Abstract
Recombination-mediated genetic engineering, also known as recombineering, is the genomic incorporation of homologous single-stranded or double-stranded DNA into bacterial genomes. Recombineering and its derivative methods have radically improved genome engineering capabilities, perhaps none more so than multiplex automated genome engineering (MAGE). MAGE is representative of a set of highly multiplexed single-stranded DNA-mediated technologies. First described in Escherichia coli, both MAGE and recombineering are being rapidly translated into diverse prokaryotes and even into eukaryotic cells. Together, this modern set of tools offers the promise of radically improving the scope and throughput of experimental biology by providing powerful new methods to ease the genetic manipulation of model and non-model organisms. In this Primer, we describe recombineering and MAGE, their optimal use, their diverse applications and methods for pairing them with other genetic editing tools. We then look forward to the future of genetic engineering.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Targeted editing and evolution of engineered ribosomes in vivo by filtered editing
Nature Communications Open Access 10 January 2022
-
ssDNA recombineering boosts in vivo evolution of nanobodies displayed on bacterial surfaces
Communications Biology Open Access 07 October 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$99.00 per year
only $99.00 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout







References
Simon, R., Priefer, U. & Pühler, A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat. Biotechnol. 1, 784–791 (1983).
Ye, B. et al. Unmarked genetic manipulation in Bacillus subtilis by natural co-transformation. J. Biotechnol. 284, 57–62 (2018).
Chandrasegaran, S. & Carroll, D. Origins of programmable nucleases for genome engineering. J. Mol. Biol. 428, 963–989 (2016).
Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).
Gersbach, C. A. Genome engineering: the next genomic revolution. Nat. Methods 11, 1009–1011 (2014).
Gaj, T., Gersbach, C. A. & Barbas, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).
Kim, H. & Kim, J.-S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).
Jakočiūnas, T. et al. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 28, 213–222 (2015).
Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).
Inui, M. et al. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci. Rep. 4, 5396 (2014).
Paquet, D. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125–129 (2016).
Maruyama, T. et al. Increasing the efficiency of precise genome editing with CRISPR–Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538–542 (2015).
Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).
Smith, C. J. et al. Enabling large-scale genome editing at repetitive elements by reducing DNA nicking. Nucleic Acids Res. 48, 5183–5195 (2020).
Reis, A. C. et al. Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays. Nat. Biotechnol. 37, 1294–1301 (2019).
Zeng, Y. et al. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol. Ther. 26, 2631–2637 (2018).
Zeng, J. et al. Therapeutic base editing of human hematopoietic stem cells. Nat. Med. 26, 535–541 (2020).
Ellis, H. M., Yu, D., DiTizio, T. & Court, D. L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl Acad. Sci. USA 98, 6742–6746 (2001). This article was the first to thoroughly examine the possibility of recombineering with ssDNA as a template.
Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 5978–5983 (2000).
Mosberg, J. A., Lajoie, M. J. & Church, G. M. λ red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186, 791–799 (2010).
Murphy, K. C. Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli. J. Bacteriol. 180, 2063–2071 (1998).
Zhang, Y., Buchholz, F., Muyrers, J. P. & Stewart, A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).
Little, J. W. An exonuclease induced by bacteriophage λ. II. Nature of the enzymatic reaction. J. Biol. Chem. 242, 679–686 (1967).
Caldwell, B. J. et al. Crystal structure of the Redβ C-terminal domain in complex with λ exonuclease reveals an unexpected homology with λ Orf and an interaction with Escherichia coli single stranded DNA binding protein. Nucleic Acids Res. 47, 1950–1963 (2019).
Li, Z., Karakousis, G., Chiu, S. K., Reddy, G. & Radding, C. M. The β protein of phage λ promotes strand exchange. J. Mol. Biol. 276, 733–744 (1998).
Murphy, K. C. λ Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme. J. Bacteriol. 173, 5808–5821 (1991).
Barbieri, E. M., Muir, P., Akhuetie-Oni, B. O., Yellman, C. M. & Isaacs, F. J. Precise editing at DNA replication forks enables multiplex genome engineering in eukaryotes. Cell 171, 1453–1467.e13 (2017). This article describes eMAGE, the first instance of MAGE in a eukaryotic cell, leveraging co-selection to improve the ARF.
Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009). This is the original article describing MAGE as a method for multiplex genome editing.
Isaacs, F. J. et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333, 348–353 (2011).
Carr, P. A. et al. Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Res. 40, e132 (2012).
Nyerges, Á. et al. A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc. Natl Acad. Sci. USA 113, 2502–2507 (2016). This work first describes the transient suppression of MMR by expression of a dominant negative MutL.
Amiram, M. et al. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat. Biotechnol. 33, 1272–1279 (2015).
Lajoie, M. J. et al. Genomically recoded organisms expand biological functions. Science 342, 357–360 (2013). This landmark article is the first to report a fully recoded organism, in this case an E. coli strain with 321 TAG stop codon reassignments, produced with MAGE.
Napolitano, M. G. et al. Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli. Proc. Natl Acad. Sci. USA 113, E5588–5597 (2016).
Swaminathan, S. et al. Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis 29, 14–21 (2001).
Thomason, L. C., Costantino, N., Shaw, D. V. & Court, D. L. Multicopy plasmid modification with phage λ Red recombineering. Plasmid 58, 148–158 (2007).
Oppenheim, A. B., Rattray, A. J., Bubunenko, M., Thomason, L. C. & Court, D. L. In vivo recombineering of bacteriophage λ by PCR fragments and single-strand oligonucleotides. Virology 319, 185–189 (2004).
Hueso-Gil, A., Nyerges, Á., Pál, C., Calles, B. & de Lorenzo, V. Multiple-site diversification of regulatory sequences enables interspecies operability of genetic devices. ACS Synth. Biol. 9, 104–114 (2020).
Court, D. L., Sawitzke, J. A. & Thomason, L. C. Genetic engineering using homologous recombination. Annu. Rev. Genet. 36, 361–388 (2002).
Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).
Costantino, N. & Court, D. L. Enhanced levels of λ Red-mediated recombinants in mismatch repair mutants. Proc. Natl Acad. Sci. USA 100, 15748–15753 (2003). This is the first article to describe evasion of mismatch repair as an effective strategy to improve the ARF.
Au, K. G., Welsh, K. & Modrich, P. Initiation of methyl-directed mismatch repair. J. Biol. Chem. 267, 12142–12148 (1992).
Burdett, V., Baitinger, C., Viswanathan, M., Lovett, S. T. & Modrich, P. In vivo requirement for RecJ, ExoVII, ExoI, and ExoX in methyl-directed mismatch repair. Proc. Natl Acad. Sci. USA 98, 6765–6770 (2001).
Schaaper, R. M. & Dunn, R. L. Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc. Natl Acad. Sci. USA 84, 6220–6224 (1987).
Iyer, R. R., Pluciennik, A., Burdett, V. & Modrich, P. L. DNA mismatch repair: functions and mechanisms. Chem. Rev. 106, 302–323 (2006).
Wang, H. H., Xu, G., Vonner, A. J. & Church, G. Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion. Nucleic Acids Res. 39, 7336–7347 (2011).
Modrich, P. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25, 229–253 (1991).
Sawitzke, J. A. et al. Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering. J. Mol. Biol. 407, 45–59 (2011).
van Pijkeren, J.-P. & Britton, R. A. High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res. 40, e76 (2012). This work is one of the first and best instances of the screening of a small group of SSAPs to permit high-frequency MAGE in a non-E. coli bacterium, here L. lactis and Lactobacillus reuteri.
Binder, S., Siedler, S., Marienhagen, J., Bott, M. & Eggeling, L. Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res. 41, 6360–6369 (2013).
Penewit, K. et al. Efficient and scalable precision genome editing in Staphylococcus aureus through conditional recombineering and CRISPR/Cas9-mediated counterselection. mBio 9, e00067 (2018).
van Ravesteyn, T. W. et al. LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells. Proc. Natl Acad. Sci. USA 113, 4122–4127 (2016).
Matic, I., Babic, A. & Radman, M. 2-Aminopurine allows interspecies recombination by a reversible inactivation of the Escherichia coli mismatch repair system. J. Bacteriol. 185, 1459–1461 (2003).
Pitsikas, P., Patapas, J. M. & Cupples, C. G. Mechanism of 2-aminopurine-stimulated mutagenesis in Escherichia coli. Mutat. Res. 550, 25–32 (2004).
Ang, J. et al. Mutagen synergy: hypermutability generated by specific pairs of base analogs. J. Bacteriol. 198, 2776–2783 (2016).
Nyerges, Á. et al. Conditional DNA repair mutants enable highly precise genome engineering. Nucleic Acids Res. 42, e62 (2014).
Hong, E. S., Yeung, A., Funchain, P., Slupska, M. M. & Miller, J. H. Mutants with temperature-sensitive defects in the Escherichia coli mismatch repair system: sensitivity to mispairs generated in vivo. J. Bacteriol. 187, 840–846 (2005).
Lennen, R. M. et al. Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects. Nucleic Acids Res. 44, e36 (2016).
Yang, H., Wolff, E., Kim, M., Diep, A. & Miller, J. H. Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach. Mol. Microbiol. 53, 283–295 (2004).
Aronshtam, A. & Marinus, M. G. Dominant negative mutator mutations in the mutL gene of Escherichia coli. Nucleic Acids Res. 24, 2498–2504 (1996).
Ricaurte, D. E. et al. A standardized workflow for surveying recombinases expands bacterial genome-editing capabilities. Microb. Biotechnol. 11, 176–188 (2018).
Wannier, T. M. et al. Improved bacterial recombineering by parallelized protein discovery. Proc. Natl Acad. Sci. USA 117, 13689–13698 (2020). This work describes SEER, a method for adapting MAGE to new bacterial species, and the improvement of ARF to ultra-high frequency in E. coli and C. freundii.
Filsinger, G. et al. Characterizing the portability of RecT-mediated oligonucleotide recombination. Nat. Chem. Biol. https://doi.org/10.1038/s41589-020-00710-5 (2021). This work describes a molecular basis for the host tropism displayed by SSAPs, namely their interaction with the host SSB.
Aparicio, T., Nyerges, A., Martínez-García, E. & de Lorenzo, V. High-efficiency multi-site genomic editing of Pseudomonas putida through thermoinducible ssDNA recombineering. iScience 23, 100946 (2020).
Storici, F., Lewis, L. K. & Resnick, M. A. In vivo site-directed mutagenesis using oligonucleotides. Nat. Biotechnol. 19, 773–776 (2001).
DiCarlo, J. E. et al. Yeast oligo-mediated genome engineering (YOGE). ACS Synth. Biol. 2, 741–749 (2013). This article is the first to explore recombineering in eukaryotes, focusing on Rad51 expression and MMR avoidance.
Wang, H. H. et al. Genome-scale promoter engineering by co-selection MAGE. Nat. Methods 9, 591–593 (2012).
Lee, M. et al. Rad52/Rad59-dependent recombination as a means to rectify faulty Okazaki fragment processing. J. Biol. Chem. 289, 15064–15079 (2014).
Arbel, M., Bronstein, A., Sau, S., Liefshitz, B. & Kupiec, M. Access to PCNA by Srs2 and Elg1 controls the choice between alternative repair pathways in Saccharomyces cerevisiae. mBio 11, e00705–e00720 (2020).
Liang, Z., Metzner, E. & Isaacs, F. J. Advanced eMAGE for highly efficient combinatorial editing of a stable genome. Preprint at bioRxiv https://doi.org/10.1101/2020.08.30.256743 (2020).
Iyer, L. M., Koonin, E. V. & Aravind, L. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redβ, ERF and RAD52. BMC Genom. 3, 8 (2002).
van Kessel, J. C. & Hatfull, G. F. Recombineering in Mycobacterium tuberculosis. Nat. Methods 4, 147–152 (2007).
Aparicio, T., Jensen, S. I., Nielsen, A. T., de Lorenzo, V. & Martínez-García, E. The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42. Biotechnol. J. 11, 1309–1319 (2016).
Lee, H. H., Ostrov, N., Gold, M. A. & Church, G. M. Recombineering in Vibrio natriegens. Preprint at bioRxiv https://doi.org/10.1101/130088 (2017).
Wu, D. Y., Ugozzoli, L., Pal, B. K. & Wallace, R. B. Allele-specific enzymatic amplification of β-globin genomic DNA for diagnosis of sickle cell anemia. Proc. Natl Acad. Sci. USA 86, 2757–2760 (1989).
Johnson, K. A. The kinetic and chemical mechanism of high-fidelity DNA polymerases. Biochim. Biophys. Acta 1804, 1041–1048 (2010).
Lefever, S. et al. Cost-effective and robust genotyping using double-mismatch allele-specific quantitative PCR. Sci. Rep. 9, 2150 (2019).
Imyanitov, E. N. et al. Improved reliability of allele-specific PCR. BioTechniques 33, 484–490 (2002).
Słomka, M., Sobalska-Kwapis, M., Wachulec, M., Bartosz, G. & Strapagiel, D. High resolution melting (HRM) for high-throughput genotyping-limitations and caveats in practical case studies. Int. J. Mol. Sci. 18, 2316 (2017).
Murphy, K. C. et al. ORBIT: a new paradigm for genetic engineering of mycobacterial chromosomes. mBio 9, e01467-18 (2018). This inventive article describes the pairing of recombineering with site-specific recombinases to ease genomic deletions and fusions in mycobacteria.
Nyerges, Á. et al. Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance. Proc. Natl Acad. Sci. USA 115, E5726–E5735 (2018). This article describes DIvERGE, an important technique for diversification of targeted genomic loci.
Bonde, M. T. et al. Direct mutagenesis of thousands of genomic targets using microarray-derived oligonucleotides. ACS Synth. Biol. 4, 17–22 (2015).
Wang, H. H. & Church, G. M. Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. Meth. Enzymol. 498, 409–426 (2011).
Mandell, D. J. et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature 518, 55–60 (2015).
Rovner, A. J. et al. Recoded organisms engineered to depend on synthetic amino acids. Nature 518, 89–93 (2015).
Sandberg, T. E. et al. Evolution of Escherichia coli to 42 °C and subsequent genetic engineering reveals adaptive mechanisms and novel mutations. Mol. Biol. Evol. 31, 2647–2662 (2014).
Wannier, T. M. et al. Adaptive evolution of genomically recoded Escherichia coli. Proc. Natl Acad. Sci. USA 115, 3090–3095 (2018).
Pattanayak, V., Guilinger, J. P. & Liu, D. R. Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Meth. Enzymol. 546, 47–78 (2014).
Rees, H. A. & Liu, D. R. Publisher correction: base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 801 (2018).
Mougiakos, I., Bosma, E. F., de Vos, W. M., van Kranenburg, R. & van der Oost, J. Next generation prokaryotic engineering: the CRISPR–Cas toolkit. Trends Biotechnol. 34, 575–587 (2016).
Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31, 233–239 (2013).
Oh, J.-H. & van Pijkeren, J.-P. CRISPR–Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 42, e131 (2014).
Higgins, S. A., Ounkap, S. & Savage, D. F. Rapid and programmable protein mutagenesis using plasmid recombineering. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.7b00112 (2017).
Ronda, C., Pedersen, L. E., Sommer, M. O. A. & Nielsen, A. T. CRMAGE: CRISPR optimized MAGE recombineering. Sci. Rep. 6, 19452 (2016).
Oesterle, S., Gerngross, D., Schmitt, S., Roberts, T. M. & Panke, S. Efficient engineering of chromosomal ribosome binding site libraries in mismatch repair proficient Escherichia coli. Sci. Rep. 7, 12327 (2017).
Umenhoffer, K. et al. Genome-wide abolishment of mobile genetic elements using genome shuffling and CRISPR/Cas-assisted MAGE allows the efficient stabilization of a bacterial chassis. ACS Synth. Biol. 6, 1471–1483 (2017).
Ding, T. et al. Reversed paired-gRNA plasmid cloning strategy for efficient genome editing in Escherichia coli. Microb. Cell Fact. 19, 63 (2020).
Farasat, I. et al. Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria. Mol. Syst. Biol. 10, 731 (2014).
Kunjapur, A. M., Tarasova, Y. & Prather, K. L. J. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli. J. Am. Chem. Soc. 136, 11644–11654 (2014).
Pósfai, G. et al. Emergent properties of reduced-genome Escherichia coli. Science 312, 1044–1046 (2006).
Grodberg, J. & Dunn, J. J. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J. Bacteriol. 170, 1245–1253 (1988).
Studier, F. W., Daegelen, P., Lenski, R. E., Maslov, S. & Kim, J. F. Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3) and comparison of the E. coli B and K-12 genomes. J. Mol. Biol. 394, 653–680 (2009).
Borja, G. M. et al. Engineering Escherichia coli to increase plasmid DNA production in high cell-density cultivations in batch mode. Microb. Cell Fact. 11, 132 (2012).
Derman, A. I., Prinz, W. A., Belin, D. & Beckwith, J. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262, 1744–1747 (1993).
Bessette, P. H., Aslund, F., Beckwith, J. & Georgiou, G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl Acad. Sci. USA 96, 13703–13708 (1999).
Lobstein, J. et al. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb. Cell Fact. 11, 56 (2012).
Yates, L. E. et al. Glyco-recoded Escherichia coli: recombineering-based genome editing of native polysaccharide biosynthesis gene clusters. Metab. Eng. 53, 59–68 (2019).
Kelsic, E. D. et al. RNA structural determinants of optimal codons revealed by MAGE-Seq. Cell Syst. 3, 563–571.e6 (2016).
Scangarella-Oman, N. E. et al. In vitro activity and microbiological efficacy of gepotidacin from a phase 2, randomized, multicenter, dose-ranging study in patients with acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother. 64, e01302–e01319 (2020).
Garst, A. D. et al. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat. Biotechnol. 35, 48–55 (2017).
Halperin, S. O. et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248–252 (2018).
Wang, H. H. et al. Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis. ACS Synth. Biol. 1, 43–52 (2012).
Brockman, I. M. & Prather, K. L. J. Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab. Eng. 28, 104–113 (2015).
Durante-Rodríguez, G., de Lorenzo, V. & Nikel, P. I. A post-translational metabolic switch enables complete decoupling of bacterial growth from biopolymer production in engineered Escherichia coli. ACS Synth. Biol. 7, 2686–2697 (2018).
Pines, G., Freed, E. F., Winkler, J. D. & Gill, R. T. Bacterial recombineering: genome engineering via phage-based homologous recombination. ACS Synth. Biol. 4, 1176–1185 (2015).
Choudhury, A. et al. CRISPR/Cas9 recombineering-mediated deep mutational scanning of essential genes in Escherichia coli. Mol. Syst. Biol. 16, e9265 (2020).
Bao, Z., Cobb, R. E. & Zhao, H. Accelerated genome engineering through multiplexing. Wiley Interdiscip. Rev. Syst. Biol. Med. 8, 5–21 (2016).
Fredens, J. et al. Total synthesis of Escherichia coli with a recoded genome. Nature 569, 514–518 (2019).
Ostrov, N. et al. Design, synthesis, and testing toward a 57-codon genome. Science 353, 819–822 (2016).
Jiang, Y. et al. Multigene editing in the Escherichia coli genome via the CRISPR–Cas9 system. Appl. Environ. Microbiol. 81, 2506–2514 (2015).
Piñero Lambea, C. et al. Mycoplasma pneumoniae genome editing based on oligo recombineering and Cas9-mediated counterselection. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.0c00022 (2020).
Cui, L. & Bikard, D. Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. 44, 4243–4251 (2016).
Pyne, M. E., Moo-Young, M., Chung, D. A. & Chou, C. P. Coupling the CRISPR/Cas9 system with λ Red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl. Environ. Microbiol. 81, 5103–5114 (2015).
Li, Y. et al. Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metab. Eng. 31, 13–21 (2015).
van Kessel, J. C. & Hatfull, G. F. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol. Microbiol. 67, 1094–1107 (2008).
Aldovini, A., Husson, R. N. & Young, R. A. The uraA locus and homologous recombination in Mycobacterium bovis BCG. J. Bacteriol. 175, 7282–7289 (1993).
Kalpana, G. V., Bloom, B. R. & Jacobs, W. R. Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc. Natl Acad. Sci. USA 88, 5433–5437 (1991).
Wang, K. et al. Defining synonymous codon compression schemes by genome recoding. Nature 539, 59–64 (2016).
Chin, J. W. Reprogramming the genetic code. Science 336, 428–429 (2012).
Lampson, B. C., Inouye, M. & Inouye, S. Retrons, msDNA, and the bacterial genome. Cytogenet. Genome Res. 110, 491–499 (2005).
Simon, A. J., Ellington, A. D. & Finkelstein, I. J. Retrons and their applications in genome engineering. Nucleic Acids Res. 47, 11007–11019 (2019).
Yee, T., Furuichi, T., Inouye, S. & Inouye, M. Multicopy single-stranded DNA isolated from a gram-negative bacterium, Myxococcus xanthus. Cell 38, 203–209 (1984).
Millman, A. et al. Bacterial retrons function in anti-phage defense. Cell https://doi.org/10.1016/j.cell.2020.09.065 (2020).
Farzadfard, F. & Lu, T. K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346, 1256272 (2014).
Simon, A. J., Morrow, B. R. & Ellington, A. D. Retroelement-based genome editing and evolution. ACS Synth. Biol. 7, 2600–2611 (2018).
Farzadfard, F., Gharaei, N., Citorik, R. J. & Lu, T. K. Efficient retroelement-mediated DNA writing in bacteria. Preprint at bioRxiv https://doi.org/10.1101/2020.02.21.958983 (2020).
Schubert, M. G. et al. High throughput functional variant screens via in-vivo production of single-stranded DNA. Preprint at bioRxiv https://doi.org/10.1101/2020.03.05.975441 (2020).
Gallagher, R. R., Li, Z., Lewis, A. O. & Isaacs, F. J. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA. Nat. Protoc. 9, 2301–2316 (2014).
Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D. L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206–223 (2009).
Holo, H. & Nes, I. F. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 55, 3119–3123 (1989).
Shepard, B. D. & Gilmore, M. S. Electroporation and efficient transformation of Enterococcus faecalis grown in high concentrations of glycine. Methods Mol. Biol. 47, 217–226 (1995).
Dower, W. J., Miller, J. F. & Ragsdale, C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16, 6127–6145 (1988).
Okamoto, A., Kosugi, A., Koizumi, Y., Yanagida, F. & Udaka, S. High efficiency transformation of Bacillus brevis by electroporation. Biosci. Biotechnol. Biochem. 61, 202–203 (1997).
Wards, B. J. & Collins, D. M. Electroporation at elevated temperatures substantially improves transformation efficiency of slow-growing mycobacteria. FEMS Microbiol. Lett. 145, 101–105 (1996).
Tu, Q. et al. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency. Sci. Rep. 6, 24648 (2016).
McIntyre, D. A. & Harlander, S. K. Genetic transformation of intact Lactococcus lactis subsp. lactis by high-voltage electroporation. Appl. Environ. Microbiol. 55, 604–610 (1989).
Salis, H. M. The ribosome binding site calculator. Meth. Enzymol. 498, 19–42 (2011).
Liu, J. et al. Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell 31, 368–383 (2019).
Miller, D. L., Pislaru, S. V. & Greenleaf, J. E. Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somat. Cell Mol. Genet. 27, 115–134 (2002).
Gao, F. & Zhang, C.-T. Ori-Finder: a web-based system for finding oriCs in unannotated bacterial genomes. BMC Bioinform. 9, 79 (2008).
Sernova, N. V. & Gelfand, M. S. Identification of replication origins in prokaryotic genomes. Brief. Bioinform. 9, 376–391 (2008).
Bonde, M. T. et al. MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering. Nucleic Acids Res. 42, W408–W415 (2014).
Quintin, M. et al. Merlin: computer-aided oligonucleotide design for large scale genome engineering with MAGE. ACS Synth. Biol. 5, 452–458 (2016).
Hecker, K. H. & Rill, R. L. Error analysis of chemically synthesized polynucleotides. Biotechniques 24, 256–260 (1998).
Temsamani, J., Kubert, M. & Agrawal, S. Sequence identity of the n-1 product of a synthetic oligonucleotide. Nucleic Acids Res. 23, 1841–1844 (1995).
Schmidt, T. L. et al. Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries. Nat. Commun. 6, 8634 (2015).
Nordström, K. & Dasgupta, S. Copy-number control of the Escherichia coli chromosome: a plasmidologist’s view. EMBO Rep. 7, 484–489 (2006).
Reynolds, T. S. & Gill, R. T. Quantifying impact of chromosome copy number on recombination in Escherichia coli. ACS Synth. Biol. 4, 776–780 (2015).
Boyle, N. R., Reynolds, T. S., Evans, R., Lynch, M. & Gill, R. T. Recombineering to homogeneity: extension of multiplex recombineering to large-scale genome editing. Biotechnol. J. 8, 515–522 (2013).
Parekh-Olmedo, H., Drury, M. & Kmiec, E. B. Targeted nucleotide exchange in Saccharomyces cerevisiae directed by short oligonucleotides containing locked nucleic acids. Chem. Biol. 9, 1073–1084 (2002).
Moore, J. A. et al. Automated electrotransformation of Escherichia coli on a digital microfluidic platform using bioactivated magnetic beads. Biomicrofluidics 11, 014110 (2017).
Madison, A. C. et al. Scalable device for automated microbial electroporation in a digital microfluidic platform. ACS Synth. Biol. 6, 1701–1709 (2017).
Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).
Jasin, M. & Schimmel, P. Deletion of an essential gene in Escherichia coli by site-specific recombination with linear DNA fragments. J. Bacteriol. 159, 783–786 (1984).
Liang, L. et al. CRISPR EnAbled Trackable genome Engineering for isopropanol production in Escherichia coli. Metab. Eng. 41, 1–10 (2017).
Szili, P. et al. Rapid evolution of reduced susceptibility against a balanced dual-targeting antibiotic through stepping-stone mutations. Antimicrob. Agents Chemother. 63, e00207-19 (2019).
Zhang, J., Jensen, M. K. & Keasling, J. D. Development of biosensors and their application in metabolic engineering. Curr. Opin. Chem. Biol. 28, 1–8 (2015).
Glasgow, A. A. et al. Computational design of a modular protein sense-response system. Science 366, 1024–1028 (2019).
Hoffmann, S. A., Wohltat, C., Müller, K. M. & Arndt, K. M. A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter. PLoS ONE 12, e0181923 (2017).
Wong, B. G., Mancuso, C. P., Kiriakov, S., Bashor, C. J. & Khalil, A. S. Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER. Nat. Biotechnol. 36, 614–623 (2018).
Yang, K. K., Wu, Z. & Arnold, F. H. Machine-learning-guided directed evolution for protein engineering. Nat. Methods 16, 687–694 (2019).
Biswas, S., Khimulya, G., Alley, E. C., Esvelt, K. M. & Church, G. M. Low-N protein engineering with data-efficient deep learning. Preprint at bioRxiv https://doi.org/10.1101/2020.01.23.917682 (2020).
Beckman, R. A., Mildvan, A. S. & Loeb, L. A. On the fidelity of DNA replication: manganese mutagenesis in vitro. Biochemistry 24, 5810–5817 (1985).
Skandalis, A., Encell, L. P. & Loeb, L. A. Creating novel enzymes by applied molecular evolution. Chem. Biol. 4, 889–898 (1997).
Badran, A. H. et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 533, 58–63 (2016).
Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).
Reetz, M. T., Prasad, S., Carballeira, J. D., Gumulya, Y. & Bocola, M. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods. J. Am. Chem. Soc. 132, 9144–9152 (2010).
Martínez-García, E., Aparicio, T., Goñi-Moreno, A., Fraile, S. & de Lorenzo, V. SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities. Nucleic Acids Res. 43, D1183–D1189 (2015).
van Pijkeren, J.-P., Neoh, K. M., Sirias, D., Findley, A. S. & Britton, R. A. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri. Bioengineered 3, 209–217 (2012).
Chang, Y., Wang, Q., Su, T. & Qi, Q. The efficiency for recombineering is dependent on the source of the phage recombinase function unit. Preprint at bioRxiv https://doi.org/10.1101/745448 (2019).
Aparicio, T. et al. Mismatch repair hierarchy of Pseudomonas putida revealed by mutagenic ssDNA recombineering of the pyrF gene. Environ. Microbiol. 22, 45–58 (2020).
Corts, A. D., Thomason, L. C., Gill, R. T. & Gralnick, J. A. A new recombineering system for precise genome-editing in Shewanella oneidensis strain MR-1 using single-stranded oligonucleotides. Sci. Rep. 9, 1–10 (2019).
Bryan, A. & Swanson, M. S. Oligonucleotides stimulate genomic alterations of Legionella pneumophila. Mol. Microbiol. 80, 231–247 (2011).
Swingle, B., Bao, Z., Markel, E., Chambers, A. & Cartinhour, S. Recombineering using RecTE from Pseudomonas syringae. Appl. Environ. Microbiol. 76, 4960–4968 (2010).
Tucker, A. T. et al. Defining gene–phenotype relationships in Acinetobacter baumannii through one-step chromosomal gene inactivation. mBio 5, e01313–01314 (2014).
Sun, Z. et al. A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35. Appl. Microbiol. Biotechnol. 99, 5151–5162 (2015).
Wang, X. et al. Discovery of recombinases enables genome mining of cryptic biosynthetic gene clusters in Burkholderiales species. Proc. Natl Acad. Sci. USA 115, E4255–E4263 (2018).
Dong, H., Tao, W., Gong, F., Li, Y. & Zhang, Y. A functional recT gene for recombineering of Clostridium. J. Biotechnol. 173, 65–67 (2014).
Huang, H., Song, X. & Yang, S. Development of a RecE/T-assisted CRISPR–Cas9 toolbox for Lactobacillus. Biotechnol. J. 14, e1800690 (2019).
Xin, Y., Guo, T., Mu, Y. & Kong, J. Identification and functional analysis of potential prophage-derived recombinases for genome editing in Lactobacillus casei. FEMS Microbiol. Lett. 364, fnx243 (2017).
Yang, P., Wang, J. & Qi, Q. Prophage recombinases-mediated genome engineering in Lactobacillus plantarum. Microb. Cell Fact. 14, 154 (2015).
Yin, J. et al. A new recombineering system for Photorhabdus and Xenorhabdus. Nucleic Acids Res. 43, e36 (2015).
Wu, Y. et al. RecET recombination system driving chromosomal target gene replacement in Zymomonas mobilis. Electron. J. Biotechnol. 30, 118–124 (2017).
Acknowledgements
The authors thank J. Aach for helpful insights. Funding for this research was provided by the US Department of Energy (DOE) under grant DE-FG02-02ER63445 (G.M.C). The authors acknowledge support from the National Institute of General Medical Sciences of the National Institutes of Health (NIH) under a Chemistry–Biology Interface Training Grant that supported M.A.J. (Award Number T32GM133395). The study was supported by the following research grants: European Research Council (ERC) H2020-ERC-2014-CoG 648364 — Resistance Evolution (C.P.); ‘Célzott Lendület’ Programme of the Hungarian Academy of Sciences LP-2017–10/2017 (C.P.); ‘Élvonal’ KKP 126506 (C.P.); and GINOP-2.3.2–15–2016–00014 (EVOMER, to C.P.). P.N.C. was supported by Physical and Engineering Biology training grant 5T32EB019941-05. A.N. was supported by an EMBO LTF 160-2019 Long-Term fellowship. A.D.E. and K.J. acknowledge funding from the Air Force Office of Scientific Research (FA9550-14-1-0089) and the Welch Foundation (F-1654).
Author information
Authors and Affiliations
Contributions
Introduction (T.M.W., P.N.C. and F.J.I.); Experimentation (T.M.W., P.N.C., F.J.I. and C.P.); Results (T.M.W.); Applications (T.M.W., A.D.E., K.J., M.A.J., A.M.K., A.N. and M.G.S.); Reproducibility and data deposition (T.M.W.); Limitations and optimizations (T.M.W. and A.N.); Outlook (T.M.W., G.T.F. and G.M.C.). Overview of the Primer (T.M.W. and G.T.F.).
Corresponding author
Ethics declarations
Competing interests
T.M.W, G.T.F. and G.M.C. are inventors on a patent application related to serial enrichment for efficient recombineering (SEER) and new single-stranded DNA-annealing protein (SSAP) discovery. A.N. and C.P. are inventors on a patent related to directed evolution with random genomic mutations (DIvERGE) (US10669537B2: Mutagenizing Intracellular Nucleic Acids). F.J.I. and G.M.C. are inventors on a MAGE patent, which has been licensed. F.J.I. is an inventor on a patent application related to eukaryotic MAGE. The remaining authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Methods Primers thanks N. Claassens, A. Garst, M. Lluch Senar, J. Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
European Nucleotide Archive (ENA): https://www.ebi.ac.uk/ena/browser
GitHub: https://github.com
National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA): https://www.ncbi.nlm.nih.gov/sra
Glossary
- Homologous recombination
-
A type of genetic recombination by which nucleotide sequences are exchanged between molecules that share similar or identical sequences.
- DNA double-strand breaks
-
(DSBs). Simultaneous breaks in both strands of a DNA helix.
- Non-homologous end-joining
-
(NHEJ). The repair of double-strand DNA breaks by direct ligation of cut DNA ends without a homologous template.
- Short guide RNAs
-
(gRNAs). Molecules that bind to and then guide Cas9 or a similar protein to a targeted genomic locus by nucleotide base pairing.
- Homology-directed repair
-
(HDR). The repair of double-strand DNA breaks using a homologous template.
- Combinatorial genetic diversity
-
A population of cells that has been diversified through genetic engineering to include individual cells that each contain multiple modifications to their genome. These modifications are randomly introduced from a pool of potential modifications, creating combinatorial diversity in the population.
- Base editing
-
A method that fuses a Cas9 nickase to a deaminase domain. The Cas9 is directed by a guide RNA to a target site on the genome, whereupon the deaminase will edit within a window of DNA bases.
- Prime editing
-
A method whereby a Cas9 nickase is fused to a reverse transcriptase and a guide RNA is fused to a repair template. The Cas9 nickase nicks the target DNA strand, is then resected by host proteins and the reverse-transcribed DNA is used as a repair template, conveying the specified modification.
- Cas9 nickase
-
A Cas9 variant that has been partially deactivated so that it cuts one strand of a double-stranded helix, creating a ‘nick’ instead of a double-strand break.
- Reverse transcriptase
-
An enzyme that transcribes RNA into cDNA.
- Single-nucleotide polymorphisms
-
Any number of substitutions of single nucleotides at specific genomic locations.
- Reverse genetics
-
Classical genetics is the prediction of allelic determinants of phenotypic variation by genetic analysis. Reverse genetics is the creation of genetic variation and subsequent phenotypic characterization of these known allelic variants.
- Single-stranded DNA-annealing protein
-
(SSAP). A protein that speeds the specific annealing of two strands of single-stranded DNA (ssDNA), sometimes also interacting with proteins coating ssDNA to allow annealing to proceed.
- Multiplex automated genome engineering
-
(MAGE). An umbrella term referring to techniques that involve single-stranded DNA-mediated recombineering at multiple sites.
- ssDNA recombineering
-
Recombineering using single-stranded DNA (ssDNA) as the carrier of genetic information.
- Whole-genome recoding
-
The replacement of a codon with one or multiple alternative codons systematically throughout a genome.
- Bacterial artificial chromosome
-
A large circular DNA element distinct from the bacterial chromosome that replicates from a plasmid origin.
- Allelic recombination frequency
-
(ARF). The fraction of a cell population that successfully inherits a specified modification after a genetic editing technique such as multiplex automated genome engineering is carried out.
- Single-stranded DNA-binding protein
-
(SSB). An essential protein that binds to single-stranded DNA, protecting it and coordinating chromosome replication, and that is preserved throughout all domains of life.
- Serial enrichment for efficient recombineering
-
(SEER). A method for screening a large library of single-stranded DNA-annealing proteins to identify variants that perform efficiently in a given host.
- Single-stranded DNA annealing
-
The annealing of two strands of single-stranded DNA by base pairing.
- Co-selection MAGE
-
A multiplex genome engineering technique in which a target modification that does not confer a selective phenotype is made in close proximity to one that does, allowing enrichment of both modifications in comparison with an unselected population.
- Origin of replication
-
The site at which proteins involved in genome replication begin the synthesis of a new genomic copy.
Rights and permissions
About this article
Cite this article
Wannier, T.M., Ciaccia, P.N., Ellington, A.D. et al. Recombineering and MAGE. Nat Rev Methods Primers 1, 7 (2021). https://doi.org/10.1038/s43586-020-00006-x
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-020-00006-x
This article is cited by
-
Highly efficient and rapid generation of genetic variants
Nature Methods (2023)
-
Towards next-generation cell factories by rational genome-scale engineering
Nature Catalysis (2022)
-
Targeted editing and evolution of engineered ribosomes in vivo by filtered editing
Nature Communications (2022)
-
ssDNA recombineering boosts in vivo evolution of nanobodies displayed on bacterial surfaces
Communications Biology (2021)