Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemical vapour deposition

Abstract

Chemical vapour deposition (CVD) is a powerful technology for producing high-quality solid thin films and coatings. Although widely used in modern industries, it is continuously being developed as it is adapted to new materials. Today, CVD synthesis is being pushed to new heights with the precise manufacturing of both inorganic thin films of 2D materials and high-purity polymeric thin films that can be conformally deposited on various substrates. In this Primer, an overview of the CVD technique, including instrument construction, process control, material characterization and reproducibility issues, is provided. By taking graphene, 2D transition metal dichalcogenides (TMDs) and polymeric thin films as typical examples, the best practices for experimentation involving substrate pretreatment, high-temperature growth and post-growth processes are presented. Recent advances and scaling-up challenges are also highlighted. By analysing current limitations and optimizations, we also provide insight into possible future directions for the method, including reactor design for high-throughput and low-temperature growth of thin films.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic of general elementary steps of a typical CVD process.
Fig. 2: Typical CVD equipment.
Fig. 3: Schematic of experimental processes for growing graphene.
Fig. 4: Characterization of CVD-grown graphene.
Fig. 5: Schematic of the typical components of a tube furnace used to grow MoS2 and similar TMDs.
Fig. 6: Selected examples of CVD polymer processing and applications.
Fig. 7: Advances in CVD technology for scaling-up graphene synthesis.
Fig. 8: Full R2R production of graphene films.
Fig. 9: Important factors that determine the reliability of graphene synthesis, and the corresponding electrical performance data.
Fig. 10: Concept of in situ monitoring of the as-grown CVD graphene on copper using CLSM.

References

  1. Teal, G. K., Fisher, J. R. & Treptow, A. W. A new bridge photo-cell employing a photo-conductive effect in silicon. Some properties of high purity silicon. J. Appl. Phys. 17, 879–886 (1946).

    Article  ADS  Google Scholar 

  2. Carlson, D. E. & Wronski, C. R. Amorphous silicon solar cell. Appl. Phys. Lett. 28, 671–673 (1976).

    Article  ADS  Google Scholar 

  3. Knights, J. C. Substitutional doping in amorphous silicon. Am. Inst. Phys. Conf. Ser. 31, 296–300 (1976).

    ADS  Google Scholar 

  4. Manasevit, H. M. Recollections and reflections of MO-CVD. J. Cryst. Growth 55, 1–9 (1981).

    Article  ADS  Google Scholar 

  5. Tsang, W. T. Chemical beam epitaxy of InP and GaAs. Appl. Phys. Lett. 45, 1234–1236 (1984).

    Article  ADS  Google Scholar 

  6. Xia, Y. et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

    Article  Google Scholar 

  7. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  8. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article  ADS  Google Scholar 

  9. Lin, L., Deng, B., Sun, J., Peng, H. & Liu, Z. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 118, 9281–9343 (2018). This review provides a systematic introduction to the CVD growth of graphene.

    Article  Google Scholar 

  10. Cai, Z., Liu, B., Zou, X. & Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118, 6091–6133 (2018). This paper is a systematic introduction to CVD growth of 2D materials and their heterostructures.

    Article  Google Scholar 

  11. Choy, K. L. Chemical vapour deposition of coatings. Prog. Mater. Sci. 48, 57–170 (2003).

    Article  Google Scholar 

  12. Yan, K., Fu, L., Peng, H. L. & Liu, Z. F. Designed CVD growth of graphene via process engineering. Acc. Chem. Res. 46, 2263–2274 (2013).

    Article  Google Scholar 

  13. Wang, H. et al. Primary nucleation-dominated chemical vapor deposition growth for uniform graphene monolayers on dielectric substrate. J. Am. Chem. Soc. 141, 11004–11008 (2019).

    Article  Google Scholar 

  14. Xie, H. et al. H2O-etchant-promoted synthesis of high-quality graphene on glass and its application in see-through thermochromic displays. Small 16, e1905485 (2020).

    Article  Google Scholar 

  15. Park, J. H. et al. Large-area monolayer hexagonal boron nitride on Pt foil. ACS Nano 8, 8520–8528 (2014).

    Article  Google Scholar 

  16. Zhang, Z. W. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017).

    Article  Google Scholar 

  17. Sahoo, P. K., Memaran, S., Xin, Y., Balicas, L. & Gutierrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63–67 (2018).

    Article  ADS  Google Scholar 

  18. Ji, Q. et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 13, 3870–3877 (2013).

    Article  ADS  Google Scholar 

  19. Zhang, Y. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7, 8963–8971 (2013).

    Article  Google Scholar 

  20. Wu, J. et al. Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett. 17, 3021–3026 (2017).

    Article  ADS  Google Scholar 

  21. Jia, K. C. et al. Copper-containing carbon feedstock for growing superclean graphene. J. Am. Chem. Soc. 141, 7670–7674 (2019).

    Article  Google Scholar 

  22. Wang, H. et al. Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small 9, 1316–1320 (2013).

    Article  Google Scholar 

  23. Jiang, B. et al. Batch synthesis of transfer-free graphene with wafer-scale uniformity. Nano Res. 13, 1564–1570 (2020).

    Article  Google Scholar 

  24. Deng, B. et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 15, 4206–4213 (2015).

    Article  ADS  Google Scholar 

  25. Deng, B. et al. Scalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arrays. Sci. Bull. 64, 659–668 (2019).

    Article  Google Scholar 

  26. Tang, L. et al. Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides. ACS Nano 4, 4646–4653 (2020).

    Article  Google Scholar 

  27. Xu, J. et al. Fast batch production of high-quality graphene films in a sealed thermal molecular movement system. Small 13, 1700651 (2017).

    Article  Google Scholar 

  28. Li, Y. et al. Large single-crystal Cu foils with high-index facets by strain-engineered anomalous grain growth. Adv. Mater 32, e2002034 (2020).

    Article  Google Scholar 

  29. Deng, B., Liu, Z. & Peng, H. Toward mass production of CVD graphene films. Adv. Mater 31, e1800996 (2018).

    Article  Google Scholar 

  30. Chen, X. D. et al. Fast growth and broad applications of 25-inch uniform graphene glass. Adv. Mater. 29, e1603428 (2017).

    Article  Google Scholar 

  31. Sun, Z. Z. et al. Large-area bernal-stacked Bi-, Tr-, and tetralayer graphene. ACS Nano 6, 9790–9796 (2012).

    Article  Google Scholar 

  32. Xu, Y. & Yan, X.-T. Chemical Vapour Deposition: An Integrated Engineering Design for Advanced Materials (Springer, 2010).

  33. Bointon, T. H., Barnes, M. D., Russo, S. & Craciun, M. F. High quality monolayer graphene synthesized by resistive heating cold wall chemical vapor deposition. Adv. Mater. 27, 4200–4206 (2015).

    Article  Google Scholar 

  34. Qi, Y. et al. Switching vertical to horizontal graphene growth using faraday cage-assisted PECVD approach for high-performance transparent heating device. Adv. Mater. 30, e1704839 (2018).

    Article  Google Scholar 

  35. Yamada, T., Ishihara, M., Kim, J., Hasegawa, M. & Iijima, S. A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature. Carbon 50, 2615–2619 (2012).

    Article  Google Scholar 

  36. Ryu, J. et al. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano 8, 950–956 (2014).

    Article  Google Scholar 

  37. Piner, R. et al. Graphene synthesis via magnetic inductive heating of copper substrates. ACS Nano 7, 7495–7499 (2013).

    Article  Google Scholar 

  38. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009). This paper is the first report of large-area monolayer graphene films via CVD.

    Article  ADS  Google Scholar 

  39. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    Article  ADS  Google Scholar 

  40. Chen, J. et al. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 133, 17548–17551 (2011).

    Article  Google Scholar 

  41. Chen, Z. et al. High-brightness blue light-emitting diodes enabled by a directly grown graphene buffer layer. Adv. Mater. 30, e1801608 (2018).

    Article  Google Scholar 

  42. Chen, Z., Qi, Y., Chen, X., Zhang, Y. & Liu, Z. Direct CVD growth of graphene on traditional glass: methods and mechanisms. Adv. Mater. 31, e1803639 (2019).

    Article  Google Scholar 

  43. Hao, Y. F. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720–723 (2013).

    Article  ADS  Google Scholar 

  44. Sun, L. et al. Visualizing fast growth of large single-crystalline graphene by tunable isotopic carbon source. Nano Res. 10, 355–363 (2016).

    Article  Google Scholar 

  45. Xu, X. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074–1080 (2017). This report highlights the transformation of polycrystalline metal foil into a single-crystal one for high-quality graphene growth.

    Article  Google Scholar 

  46. Wu, M. et al. Seeded growth of large single-crystal copper foils with high-index facets. Nature 581, 406–410 (2020).

    Article  ADS  Google Scholar 

  47. Li, Y., Sun, L., Liu, H., Wang, Y. & Liu, Z. Preparation of single-crystal metal substrates for the growth of high-quality two-dimensional materials. Inorg. Chem. Front. https://doi.org/10.1039/D1030QI00923G (2020).

    Article  Google Scholar 

  48. German, E. D. & Sheintuch, M. Predicting CH4 dissociation kinetics on metals: trends, sticking coefficients, H tunneling, and kinetic isotope effect. J. Phys. Chem. C. 117, 22811–22826 (2013).

    Article  Google Scholar 

  49. Li, X. S. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 10, 4328–4334 (2010).

    Article  ADS  Google Scholar 

  50. Bhaviripudi, S., Jia, X., Dresselhaus, M. S. & Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 10, 4128–4133 (2010).

    Article  ADS  Google Scholar 

  51. Lin, L. et al. Towards super-clean graphene. Nat. Commun. 10, 1912 (2019).

    Article  ADS  Google Scholar 

  52. Sun, J. et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 15, 5846–5854 (2015).

    Article  ADS  Google Scholar 

  53. Li, X. S., Cai, W. W., Colombo, L. & Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009).

    Article  ADS  Google Scholar 

  54. Dai, B. et al. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat. Commun. 2, 522 (2011).

    Article  ADS  Google Scholar 

  55. Liu, X. et al. Segregation growth of graphene on Cu–Ni alloy for precise layer control. J. Phys. Chem. C. 115, 11976–11982 (2011).

    Article  Google Scholar 

  56. Li, Y., Sun, L., Liu, H., Wang, Y. & Liu, Z. Rational design of binary alloys for catalytic growth of graphene via chemical vapor deposition. Catalysts 10, 1305 (2020).

    Article  Google Scholar 

  57. Liu, N. et al. The origin of wrinkles on transferred graphene. Nano Res. 4, 996–1004 (2011).

    Article  Google Scholar 

  58. Deng, B. et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 11, 12337–12345 (2017).

    Article  Google Scholar 

  59. Zhang, C., Fu, L., Zhang, Y. & Liu, Z. Segregation phenomenon and its control in the catalytic growth of graphene. Acta Chim. Sin. 71, 308–308 (2013).

    Article  Google Scholar 

  60. Deng, B. et al. Anisotropic strain relaxation of graphene by corrugation on copper crystal surfaces. Small 14, e1800725 (2018).

    Article  Google Scholar 

  61. Yu, S. U. et al. Simultaneous visualization of graphene grain boundaries and wrinkles with structural information by gold deposition. ACS Nano 8, 8662–8668 (2014).

    Article  Google Scholar 

  62. Massalski, T. B., Murray, J. L., Bennet, L. H. & Baker, H. Binary Alloy Phase Diagrams (ASM International, 1986).

  63. Dwight E. Gray, A. I. O. P. American Institute of Physics Handbook 3rd edn (McGraw-Hill, 1972).

  64. Reina, A. et al. Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2, 509–516 (2009).

    Article  Google Scholar 

  65. Yan, K. et al. Modulation-doped growth of mosaic graphene with single-crystalline p–n junctions for efficient photocurrent generation. Nat. Commun. 3, 1280 (2012).

    Article  ADS  Google Scholar 

  66. Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Article  ADS  Google Scholar 

  67. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    Article  ADS  Google Scholar 

  68. Huang, M. et al. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat. Nanotechnol. 15, 289–295 (2020).

    Article  ADS  Google Scholar 

  69. Gao, L. B. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 699 (2012).

    Article  ADS  Google Scholar 

  70. Duong, D. L. et al. Probing graphene grain boundaries with optical microscopy. Nature 490, 235–239 (2012).

    Article  ADS  Google Scholar 

  71. Gan, L. & Luo, Z. T. Turning off hydrogen to realize seeded growth of subcentimeter single-crystal graphene grains on copper. ACS Nano 7, 9480–9488 (2013).

    Article  Google Scholar 

  72. Ly, T. H. et al. Nondestructive characterization of graphene defects. Adv. Funct. Mater. 23, 5183–5189 (2013).

    Article  Google Scholar 

  73. Kong, X. H. et al. Non-destructive and rapid evaluation of chemical vapor deposition graphene by dark field optical microscopy. Appl. Phys. Lett. 103, 043119 (2013).

    Article  ADS  Google Scholar 

  74. Huang, L. et al. Twinkling graphene on polycrystalline Cu substrate: a scanning electron microscopy study. J. Appl. Phys. 125, 194303 (2019).

    Article  ADS  Google Scholar 

  75. Huang, L. et al. High-contrast SEM imaging of supported few-layer graphene for differentiating distinct layers and resolving fine features: there is plenty of room at the bottom. Small 14, e1704190 (2018).

    Article  Google Scholar 

  76. Wang, Z. J. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9, 1506–1519 (2015).

    Article  Google Scholar 

  77. Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  ADS  Google Scholar 

  78. Sun, L. et al. A force-engineered lint roller for superclean graphene. Adv. Mater. 31, 1902978 (2019).

    Article  Google Scholar 

  79. Kang, J. H. et al. Strain relaxation of graphene layers by Cu surface roughening. Nano Lett. 16, 5993–5998 (2016).

    Article  ADS  Google Scholar 

  80. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). This report highlights the large-scale growth and transfer of graphene films.

    Article  ADS  Google Scholar 

  81. Yu, Q. K. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  82. Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544–547 (2010).

    Article  ADS  Google Scholar 

  83. Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I. I. & Batzill, M. An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 5, 326–329 (2010).

    Article  ADS  Google Scholar 

  84. Artyukhov, V. I., Liu, Y. Y. & Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl Acad. Sci. USA 109, 15136–15140 (2012).

    Article  ADS  Google Scholar 

  85. Shu, H. B., Chen, X. S., Tao, X. M. & Ding, F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano 6, 3243–3250 (2012).

    Article  Google Scholar 

  86. Yuan, Q. H. et al. Magic carbon clusters in the chemical vapor deposition growth of graphene. J. Am. Chem. Soc. 134, 2970–2975 (2012).

    Article  Google Scholar 

  87. Rasool, H. I. et al. Continuity of graphene on polycrystalline copper. Nano Lett. 11, 251–256 (2011).

    Article  ADS  Google Scholar 

  88. Rasool, H. I. et al. Atomic-scale characterization of graphene grown on copper(100) single crystals. J. Am. Chem. Soc. 133, 12536–12543 (2011).

    Article  Google Scholar 

  89. Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).

    Article  ADS  Google Scholar 

  90. Liu, L. et al. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343, 163–167 (2014).

    Article  ADS  Google Scholar 

  91. Yuan, G. W. et al. Proton-assisted growth of ultra-flat graphene films. Nature 577, 204–208 (2020).

    Article  ADS  Google Scholar 

  92. Sutter, E., Acharya, D. P., Sadowski, J. T. & Sutter, P. Scanning tunneling microscopy on epitaxial bilayer graphene on ruthenium(0001). Appl. Phys. Lett. 94, 133101 (2009).

    Article  ADS  Google Scholar 

  93. Gao, L., Guest, J. R. & Guisinger, N. P. Epitaxial graphene on Cu(111). Nano Lett. 10, 3512–3516 (2010).

    Article  ADS  Google Scholar 

  94. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).

    Article  ADS  Google Scholar 

  95. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    Article  ADS  Google Scholar 

  96. Kim, K. et al. Grain boundary mapping in polycrystalline graphene. ACS Nano 5, 2142–2146 (2011).

    Article  ADS  Google Scholar 

  97. Lee, J. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    Article  ADS  Google Scholar 

  98. Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-angstrom resolution. Nature 559, 343–349 (2018).

    Article  ADS  Google Scholar 

  99. Chen, T. A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111). Nature 579, 219–223 (2020).

    Article  ADS  Google Scholar 

  100. Xu, X. Z. et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol. 11, 930–935 (2016).

    Article  ADS  Google Scholar 

  101. Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013). This paper highlights the utility of Raman spectroscopy for characterizing the properties of graphene.

    Article  ADS  Google Scholar 

  102. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  ADS  Google Scholar 

  103. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008).

    Article  Google Scholar 

  104. Lee, J. E., Ahn, G., Shim, J., Lee, Y. S. & Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, 1024 (2012).

    Article  ADS  Google Scholar 

  105. Bronsgeest, M. S. et al. Strain relaxation in CVD graphene: wrinkling with shear lag. Nano Lett. 15, 5098–5104 (2015).

    Article  ADS  Google Scholar 

  106. Zhao, T. et al. Ultrafast growth of nanocrystalline graphene films by quenching and grain-size-dependent strength and bandgap opening. Nat. Commun. 10, 4854 (2019).

    Article  ADS  Google Scholar 

  107. Varykhalov, A. et al. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 101, 157601 (2008).

    Article  ADS  Google Scholar 

  108. Avila, J. et al. Exploring electronic structure of one-atom thick polycrystalline graphene films: a nano angle resolved photoemission study. Sci. Rep. 3, 2439 (2013).

    Article  Google Scholar 

  109. Varykhalov, A., Scholz, M. R., Kim, T. K. & Rader, O. Effect of noble-metal contacts on doping and band gap of graphene. Phys. Rev. B 82, 121101 (2010).

    Article  ADS  Google Scholar 

  110. Gottardi, S. et al. Comparing graphene growth on Cu(111) versus oxidized Cu(111). Nano Lett. 15, 917–922 (2015).

    Article  ADS  Google Scholar 

  111. Bakharev, P. V. et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nat. Nanotechnol. 15, 59–66 (2020).

    Article  ADS  Google Scholar 

  112. Gleason, K. K. Nanoscale control by chemically vapour-deposited polymers. Nat. Rev. Phys. 2, 347–364 (2020). This review introduces the controllable growth of polymers via CVD.

    Article  Google Scholar 

  113. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    Article  Google Scholar 

  114. Chhowalla, M., Liu, Z. & Zhang, H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 44, 2584–2586 (2015). This review article introduces 2D TMDs.

    Article  Google Scholar 

  115. Lv, R. et al. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48, 56–64 (2015).

    Article  Google Scholar 

  116. Liu, K.-K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

    Article  ADS  Google Scholar 

  117. Wang, X. et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 8, 5125–5131 (2014).

    Article  Google Scholar 

  118. Huang, C. et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

    Article  Google Scholar 

  119. Liu, B. et al. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 9, 6119–6127 (2015).

    Article  Google Scholar 

  120. Li, S. et al. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 1, 60–66 (2015).

    Article  Google Scholar 

  121. Li, G. et al. Direct growth of continuous and uniform MoS2 film on SiO2/Si substrate catalyzed by sodium sulfate. J. Phys. Chem. Lett. 11, 1570–1577 (2020).

    Article  Google Scholar 

  122. Yang, P. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 (2018).

    Article  ADS  Google Scholar 

  123. Lee, Y.-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  Google Scholar 

  124. Dumcenco, D. et al. Large-area epitaxial monolayer MoS2. ACS Nano 9, 4611–4620 (2015).

    Article  Google Scholar 

  125. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  ADS  Google Scholar 

  126. Kim, H., Ovchinnikov, D., Deiana, D., Unuchek, D. & Kis, A. Suppressing nucleation in metal–organic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett. 17, 5056–5063 (2017).

    Article  ADS  Google Scholar 

  127. Xu, C. et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015).

    Article  ADS  Google Scholar 

  128. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article  ADS  Google Scholar 

  129. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article  ADS  Google Scholar 

  130. Yang, J. et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18, 1309–1314 (2019).

    Article  ADS  Google Scholar 

  131. Behura, S., Nguyen, P., Che, S., Debbarma, R. & Berry, V. Large-area, transfer-free, oxide-assisted synthesis of hexagonal boron nitride films and their heterostructures with MoS2 and WS2. J. Am. Chem. Soc. 137, 13060–13065 (2015).

    Article  Google Scholar 

  132. Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    Article  ADS  Google Scholar 

  133. Wang, Z. et al. Metal immiscibility route to synthesis of ultrathin carbides, borides, and nitrides. Adv. Mater. 29, e1700364 (2017).

    Article  Google Scholar 

  134. Wu, J. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530–534 (2017).

    Article  ADS  Google Scholar 

  135. Tan, C. et al. Wafer-scale growth of single-crystal 2D semiconductor on perovskite oxides for high-performance transistors. Nano Lett. 19, 2148–2153 (2019).

    Article  ADS  Google Scholar 

  136. Gleason, K. K. CVD Polymers: Fabrication of Organic Surfaces and Devices (Wiley, 2015).

  137. De Luna, M. M., Karandikar, P. & Gupta, M. Interactions between polymers and liquids during initiated chemical vapor deposition onto liquid substrates. Mol. Syst. Des. Eng. 5, 15–21 (2020).

    Article  Google Scholar 

  138. Donadt, T. B. & Yang, R. Vapor-deposited biointerfaces and bacteria: an evolving conversation. ACS Biomater. Sci. Eng. 6, 182–197 (2020).

    Article  Google Scholar 

  139. Moni, P., Al-Obeidi, A. & Gleason, K. K. Vapor deposition routes to conformal polymer thin films. Beilstein J. Nanotechnol. 8, 723–735 (2017).

    Article  Google Scholar 

  140. Coclite, A. M. Smart surfaces by initiated chemical vapor deposition. Surf. Innov. 1, 6–14 (2013).

    Article  Google Scholar 

  141. Gleason, K. K. Chemically vapor deposited polymer nanolayers for rapid and controlled permeation of molecules and ions. J. Vac. Sci. Technol. 38, 020801 (2020).

    Article  Google Scholar 

  142. Perrotta, A., Werzer, O. & Coclite, A. M. Strategies for drug encapsulation and controlled delivery based on vapor-phase deposited thin films. Adv. Eng. Mater. 20, 1700639 (2018).

    Article  Google Scholar 

  143. Sayin, S., Ozdemir, E., Acar, E. & Ince, G. O. Multifunctional one-dimensional polymeric nanostructures for drug delivery and biosensor applications. Nanotechnology 30, 412001 (2019).

    Article  Google Scholar 

  144. Zhao, J. & Gleason, K. K. Solvent-less vapor-phase fabrication of membranes for sustainable separation processes. Engineering https://doi.org/10.1016/j.eng.2020.05.002 (2020).

    Article  Google Scholar 

  145. Lewis, H. G. P., Bansal, N. P., White, A. J. & Handy, E. S. HWCVD of polymers: commercialization and scale-up. Thin Solid Films 517, 3551–3554 (2009).

    Article  ADS  Google Scholar 

  146. Kim, S. et al. Ultrathin high-resolution flexographic printing using nanoporous stamps. Sci. Adv. 2, e1601660 (2016).

    Article  ADS  Google Scholar 

  147. Suh, H. S. et al. Sub-10-nm patterning via directed self-assembly of block copolymer films with a vapour-phase deposited topcoat. Nat. Nanotechnol. 12, 575 (2017).

    Article  ADS  Google Scholar 

  148. Moni, P. et al. Ultrathin and conformal initiated chemical-vapor-deposited layers of systematically varied surface energy for controlling the directed self-assembly of block copolymers. Langmuir 34, 4494–4502 (2018).

    Article  Google Scholar 

  149. Yang, G. G. et al. Conformal 3D nanopatterning by block copolymer lithography with vapor-phase deposited neutral adlayer. ACS Nano 13, 13092–13099 (2019).

    Article  Google Scholar 

  150. Yu, S. J. et al. Initiated chemical vapor deposition: a versatile tool for various device applications. Adv. Eng. Mater. 20, 1700622 (2018). This review article highlights the synthesis of polymers via an advanced CVD method.

    Article  Google Scholar 

  151. Kim, J. H. et al. Conformal, wafer-scale and controlled nanoscale doping of semiconductors via the iCVD process. IEEE Int. Electron Devices Meet. https://doi.org/10.1109/IEDM.2018.8614494 (2018).

    Article  Google Scholar 

  152. Gharahcheshmeh, M. H. & Gleason, K. K. Device fabrication based on oxidative chemical vapor deposition (oCVD) synthesis of conducting polymers and related conjugated organic materials. Adv. Mater. Interfaces 6, 1801564 (2019).

    Article  Google Scholar 

  153. Wang, X. et al. High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Sci. Adv. 4, eaat5780 (2018). This paper shows that the electrical conductivity and carrier mobility of a mechanically flexible CVD organic polymer thin film reaches the levels found in mechanical brittle ITO.

    Article  ADS  Google Scholar 

  154. Gueye, M. N., Carella, A., Faure-Vincent, J., Demadrille, R. & Simonato, J.-P. Progress in understanding structure and transport properties of PEDOT-based materials: a critical review. Prog. Mater. Sci. 108, 100616 (2019).

    Article  Google Scholar 

  155. Smolin, Y. Y., Soroush, M. & Lau, K. K. Influence of oCVD polyaniline film chemistry in carbon-based supercapacitors. Ind. Eng. Chem. Res. 56, 6221–6228 (2017).

    Article  Google Scholar 

  156. Lau, K. K. & Gleason, K. K. Initiated chemical vapor deposition (iCVD) of poly(alkyl acrylates): an experimental study. Macromolecules 39, 3688–3694 (2006).

    Article  ADS  Google Scholar 

  157. Tao, R. & Anthamatten, M. Condensation and polymerization of supersaturated monomer vapor. Langmuir 28, 16580–16587 (2012).

    Article  Google Scholar 

  158. O'Shaughnessy, W., Murthy, S., Edell, D. & Gleason, K. Stable biopassive insulation synthesized by initiated chemical vapor deposition of poly (1,3,5-trivinyltrimethylcyclotrisiloxane). Biomacromolecules 8, 2564–2570 (2007).

    Article  Google Scholar 

  159. Obraztsov, A. N., Obraztsova, E. A., Tyurnina, A. V. & Zolotukhin, A. A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45, 2017–2021 (2007).

    Article  Google Scholar 

  160. Yu, Q. et al. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008).

    Article  ADS  Google Scholar 

  161. Lee, Y. et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10, 490–493 (2010).

    Article  ADS  Google Scholar 

  162. Hong, B. H. et al. Graphene roll-to-roll coating apparatus and graphene roll-to-roll coating method using the same. US KR1020100011437 patent (2010).

  163. Han, T.-H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 6, 105–110 (2012).

    Article  ADS  Google Scholar 

  164. Kang, J. et al. High-performance graphene-based transparent flexible heaters. Nano Lett. 11, 5154–5158 (2011).

    Article  ADS  Google Scholar 

  165. Kang, S. et al. Efficient heat generation in large-area graphene films by electromagnetic wave absorption. 2D Mater. 4, 025037 (2017).

    Article  Google Scholar 

  166. Kobayashi, T. et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102, 023112 (2013).

    Article  ADS  Google Scholar 

  167. Hesjedal, T. Continuous roll-to-roll growth of graphene films by chemical vapor deposition. Appl. Phys. Lett. 98, 133106 (2011).

    Article  ADS  Google Scholar 

  168. Zhong, G. et al. Growth of continuous graphene by open roll-to-roll chemical vapor deposition. Appl. Phys. Lett. 109, 193103 (2016).

    Article  ADS  Google Scholar 

  169. Polsen, E. S., McNerny, D. Q., Viswanath, B., Pattinson, S. W. & John Hart, A. High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci. Rep. 5, 10257 (2015).

    Article  ADS  Google Scholar 

  170. Kim, D. J. E. A. Confocal laser scanning microscopy as a real time quality-assessment tool for industrial graphene synthesis. 2D Mater. 7, 045014 (2020).

    Article  Google Scholar 

  171. Hong, B. H. Commercial scale production of CVD graphene and graphene quantum dots. Presented at Graphene and 2DM Industrial Forum (2020).

  172. Robertson, J., Liu, X., Yue, C., Escarra, M. & Wei, J. Wafer-scale synthesis of monolayer and few-layer MoS2 via thermal vapor sulfurization. 2D Mater. 4, 045007 (2017).

    Article  Google Scholar 

  173. Lim, Y. R. et al. Roll-to-roll production of layer-controlled molybdenum disulfide: a platform for 2D semiconductor-based industrial applications. Adv. Mater. 30, 1705270 (2018).

    Article  Google Scholar 

  174. Hempel, M. et al. Repeated roll-to-roll transfer of two-dimensional materials by electrochemical delamination. Nanoscale 10, 5522–5531 (2018).

    Article  Google Scholar 

  175. Jeon, W., Cho, Y., Jo, S., Ahn, J.-H. & Jeong, S.-J. Wafer-scale synthesis of reliable high-mobility molybdenum disulfide thin films via inhibitor-utilizing atomic layer deposition. Adv. Mater. 29, 1703031 (2017).

    Article  Google Scholar 

  176. Choi, T. et al. Roll-to-roll continuous patterning and transfer of graphene via dispersive adhesion. Nanoscale 7, 7138–7142 (2015).

    Article  ADS  Google Scholar 

  177. Jo, I. et al. Tension-controlled single-crystallization of copper foils for roll-to-roll synthesis of high-quality graphene films. 2D Mater. 5, 024002 (2018).

    Article  Google Scholar 

  178. Jin, S. et al. Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science 362, 1021 (2018).

    Article  ADS  Google Scholar 

  179. Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817 (2018).

    Article  ADS  Google Scholar 

  180. Kim, Y.-J., Kim, Y., Novoselov, K. & Hong, B. H. Engineering electrical properties of graphene: chemical approaches. 2D Mater. 2, 042001 (2015).

    Article  Google Scholar 

  181. Zhao, L. et al. Visualizing individual nitrogen dopants in monolayer graphene. Science 333, 999 (2011).

    Article  ADS  Google Scholar 

  182. Kim, Y. et al. Vapor-phase molecular doping of graphene for high-performance transparent electrodes. ACS Nano 8, 868–874 (2014).

    Article  Google Scholar 

  183. Kim, Y. et al. A highly conducting graphene film with dual-side molecular n-doping. Nanoscale 6, 9545–9549 (2014).

    Article  ADS  Google Scholar 

  184. Jo, I. et al. Stable n-type doping of graphene via high-molecular-weight ethylene amines. Phys. Chem. Chem. Phys. 17, 29492–29495 (2015).

    Article  Google Scholar 

  185. Yan, C. et al. Mechanical and environmental stability of polymer thin-film-coated graphene. ACS Nano 6, 2096–2103 (2012).

    Article  Google Scholar 

  186. Choi, K. et al. Reduced water vapor transmission rate of graphene gas barrier films for flexible organic field-effect transistors. ACS Nano 9, 5818–5824 (2015).

    Article  Google Scholar 

  187. Kim, D. J. et al. Degradation protection of color dyes encapsulated by graphene barrier films. Chem. Mater. 31, 7173–7177 (2019).

    Article  Google Scholar 

  188. Kim, J. et al. Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl. Phys. Lett. 98, 091502 (2011).

    Article  ADS  Google Scholar 

  189. Havener, R. W. et al. High-throughput graphene imaging on arbitrary substrates with widefield Raman spectroscopy. ACS Nano 6, 373–380 (2012).

    Article  Google Scholar 

  190. Krupka, J., Strupinski, W. & Kwietniewski, N. Microwave conductivity of very thin graphene and metal films. J. Nanosci. Nanotechnol. 11, 3358–3362 (2011).

    Article  Google Scholar 

  191. Whelan, P. R. et al. Robust mapping of electrical properties of graphene from terahertz time-domain spectroscopy with timing jitter correction. Opt. Express 25, 2725–2732 (2017).

    Article  ADS  Google Scholar 

  192. Panchal, V. et al. Confocal laser scanning microscopy for rapid optical characterization of graphene. Commun. Phys. 1, 83 (2018).

    Article  Google Scholar 

  193. Ci, L. et al. Preparation of carbon nanofibers by the floating catalyst method. Carbon 38, 1933–1937 (2000).

    Article  Google Scholar 

  194. Wang, B. W. et al. Continuous fabrication of meter-scale single-wall carbon nanotube films and their use in flexible and transparent integrated circuits. Adv. Mater. 30, e1802057 (2018).

    Article  Google Scholar 

  195. Huang, J.-K. et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8, 923–930 (2014).

    Article  Google Scholar 

  196. Geng, D. et al. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29, 1700072 (2017).

    Article  Google Scholar 

  197. Coclite, A. M. et al. 25th Anniversary article: CVD polymers: a new paradigm for surface modifi cation and device fabrication. Adv. Mater. 25, 5392–5423 (2013).

    Article  Google Scholar 

  198. Zhou, H. & Bent, S. F. Fabrication of organic interfacial layers by molecular layer deposition: present status and future opportunities. J. Vac. Sci. Technol. 31, 040801 (2013).

    Article  Google Scholar 

  199. George, S. M., Yoon, B. & Dameron, A. A. Surface chemistry for molecular layer deposition of organic and hybrid organic–inorganic polymers. Acc. Chem. Res. 42, 498–508 (2009).

    Article  Google Scholar 

  200. Bilger, D., Homayounfar, S. Z. & Andrew, T. L. A critical review of reactive vapor deposition for conjugated polymer synthesis. J. Mater. Chem. C 7, 7159–7174 (2019).

    Article  Google Scholar 

  201. Gharahcheshmeh, M. H. & Gleason, K. K. Engineering texture and nanostrcuture in conjugated conducting and semiconducting polymers. Mater. Today Adv. 8, 100086 (2020).

    Article  Google Scholar 

  202. Chen, H.-Y. & Lahann, J. Designable biointerfaces using vapor-based reactive polymers. Langmuir 27, 34–48 (2011).

    Article  Google Scholar 

  203. Hassan, Z., Spuling, E., Knoll, D. M. & Bräse, S. Regioselective functionalization of [2.2]paracyclophanes: recent synthetic progress and perspectives. Angew. Chem. Int. Ed. 59, 2156–2170 (2020).

    Article  Google Scholar 

  204. Yasuda, H. K. Plasma Polymerization (Academic, 1985).

  205. van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

    Article  ADS  Google Scholar 

  206. Kovacik, P., del Hierro, G., Livernois, W. & Gleason, K. K. Scale-up of oCVD: large-area conductive polymer thin films for next-generation electronics. Mater. Horiz. 2, 221–227 (2015).

    Article  Google Scholar 

  207. Barr, M. C. et al. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv. Mater. 23, 3500–3505 (2011).

    Article  Google Scholar 

  208. Lau, K. K. et al. Superhydrophobic carbon nanotube forests. Nano Lett. 3, 1701–1705 (2003).

    Article  ADS  Google Scholar 

  209. Yang, S. C. et al. Large-scale, low-power nonvolatile memory based on few-layer MoS2 and ultrathin polymer dielectrics. Adv. Electron. Mater. 5, 1800688 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

Z.F.L. and L.Z.S. were supported by Beijing National Laboratory for Molecular Sciences (BNLMS-CXTD-202001), Beijing Municipal Science & Technology Commission (Nos. Z181100004818001 and Z191100000819005), the National Basic Research Program of China (No. 2016YFA0200101) and the National Natural Science Foundation of China (Nos. 21525310, 51432002 and 51520105003). B.H.H. acknowledges D. J. Kim, Graphene Square Inc., for the illustration in Figs 8, 9a and 10a.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (Z.F.L and L.Z.S); Experimentation (Z.F.L. and L.Z.S.); Results (L.B.G. and G.W.Y.); Applications (M.C., J.E.Y., K.K.G., M.H.G., B.H.H. and Y.S.C.); Reproducibility and data deposition (B.H.H. and Y.S.C.); Outlook (M.C. and J.E.Y.); Overview of Primer (Z.F.L.). All authors discussed and edited the full manuscript.

Corresponding authors

Correspondence to Libo Gao, Manish Chhowalla, Karen K. Gleason, Byung Hee Hong or Zhongfan Liu.

Ethics declarations

Competing interests

K.K.G is a co-founder of GVD Corporation and DropWise Technologies. Both companies are commercializing CVD polymerization.

Additional information

Peer review information

Nature Reviews Methods Primers thanks J.H. Ahn, G. İnce, T. Kobayashi, A.N. Obraztsov, F. Stadler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Domain

A region of a single crystal that is delineated by grain boundaries or the edges of an isolated island.

Raman scattering

An inelastic scattering of photons by matter, by which the energy of the incident photon is changed.

Delamination

A phenomenon in which layered composites, thin films or coatings separate from the adjacent layers or the substrate due to the weakening of the bonds holding the layers together.

Half-integer quantum Hall effect

A novel Hall effect quantized into a half-integer, owing to the peculiar nature of the Landau levels spectrum with energy spacing in graphene, where the Hall conductivity can be described as \({{\rm{\sigma }}}_{xy}=4{{\rm{e}}}^{2}/h(N+\frac{1}{2})\) (where h is Planck constant and N = 0, 1, 2, …).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Yuan, G., Gao, L. et al. Chemical vapour deposition. Nat Rev Methods Primers 1, 5 (2021). https://doi.org/10.1038/s43586-020-00005-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-020-00005-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing