, I., Felli, I. C., Piccioli, M. & Pierattelli, R. 13C-detected protonless NMR spectroscopy of proteins in solution. Prog. NMR Spectrosc. 48, 25–45 (2006).

    Google Scholar 

  69. 69.

    Pervushin, K., Vögeli, B. & Eletsky, A. Longitudinal 1H relaxation optimization in TROSY NMR spectroscopy. J. Am. Chem. Soc. 124, 12898–12902 (2002).

    Google Scholar 

  70. 70.

    Edison, A. S., Le Guennec, A., Delaglio F. & Kupče, Ē. in NMR-based Metabolomics: Methods and Protocols (eds Gowda, G. A. N. & Raftery, D.) 69–96 (Humana Press, 2019).

  71. 71.

    Kupče, Ē. & Freeman, R. Molecular structure from a single NMR sequence (fast-PANACEA). J. Magn. Reson. 206, 147–153 (2010).

    ADS  Google Scholar 

  72. 72.

    van de Ven, F. J. M. Multidimensional NMR in Liquids—Basic Principles and Experimental Methods 165–171 (VCH, 1995).

  73. 73.

    Kitevski-LeBlanc, J. L. & Prosser, R. S. Current applications of 19F NMR to studies of protein structure and dynamics. Prog. NMR Spectrosc. 62, 1–33 (2012).

    Google Scholar 

  74. 74.

    Wan, Y.-B. & Li, X.-H. Two-dimensional nuclear magnetic resonance spectroscopy with parallel acquisition of 1H–1H and 19F–19F correlations. Chin. J. Anal. Chem. 43, 1203–1209 (2015).

    Google Scholar 

  75. 75.

    Gonen, O. et al. Simultaneous and interleaved multinuclear chemical-shift imaging, a method for concurrent, localized spectroscopy. J. Magn. Reson. 104B, 26–33 (1994).

    ADS  Google Scholar 

  76. 76.

    Bellstedt, P. et al. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection. Sci. Rep. 4, 4490 (2014).

    Google Scholar 

  77. 77.

    Wiedemann, C. et al. Sequential protein NMR assignments in the liquid state via sequential data acquisition. J. Magn. Reson. 239, 23–28 (2014).

    ADS  Google Scholar 

  78. 78.

    Gierth, P., Codina, A., Schumann, F., Kovacs, H. & Kupče, Ē. Fast experiments for structure elucidation of small molecules: Hadamard NMR with multiple receivers. Magn. Reson. Chem. 53, 940–944 (2015).

    Google Scholar 

  79. 79.

    Pudakalakatti, S. M. et al. A fast NMR method for resonance assignments: application to metabolomics. J. Biomol. NMR 58, 165–173 (2014).

    Google Scholar 

  80. 80.

    Pudakalakatti, S. M., Dubey, A. & Atreya, H. S. Simultaneous acquisition of three NMR spectra in a single experiment for rapid resonance assignments in metabolomics. J. Chem. Sci. 127, 1091–1097 (2015).

    Google Scholar 

  81. 81.

    Kupče, Ē. & Freeman, R. Resolving ambiguities in two-dimensional NMR spectra: the ‘TILT’ experiment. J. Magn. Reson. 172, 329–332 (2005).

    ADS  Google Scholar 

  82. 82.

    Freeman, R. & Kupče, Ē. Distant echoes of the accordion: reduced dimensionality, GFT-NMR, and projection-reconstruction of multidimensional spectra. Concepts Magn. Reson. 23A, 63–75 (2008).

    Google Scholar 

  83. 83.

    Kupče, Ē. & Freeman, R. Molecular structure from a single NMR experiment. J. Am. Chem. Soc 130, 10788–10792 (2008). This paper introduces the idea of constructing the PANACEA pulse scheme that allows the structure of small organic molecules to be determined unambiguously from a single NMR experiment.

    Google Scholar 

  84. 84.

    Bax, A., Freeman, R. & Kempsell, S. P. Natural abundance carbon-13–carbon-13 coupling observed via double-quantum coherence. J. Am. Chem. Soc. 102, 4849–4851 (1980).

    Google Scholar 

  85. 85.

    Meissner, A. & Sørensen, O. W. Exercise in modern NMR pulse sequence design: INADEQUATE CR. Concepts Magn. Reson. 14, 141–154 (2002).

    Google Scholar 

  86. 86.

    Kupče, Ē., Nishida, T. & Freeman, R. Hadamard NMR spectroscopy. Prog. NMR Spectrosc. 42, 95–122 (2003).

    Google Scholar 

  87. 87.

    Jeannerat, D. Rapid multidimensional NMR: high resolution by spectral aliasing. Ency. Magn. Reson. https://doi.org/10.1002/9780470034590.emrstm1187 (2011).

    Article  Google Scholar 

  88. 88.

    Kupče, Ē. & Wrackmeyer, B. Multiple receiver experiments for NMR spectroscopy of organosilicon compounds. Appl. Organometal. Chem. 24, 837–841 (2010).

    Google Scholar 

  89. 89.

    Claridge, T. D. W. High-resolution NMR Techniques in Organic Chemistry 3rd edn 171–202 (Elsevier, 2016).

  90. 90.

    Elyashberg, M. E., Williams, A. J. & Martin, G. E. Computer-assisted structure verification and elucidation tools in NMR-based structure elucidation. Prog. NMR Spectrosc. 53, 1–104 (2008).

    Google Scholar 

  91. 91.

    Sattler, M., Maurer, M., Schleucher, J. & Griesinger, C. A simultaneous 15N,1H- and 13C,1H-HSQC with sensitivity enhancement and a heteronuclear gradient echo. J. Biomol. NMR 5, 97–102 (1995). This paper is an early demonstration of how simultaneous acquisition can be used to accelerate acquisition of heteronuclear correlation spectra, and also provides an illuminating discussion of the theory underpinning the construction of pulse sequence elements for time-shared experiments.

    Google Scholar 

  92. 92.

    Nolis, P., Pérez-Trujillo, M. & Parella, T. Time-sharing evolution and sensitivity enhancements in 2D HSQC–TOCSY and HSQMBC experiments. Magn. Reson. Chem. 44, 1031–1036 (2006).

    Google Scholar 

  93. 93.

    Haasnoot, C. A. G., van de Ven, F. J. M. & Hilbers, C. W. COCONOSY. Combination of 2D correlated and 2D nuclear Overhauser enhancement spectroscopy in a single experiment. J. Magn. Reson. 56, 343–349 (1984).

    ADS  Google Scholar 

  94. 94.

    Gurevich, A. Z., Barsukov, I. L., Arseniev, A. S. & Bystrov, V. F. Combined COSY–NOESY experiment. J. Magn. Reson. 56, 471–478 (1984).

    ADS  Google Scholar 

  95. 95.

    Viegas, A. et al. UTOPIA NMR: activating unexploited magnetization using interleaved low-gamma detection. J. Biomol. NMR 64, 9–15 (2016).

    Google Scholar 

  96. 96.

    Schiavina, M. et al. Taking simultaneous snapshots of intrinsically disordered proteins in action. Biophys. J. 117, 46–55 (2019).

    ADS  Google Scholar 

  97. 97.

    Kupče, Ē. & Freeman, R. High-resolution NMR correlation experiments in a single measurement (HR-PANACEA). Magn. Reson. Chem. 48, 333–336 (2010).

    Google Scholar 

  98. 98.

    Giraudeau, P., Shrot, Y. & Frydman, L. Multiple ultrafast, broadband 2D NMR spectra of hyperpolarized natural products. J. Am. Chem. Soc. 131, 13902–13903 (2009).

    Google Scholar 

  99. 99.

    Donovan, K. J., Kupče, Ē. & Frydman, L. Multiple parallel 2D NMR acquisitions in a single scan. Angew. Chem. Int. Ed. 52, 4152–4155 (2013).

    Google Scholar 

  100. 100.

    Purea, A., Neuberger, T. & Webb, A. G. Simultaneous NMR microimaging of multiple single-cell samples. Concepts Magn. Reson. 22B, 7–14 (2004).

    Google Scholar 

  101. 101.

    Lee, H., Sun, E., Ham, D. & Weissleder, R. Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14, 869–874 (2008).

    Google Scholar 

  102. 102.

    Shapira, B., Shetty, K., Brey, W. W., Gan, Z. & Frydman, L. Single scan 2D NMR spectroscopy on a 25 T bitter magnet. Chem. Phys. Lett. 442, 478–482 (2007).

    ADS  Google Scholar 

  103. 103.

    Gal, M., Mishkovsky, M. & Frydman, L. Real-time monitoring of chemical transformations by ultrafast 2D NMR spectroscopy. J. Am. Chem. Soc. 128, 951–956 (2006).

    Google Scholar 

  104. 104.

    Herrera, A. et al. Real-time monitoring of organic reactions with two-dimensional ultrafast TOCSY NMR spectroscopy. Angew. Chem. Int. Ed. 48, 6274–6277 (2009).

    Google Scholar 

  105. 105.

    Pardo, Z. D. et al. Monitoring mechanistic details in the synthesis of pyrimidines via real-time, ultrafast multidimensional NMR spectroscopy. J. Am. Chem. Soc. 134, 2706–2715 (2012).

    Google Scholar 

  106. 106.

    Queiroz, L. H. K. Jr., Giraudeau, P., dos Santos, F. A. B., Oliveira, K. T. & Ferreira, A. G. Real-time mechanistic monitoring of an acetal hydrolysis using ultrafast 2D NMR. Magn. Reson. Chem. 50, 496–501 (2012).

    Google Scholar 

  107. 107.

    Gal, M., Schanda, P., Brutscher, B. & Frydman, L. UltraSOFAST HMQC NMR and the repetitive acquisition of 2D protein spectra at Hz rates. J. Am. Chem. Soc. 129, 1372–1377 (2007).

    Google Scholar 

  108. 108.

    Gal, M., Kern, T., Schanda, P., Frydman, L. & Brutscher, B. An improved ultrafast 2D NMR experiment: towards atom-resolved real-time studies of protein kinetics at multi-Hz rates. J. Biomol. NMR. 43, 1–10 (2009).

    Google Scholar 

  109. 109.

    Shapira, B., Karton, A., Aronzon, D. & Frydman, L. Real-time 2D NMR identification of analytes undergoing continuous chromatographic separation. J. Am. Chem. Soc. 126, 1262–1265 (2004).

    Google Scholar 

  110. 110.

    Queiroz, L. H. K. Jr., Queiroz, D. P. K., Dhooghe, L., Ferreira, A. G. & Giraudeau, P. Real-time separation of natural products by ultrafast 2D NMR coupled to on-line HPLC. Analyst 137, 2357–2361 (2012).

    ADS  Google Scholar 

  111. 111.

    Shapira, B., Morris, E., Muszkat, A. K. & Frydman, L. Sub-second 2D NMR spectroscopy at sub-mM concentrations. J. Am. Chem. Soc. 126, 11756–11757 (2004).

    Google Scholar 

  112. 112.

    Frydman, L. & Blazina, D. Ultrafast two-dimensional nuclear magnetic resonance spectroscopy of hyperpolarized solutions. Nat. Phys. 3, 415–419 (2007).

    Google Scholar 

  113. 113.

    Mishkovsky, M. & Frydman, L. Progress in hyperpolarized ultrafast 2D NMR spectroscopy. ChemPhysChem. 9, 2340–2348 (2008).

    Google Scholar 

  114. 114.

    Lloyd, L. S. et al. Utilization of SABRE-derived hyperpolarization to detect low-concentration analytes via 1D and 2D NMR methods. J. Am. Chem. Soc. 134, 12904–12907 (2012).

    Google Scholar 

  115. 115.

    Shrot, Y. & Frydman, L. Spatially-resolved multidimensional NMR spectroscopy within a single scan. J. Magn. Reson. 167, 42–48 (2004).

    ADS  Google Scholar 

  116. 116.

    Tal, A. & Frydman, L. Spectroscopic imaging from spatially-encoded single-scan multidimensional MRI data. J. Magn. Reson. 189, 46–58 (2007).

    ADS  Google Scholar 

  117. 117.

    Schmidt, R. & Frydman, L. In vivo 3D spatial/1D spectral imaging by spatiotemporal encoding: a new single-shot experimental and processing approach. Magn. Reson. Med. 70, 382–391 (2013).

    Google Scholar 

  118. 118.

    Schmidt, R. et al. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding. J. Magn. Reson. 240, 8–15 (2014).

    ADS  Google Scholar 

  119. 119.

    Solomon, E. et al. Removing silicone artifacts in diffusion-weighted breast MRI via shift-resolved spatiotemporally encoding. Magn. Reson. Med. 75, 2064–2071 (2016).

    Google Scholar 

  120. 120.

    Jacquemmoz, C., Giraud, F. & Dumez, J.-N. Online reaction monitoring by single-scan 2D NMR under flow conditions. Analyst 145, 478–485 (2020).

    ADS  Google Scholar 

  121. 121.

    Rouger, L. et al. Ultrafast acquisition of 1H–1H dipolar correlation experiments in spinning elastomers. J. Magn. Reson. 277, 30–35 (2017).

    ADS  Google Scholar 

  122. 122.

    Kiryutin, A. S. et al. Ultrafast single-scan 2DNMR spectroscopic detection of a PHIP–hyperpolarized protease inhibitor. Chem. Eur. J. 25, 4025–4230 (2019).

    Google Scholar 

  123. 123.

    Gouilleux, B. et al. High-throughput authentication of edible oils with benchtop ultrafast 2D NMR. Food Chem. 244, 153–158 (2018).

    Google Scholar 

  124. 124.

    Kupče, Ē. & Sørensen, O. W. 2BOB — extracting an H2BC and an HSQC-type spectrum from the same data set, and H2OBC — a fast experiment delineating the protonated 13C backbone. Magn. Reson. Chem. 55, 515–518 (2017).

    Google Scholar 

  125. 125.

    Nagy, T. M., Gyöngyösi, T., Kövér, K. E., Sørensen, O. W. & BANGO, S. E. A. XLOC/HMBC–H2OBC: complete heteronuclear correlation within minutes from one NMR pulse sequence. Chem. Commun. 55, 12208–12211 (2019).

    Google Scholar 

  126. 126.

    Bingol, K., Li, D. W., Zhang, B. & Bruschweiler, R. Comprehensive metabolite identification strategy using multiple two-dimensional NMR spectra of a complex mixture implemented in the COLMARm web server. Anal. Chem. 88, 12411–12418 (2016).

    Google Scholar 

  127. 127.

    Xella, S. et al. Embryo quality and implantation rate in two different culture media: ISM1 versus universal IVF medium. Fertil. Steril. 93, 1859–1863 (2010).

    Google Scholar 

  128. 128.

    Kupče, Ē., Kay, L. E. & Freeman, R. Detecting the afterglow of 13C NMR in proteins using multiple receivers. J. Am. Chem. Soc. 132, 18008–18011 (2010).

    Google Scholar 

  129. 129.

    Kupče, Ē. & Kay, L. E. Parallel acquisition of multi-dimensional spectra in protein NMR. J. Biomol. NMR 54, 1–7 (2012).

    Google Scholar 

  130. 130.

    Marchand, J. et al. A multidimensional 1H NMR lipidomics workflow to address chemical food safety issues. Metabolomics 14, 60 (2018).

    Google Scholar 

  131. 131.

    Jézéquel, T. et al. Absolute quantification of metabolites in tomato fruit extracts by fast 2D NMR. Metabolomics 11, 1231–1242 (2015).

    Google Scholar 

  132. 132.

    Pupier, M. et al. NMReDATA, a standard to report the NMR assignment and parameters of organic compounds. Magn. Reson. Chem. 56, 703–715 (2018).

    Google Scholar 

  133. 133.

    Hall, S. R. The STAR file: a new format for electronic data transfer and archiving. J. Chem. Inf. Model. 31, 326–333 (1991).

    Google Scholar 

  134. 134.

    Hall, S. R. & Spadaccini, N. The STAR file: detailed specifications. J. Chem. Inf. Model. 34, 505–508 (1994).

    Google Scholar 

  135. 135.

    Spadaccini, N. & Hall, S. R. Extensions to the STAR file syntax. J. Chem. Inf. Model. 52, 1901–1906 (2012).

    Google Scholar 

  136. 136.

    Ulrich, E. L. et al. BioMagResBank. Nucleic Acids Res. 36, D402–D408 (2007).

    Google Scholar 

  137. 137.

    Ulrich, E. L. et al. NMR-STAR: comprehensive ontology for representing, archiving and exchanging data from nuclear magnetic resonance spectroscopic experiments. J. Biomol. NMR 73, 5–9 (2019).

    Google Scholar 

  138. 138.

    Schober, D. et al. nmrML: a community supported open data standard for the description, storage, and exchange of NMR data. Anal. Chem. 90, 649–656 (2018).

    Google Scholar 

  139. 139.

    Kautz, R. A., Goetzinger, W. K. & Karger, B. L. High-throughput microcoil NMR of compound libraries using zero-dispersion segmented flow analysis. J. Comb. Chem. 7, 14–20 (2005).

    Google Scholar 

  140. 140.

    Shapira, B., Lupulescu, A., Shrot, Y. & Frydman, L. Line shape considerations in ultrafast 2D NMR. J. Magn. Reson. 166, 152–163 (2004).

    ADS  Google Scholar 

  141. 141.

    Mishkovsky, M. & Frydman, L. Interlaced Fourier transformation of ultrafast 2D NMR data. J. Magn. Reson. 173, 344–350 (2005).

    ADS  Google Scholar 

  142. 142.

    Mishkovsky, M., Kupče, Ē. & Frydman, L. Ultrafast-based projection-reconstruction 3D nuclear magnetic resonance spectroscopy. J. Chem. Phys. 127, 034507 (2007).

    ADS  Google Scholar 

  143. 143.

    Pérez-Trujillo, M., Nolis, P., Bermel, W. & Parella, T. Optimizing sensitivity and resolution in time-shared NMR experiments. Magn. Reson. Chem. 45, 325–329 (2007).

    Google Scholar 

  144. 144.

    Mobli, M. & Hoch, J. C. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR. Prog. Nucl. Magn. Reson. Spectrosc. 83, 21–41 (2014).

    Google Scholar 

  145. 145.

    Shaka, A. J., Lee, C. J. & Pines, A. Iterative schemes for bilinear operators; application to spin decoupling. J. Magn. Reson. 77, 274–293 (1988).

    ADS  Google Scholar 

  146. 146.

    Kupče, Ē., Schmidt, P., Rance, M. & Wagner, G. Adiabatic mixing in the liquid state. J. Magn. Reson. 135, 361–367 (1998).

    ADS  Google Scholar 

  147. 147.

    Kupče, Ē. & Freeman, R. Fast multidimensional NMR by polarization sharing. Magn. Reson. Chem. 45, 2–4 (2007).

    Google Scholar 

  148. 148.

    Furrer, J. A robust, sensitive, and versatile HMBC experiment for rapid structure elucidation by NMR: IMPACT-HMBC. Chem. Commun. 46, 3396 (2010).

    Google Scholar 

  149. 149.

    Schulze-Sünninghausen, D., Becker, J. & Luy, B. Rapid heteronuclear single quantum correlation NMR spectra at natural abundance. J. Am. Chem. Soc. 136, 1242–1245 (2014).

    Google Scholar 

  150. 150.

    Spengler, N. et al. Micro-fabricated Helmholtz coil featuring disposable microfluidic sample inserts for applications in nuclear magnetic resonance. J. Micromech. Microeng. 24, 034004 (2014).

    ADS  Google Scholar 

  151. 151.

    Badilita, V. et al. On-chip three dimensional microcoils for MRI at the microscale. Lab Chip 10, 1387–1390 (2010).

    Google Scholar 

  152. 152.

    Levitt, M. H. Composite pulses. Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).

    ADS  Google Scholar 

  153. 153.

    Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T. & Glaser, S. J. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005).

    ADS  Google Scholar 

  154. 154.

    Glaser, S. J. Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy. Science 280, 421–424 (1998).

    ADS  Google Scholar 

  155. 155.

    Glaser, S. J. et al. Training Schrödinger’s cat: quantum optimal control. Eur. Phys. J. D 69, 279 (2015).

    ADS  Google Scholar 

  156. 156.

    Pascal, S. M., Muhandiram, D. R., Yamazaki, T., Formankay, J. D. & Kay, L. E. Simultaneous acquisition of 15N- and 13C-edited NOE spectra of proteins dissolved in H2O. J. Magn. Reson. Ser. B 103, 197–201 (1994).

    Google Scholar 

  157. 157.

    Xia, Y., Yee, A., Arrowsmith, C. H. & Gao, X. 1HC and 1HN total NOE correlations in a single 3D NMR experiment. 15N and 13C time-sharing in t1 and t2 dimensions for simultaneous data acquisition. J. Biomol. NMR 27, 193–203 (2003).

    Google Scholar 

  158. 158.

    Xu, Y., Long, D. & Yang, D. Rapid data collection for protein structure determination by NMR spectroscopy. J. Am. Chem. Soc. 129, 7722–7723 (2007).

    Google Scholar 

  159. 159.

    Otikovs, M., Olsen, G. L., Kupče, Ē. & Frydman, L. Natural abundance, single-scan 13C–13C-based structural elucidations by dissolution DNP NMR. J. Am. Chem. Soc. 141, 1857–1861 (2019).

    Google Scholar 

  160. 160.

    Gołowicz, D., Kasprzak, P., Orekhov, V. & Kazimierczuk, K. Fast time-resolved NMR with non-uniform sampling. Prog. Nucl. Magn. Reson. Spectrosc. 116, 40–55 (2020).

    Google Scholar 

  161. 161.

    Webb, A. G. Microcoil nuclear magnetic resonance spectroscopy. J. Pharm. Biomed. Anal. 10, 892–903 (2005).

    Google Scholar 

Download references

Acknowledgements

L.F. acknowledges support from the Israel Science Foundation (grants 965/18) and the generosity of the Perlman Family Foundation. L.F. holds the Bertha and Isadore Gudelsky Professorial Chair and heads the Clore Institute for High-Field Magnetic Resonance Imaging and Spectroscopy, whose support is also acknowledged.

Author information

Affiliations

Authors

Contributions

Introduction (A.G.W., L.F., E.K., T.D.W.C. and J.R.J.Y.); Experimentation (A.G.W., L.F., E.K., T.D.W.C. and J.R.J.Y.); Results (A.G.W., L.F., E.K., T.D.W.C. and J.R.J.Y.); Applications (A.G.W., L.F., E.K., T.D.W.C. and J.R.J.Y.); Reproducibility and data deposition (T.D.W.C. and J.R.J.Y.); Limitations and optimizations (A.G.W., L.F., E.K., T.D.W.C. and J.R.J.Y.); Outlook (A.G.W., L.F., E.K., T.D.W.C. and J.R.J.Y.); Overview of the Primer (A.G.W., L.F., E.K., T.D.W.C. and J.R.J.Y.).

Corresponding author

Correspondence to Ēriks Kupče.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Methods Primers thanks M. Perez Trujillo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Bruker User Library: https://www.bruker.com/en/services/bruker-user-library.html

CMC-se: https://www.bruker.com/fr/products-and-solutions/mr/nmr-software/cmc-se.html

Supplementary information

Glossary

Precessional

The process by which nuclei spins rotate (precess) about an applied magnetic field.

Gradient-based spatial encoding

Selective excitation in the presence of magnetic field gradients.

Chemical shifts

The resonant frequencies of a nucleus relative to those of a defined chemical group within a reference compound.

Magnetogyric ratio

(γ). The ratio of the magnetic moment of a nucleus to its angular momentum.

Spectral dimensions

Frequency dimensions in nuclear magnetic resonance spectra that will typically reflect chemical shifts and/or coupling constants.

Mass-limited samples

Samples of limited amount; the term is used to distinguish from the situation of low concentration due to poor solubility. The sensitivity of nuclear magnetic resonance measurements of mass-limited samples can be improved by using small-diameter probes and higher sample concentrations, prompting use of the term ‘mass sensitivity’ for small-diameter probes.

Phase shift

A change in the phase of a signal or waveform.

Transient

(Also referred to as a scan). The acquisition of a solitary free induction decay.

COSY

(Correlation spectroscopy). A technique for identifying directly scalar coupled (J-coupled) nuclei, most often protons.

TOCSY

(Total correlation spectroscopy). A technique related to COSY that distributes magnetization within a network of mutually scalar coupled protons so as to group them within a structure.

HSQC

(Heteronuclear single-quantum correlation). An experiment used to correlate an insensitive nucleus (such as 13C or 15N) with its directly attached proton(s) via one-bond scalar coupling.

HMQC

(Heteronuclear multiple-quantum correlation). An experiment closely related to HSQC and HMBC used to correlate an insensitive nucleus (such as 13C or 15N) with its directly attached proton(s) via one-bond scalar coupling.

Dynamic nuclear polarization

A technique that uses unpaired electron spins to boost the nuclear magnetic resonance signal by as much as 100,000.

Free induction decays

(FIDs). The observable nuclear magnetic resonance signals generated by non-equilibrium nuclear spin magnetization precessing about the magnetic field.

Supersequences

Sequences of nuclear magnetic resonance experiments (pulse schemes) with a common relaxation delay.

Pools of magnetization

Subsets of nuclear spins, typically defined by their coupling interactions with other nuclear magnetic resonance-active spins.

NOAH

(Nuclear magnetic resonance by ordered acquisition using 1H detection). An experimental scheme for acquiring multiple experiments in one but requiring only a single relaxation delay.

Polarization transfer

The transfer of nuclear polarization between subsets of nuclear spins.

Magnetization helices

Spatially dependent magnetization patterns, where each chemical site’s magnetization subtends a helix whose pitch is linearly proportional to the site’s chemical shift.

Echoes

Signals that peak as a function of the k-domain variable, according to their indirect-domain chemical shift.

Recovery delay

(Also known as relaxation delay). A time period in which spins recover their equilibrium populations between scans.

Nucleus editing

Recording multiple data sets in which signals from separate pools are phase-labelled relative to one another.

Isotropic mixing

Transfer of x, y and z magnetization components (hence, isotropic) between J-coupled spin systems.

HMBC

(Heteronuclear multiple-bond correlation). An experiment that correlates an insensitive nucleus (such as 13C or 15N) with protons that are remote in a molecular structure (typically within two or three bonds) via their long-range scalar coupling.

PANSY

Parallel acquisition nuclear magnetic resonance spectroscopy.

Polarization

The degree of alignment of nuclear spins with the applied magnetic field that gives rise to an observable nuclear magnetic resonance signal.

HETCOR

(Heteronuclear correlation). A technique for correlating an insensitive nucleus (such as 13C) with neighbouring proton(s) via scalar coupling while using direct detection of the insensitive nucleus.

PANACEA

(Parallel acquisition nuclear magnetic resonance). An all-in-one combination of experimental applications: a method that combines three standard pulse sequences (INADEQUATE, HSQC and HMBC) into a single supersequence.

INADEQUATE

(Incredible natural abundance double-quantum transfer experiment). A method for correlating adjacent insensitive nuclei (typically 13C) via one-bond scalar coupling.

Linewidths

Widths of nuclear magnetic resonance peaks at half height, usually defined in hertz.

NOESY

(Nuclear Overhauser effect spectroscopy). A technique for identifying nuclei, most often protons, that are close in space (typically <5 Å) and, hence, share dipolar coupling.

ROESY

(Rotating-frame Overhauser effect spectroscopy). A technique related to NOESY that is also used to identify spatial proximity between protons.

Time-domain multiplex

A method of interfacing a certain number of coils with a smaller number of receive channels for parallelizing multiple NMR experiments.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kupče, Ē., Frydman, L., Webb, A.G. et al. Parallel nuclear magnetic resonance spectroscopy. Nat Rev Methods Primers 1, 27 (2021). https://doi.org/10.1038/s43586-021-00024-3

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing