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Accounting for NOx emissions from
biomass burning and urbanization
doubles existing inventories over
South, Southeast and East Asia

Check for updates

Jian Liu 1,2, Jason Blake Cohen 2 , Qin He 2, Pravash Tiwari 2 & Kai Qin 2

Rapid urbanization and broad use of biomass burning have led to important changes in NOx [sum of
nitrogen dioxide and nitrous oxide] emissions across South, Southeast, and East Asia, frequently
occurring on day-to-day time scales and over areas not identified by existing emissions databases.
Here we compute NOx emissions using remotely sensed NO2 [nitrogen dioxide] and a model-free
mass-conserving inverse method, resulting respectively in 61 kt d−1 and 40 kt d−1 from biomass
burning in Northern and Southern Continental Southeast Asia, and 14.3 kt d−1 and 3.7 kt d−1 from
urbanization in China and Eastern South Asia, a net increase more than double existing inventories.
Three observationally based physical constraints consistent with theory are found which current
chemical transport models cannot match: more NO2 per unit of NOx emissions, longer and more
variable in-situ lifetime, and longer-range transport. This result provides quantitative support for
mitigation efforts targeting specific events, processes, or geographies.

Nitrogen dioxide (NO2) is a reactive, short-lived atmospheric trace gas
which is formed both naturally from lightning and emitted by anthro-
pogenic activities generating heat in the atmosphere such as fossil fuel use
and biomass burning (BB)1,2. NO2 reacts in the atmosphere with OH and
clouds to form nitrate aerosol, an important fraction of PM2.5, as well as an
important agent in coating and removing black carbon (BC) from the
atmosphere3. NO2 also has a very short lifetime in the atmosphere, rapidly
exchanging with NO as defined by the pseudo steady-state assumption4.
Therefore, in general works look at the total sum of NO andNO2, hereafter
referred to asNOx. Both the ratio ofNO2 toNOaswell as the total loadingof
NOx, in combination with heat, ultraviolet radiation, and either carbon
monoxide (CO) or volatile organic compounds (VOCs) leads to the pro-
duction of ozone (O3)

5. Therefore, determining the emissions, and in-situ
processes impacting both NO2 and NOx are essential for understanding
their atmospheric distribution as well as their impact on multiple atmo-
spheric, environmental, and climatological phenomena6,7.

The column loading of NO2 can be readily measured by analyzing
backscattered blue sunlight in combination with differential optical
absorption spectroscopy on the space-based downward looking platform
OMI8. The patterns between these absorption spectra and atmospheric

column loadings of NO2 in-situ can be evaluated quantitatively within a
degree of uncertainty9. Some recent works have investigated the relation-
ships from OMI of NO2 directly, with only a very small few venturing to
other forms of nitrogen, including a study connecting column NO2 and
surfaceNOx using big data, and a study connectingNO2 and ammoniawith
a model10,11.

There are many emission inventories currently used by the scientific
community that provide emissions of NOx and other co-emitted species
such asCOandBC.Thefirstway inwhich such data sets are derived is using
a bottom-up approach, an approach that relies on aggregating economic,
population, andother factors, togetherwith emissions factors obtained from
idealized cases or events, not the atmosphere in-situ, as is done by
EDGAR12,13. Another approach is to scale bottom-up emissions datasets in
tandem with remotely sensed measurements of land use change or fire
radiative power at higher temporal and spatial frequency, and then couple
thesewith emissions andmass factors basedon small-scale studieswhich are
built from the bottom-up, as is done by FINN14. These approaches rely upon
a limited number of measurements from the laboratory or limited field
experiment15,16, strongly constraining their results based on a prior infor-
mation. Therefore, these emissions datasets do not adapt well to new or
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rapidly changing sources, or when the underlying factors impacting emis-
sions change17,18. Furthermore, rapid changes frequently impact the quality
or availability of measurements themselves, including changes in albedo,
land use, rain and clouds, and high loadings of aerosols from upwind fires,
leading to hard-to-scale uncertainties19,20.

Some works have scaled bottom-up emissions changes directly to
column loadings from satellites, using a mixture from simple scaling to
complexmodels, anddata assimilation techniques, although ingeneral these
are not able to improve datasets in which the a priori is zero21,22. In these
cases, the top-down results tend to be biased by the spatial and temporal
assumptions underlying the a priori emissions and are strongly impacted by
mis-characterization of the measurement uncertainty23–25. The applications
of direct top-down estimation approaches are generally only applied to
long-lived gasses (CH4, CFCs, and N2O), since their chemical decay is very
slow compared with their transport processes, allowing for any observed
perturbations that are larger than themeasurement uncertainty to definitely
be due to an emissions source, which then can be inverted based on an
inversion of the meteorological fields26. There is only a limited set of papers
addressing short-lived species, and always under idealized conditions
including where there is a strong single point source surrounded by what is
otherwise a source-free region27,28 or using an underlying model to inter-
actively approximate the chemical and transport properties of the short-
lived species on average over a long period of time and then using these
average conditions to make an average inversion over a single geographic
region under temporal conditions which are climatologically similar29.

Analyzing spatial and temporal extremes of remotely sensed mea-
surements and attributing the variability in connection with a rigorous
analysis of measurement and physical process error has also been used to
demonstrate the spatial and temporal extent of missing emissions, albeit
under limited conditions30,31. The frequency and spatial distribution of time-
varying aerosol sources in Asia was identified using observations from
MISR32 and validated by independent measurements from CALIOP, OMI,
and MOPITT21,33. A top-down Kalman Filter approach was utilized to
estimate global-scale BC emissions28,34. Remotely sensed measurements of
CO from MOPITT were used to constrain the temporal and spatial dis-
tribution ofmissing emissions sources, as well as a pseudo-magnitude33. An
attempt at improving the representation of missing biomass burning and
urban pollution sources at the daily scalewas attempted usingmathematical
techniques of intermediate complexity using both empirical orthogonal
functions and plume risemodeling, to determine the variability and vertical
distribution of observed extremes of CO and NO2 over a decade-long
period20,27. There have also been attempts to constrain the chemical lifetime

by making simple assumptions such as gaussian plumes or diffusion-based
transport35–37. What none of these has been able to accomplish before is a
direct calculation of emissions, free from a priori, under highly complex
atmospheric, surface, and anthropogenic forcing conditions,with a focus on
day-to-day extreme events.

This work utilizes a unique, fast, first-order approach using daily
measurements of remotely sensed NO2, winds, and mass-conserving esti-
mates of in-situ chemical and physical processing to estimate the daily NOx

emissions of extreme events associated with both biomass burning and
rapid changes in urbanization. This paper addsfive aspects:first, the process
quantifies the sources associated with extreme events on a day-to-day basis
(with groups of extreme events ranging from 15 to 50 days); second, the
approach usesmeasurements over heterogeneous geographical regions that
include mountains, coasts, urban regions, forests, agricultural land, and
various atmospheric phenomena including high cloud cover, high aerosol
cover, large temperature gradients, extremes in surface UV radiation, a
substantial contribution of both land and sea, and considerable vertical
atmospheric mixing; third, the approach is able to capture sizable NOx

sources associated with both biomass burning and urbanization, ranging
fromhypermodern Singapore to least developed countries like Laos; fourth,
the approach does not rely on any chemical or climate transport or climate
models; and fifth, the approach is not limited to a single season or relatively
consistent geographic region. Furthermore, by analyzing the first-order
approximations of thermodynamical, chemical, and transport factors, this
work presents a holistic and unequivocal approach to quantify both known
and missing sources, as well as their uncertainty.

Results
Land surface characteristics over the domain from 5°S to 32°N and 85°E to
130°E, covering most of Continental Southeast Asia (CSA), large parts of
Southern andCentral China (SCC),Northeast India (NEI), and Bangladesh
are given in (Fig. 1). This region is geographically heterogeneous with ele-
vations ranging fromover 8000m to the surface, climate types ranging from
third pole to tropical, and vegetation types ranging from tropical rainforest
through savanna, as well as substantial ocean cover. Fig. 1 shows the cli-
matological standard deviation of 2016dailyOMINO2 observations, which
has been previously shown to indicate changes in source amount and
variability18,38. Thehighest values are found in existing urban areas including
conurbations (Shanghai toNanjing,Hefei, andHangzhou [YRD] andHong
Kong to Shenzhen and Guangzhou [PRD]), large urban basins of SCC,
Dhaka, Bangkok, Hanoi, Ho Chi Minh City, and Singapore, as well as in
rural regions in the mountains of NEI and CSA. This indicates there are

Fig. 1 | An overview of land-use categories andNO2 observations. Spatial distribution of (a) different land-use categories and (b) climatological standard deviation of daily
remotely sensed column NO2 [molecules cm−2].
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substantial changes in NO2 occurring over short periods over areas which
are usually polluted as well as over areas which are usually clean, indicating
that both urbanization and biomass burning are sizable sources32,39.

Spatial and temporal features of extreme conditions
A variance maximization technique has been applied to the daily NO2

column measurements over the entire domain, which has derived ortho-
gonal spatial and temporal patterns contributing to the maximum amount
of variation in the field. Emissions and changes in chemistry, transport, and
thermodynamics are strongly related to the change in variance, with the
stronger signals being easier to decompose and analyze31,32. The four spatial
[EOF] and temporal [PC] modes contributing the most variation of the
observeddailyNO2fields contribute 18.8%, 8.3%, 7.4%, and3.5%of the total

variability with the spatial patterns given by EOFs in Fig. 2 and the temporal
patterns given by PCs in Fig. 2.

The first EOF demonstrates a signal in the urban areas in the PRD,
YRD, and SCC, with additional moderate signals in Xiamen, Taizhong,
Dhaka, Bangkok, and cities in Eastern India. Additionally, it demonstrates
contribution from remote areas in Myanmar, Northern Thailand, and
Northwestern Laos (Supplementary Fig. 1)40. The first PC is observed from
days 45 to 90, and again from days 300 to 366, with a few individual peaks
observed between day 1 and day 30.

The second EOF shows a signal across the biomass burning areas in
CSA including Myanmar, Northern Laos, and Northern Thailand, and
extending into the remote regions surrounding the PRD, Yunnan, NEI and
NorthernBangladesh. There are smaller signals observed in the urbanYRD,

Fig. 2 | Spatial and temporal features extracted from NO2 observations via variance maximization method. a–d Spatial distributions of the four main EOFs and (e) the
corresponding time series of the PCs.
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parts of Southeastern China, theMalaysian Peninsula, Dhaka and Bangkok.
The second PC is concentrated from days 60 to 120, and again from days
300 to 366.

The third and fourth EOF are weaker, although still have some regions
with notable signal. The third EOF displays an urban signal in the PRD,
YRD,CentralChina,NEI, andBangladesh,while also showing aweak signal
in the biomass burning areas inCSA.The thirdPChas sufficientmagnitude,
but only occurs over isolatedpeaks banded fromdays 1 to 90 and again from
days 300 to 366. The fourth EOF outlines biomass burning areas west of
102°E, including Myanmar, Western Thailand, and some parts of NEI, as
well as Laos. The fourth PChas only a fewdays’worth of peaks, all occurring
from days 60 to 120.

The geographic and temporal features of the EOFs and PCs allow the
map to be divided into urban and non-urban (including clean, biomass
burning, and mixed) regions as demonstrated in Fig. 1 and Table 1, fol-
lowing variance maximization27,32. For non-urban areas, this work focuses
on the mountainous tropical forests, agricultural lands, and densely popu-
lated non-urban areas found throughout CSA and NEI, regions with an
annually occurring intense wet season and extended dry season during
which time most fires will occur or expand41,42.

The specific days and locations are chosen based on the variance
maximization analysis of the underlying OMI NO2 column measure-
ments, so that they cover the spatial-temporal extent of the largest
changes in emissions or in-situ processing of NOx as demonstrated
in Fig. 2.

The time series of the NO2 weighted column loading over the portions
of EOF1 and EOF3 corresponding to BB2 and the portions of EOF1 cor-
responding to Urban1 and Urban2 (see Fig. 1) are displayed with the
respective spatial and temporal cutoffs in Fig. 3. The signal within central
Myanmar, Northern Thailand and Northern Laos occurs a total of 30 days
betweendays 60 and110,while the signal throughoutmost ofMyanmar and
Laos occurs a total of 39 days from day 60 to day 120, indicating multiple
stable phases of biomass burning occurring in different geographic areas at
different times, with there being considerable overlap in Eastern Myanmar
andNorthern Laos, but not in other regions. This indicates clearly that there
are distinct anthropogenic and natural driving forces behind the burning.
Similarly, in the urban areas, the NO2 weighted column loading over the
PRD and SCC occur over 36 days at random from days 1 to 110 and from
day 300 to day 360; over the PRD and parts of Fujian and Taiwan Island the
signal occurs over 25 days at random from days 300 to 366 and another
11 days completely at random throughout the remainder of the year.

The observed weighted NO2 in each BB and urban EOF/PC region at
the selected times (in green) is larger than the weightedNO2 over the entire
region averaged over the year, with the weighted NO2 enhanced by a factor
of 8.7 and 9.5 over EOF1 BB2 and EOF3 BB2 respectively, and enhanced by
a factor of 18.5 and 13.5 over EOF1Urban1 and EOF1Urban2 respectively.
These results consistently and uniquely identify those regions on a day-to-
day basis that are highly polluted.

Thermodynamic, chemical, and transport coefficients
Using the filtered spatial and temporal features, the best fit coefficients for
thermodynamics ofNOandNO2production (α1), chemical loss ofNOxdue
to in-situ chemical reactions (α2), and transport of NOx (α3) are computed
following Eq. (5) (see Supplementary Table 1). α1 is found to range from
1.12 to17.1 [NOx/NO2],α2 is found to range from4.3 to23.8 [hours], andα3
is found to range from −19.2 to 11.9 [number of 0.25ox0.25o grids]. α3 is
more frequently negative (54.8% of the grids) consistent with the net flow
from higher emissions grids into lower emissions grids, while the reverse is
observed in 45.2% of grids, consistent with transport by pressure gradients
also playing an essential role. This result is a step beyond current approaches
of estimating emissions of NOx, CH4, and CO2 from satellite25,36,43, which
limit themselves exclusively to consider flow only from high concentration
to low concentration regions.

The ratio ofNOx/NO2 inBB areas (1.18 to 17.1) is relatively larger than
in urban areas (1.12 to 4.41) indicating relativelymore production of NO in
BB areas, consistent with the combustion temperature and efficiency in BB
areas being lower than combustion found in urban areas (i.e., from power
plants, factories, residential use, and transport). In particular, difference
between the 25% and 75% value of α1 over BB areas is broader than over
urban areas, consistent with a more diverse set of fuel loadings, land-use
types, temperatures and typesof combustion (burning,flaming, smoldering,
etc.), and energy efficiencies based on how biomass is consumed (fuel, heat,
light, etc.), consistent with known thermodynamics associated with emis-
sion temperature44. While local atmospheric processing will also have an
impact on this ratio, given that there is no substantial difference in the
climatology between these regions, and the fact that both regions under high
pollution conditions frequently have very low to nearly zero ozone con-
centrations, the net effect of the climate processing is not expected to be
vastly different between these regions.

Chemical lifetime in general is slower over BB regions than urban
regions. Most of the 25% percentile α2 values over BB areas are more
negative thanoverurban areas, consistentwith the higher averageOH levels
and more rapid oxidization on average in urban areas45. This is further
consistent with the fact that ultra-fast non-linear oxidation at the sub-
kilometer level will not be represented at grid-scale46 and in this work is
assumed to be a function of the emissions following previous studies47,48.
One special case is PC2-BB3-Pos, which has a chemical lifetime similar to
urban areas, in part because its biomass burning emissions are adjacent to
and interact with the urban chemistry associated with Bangkok, Ho Chi
Minh City, and rapidly urbanizing regions around Phnom Penh and Tonle
Sap (Supplementary Fig. 1)40. A second special case is found in Urban3,
which has a wider range (particularly on the faster lifetime side) than
Urban2 and Urban1, driven both by substantial local biomass burning
sources within the urban airsheds and more intense UV radiation on
average to drive photochemistry40,49.

The transport termα3 is basedon the atmospheric concentration,wind
direction, and orientation between adjacent areas, with values close to zero

Table 1 | NOx Emission inventory source used in different kinds of regions

Area categories Main emission source Emission inventory Covering regions

Urban1 area Anthropogenic EDGAR Cities in Pearl River Delta and Fujian and Taiwan Province

Urban2 area Anthropogenic EDGAR Cities located in Yangtze River Basin, including Shanghai, Wuhan, Chengdu and etc.

Urban3 area Anthropogenic EDGAR Dhaka and urban areas in CSA

BB1 area Biomass burning FINN BB areas in NEI

BB2 area Biomass burning FINN BB areas in CSA

BB3 area Biomass burning FINN BB areas in Central Thailand and Cambodia

Mixed area Anthropogenic, biomass burning EDGAR+ FINN The areas except BB and urban areas in China

Tibetan area Biomass burning FINN Tibetan plateau and its surrounding mountain areas

Equatorial area Biomass burning FINN Malaysia, Indonesia, and Philippines without main cities
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being inconsequential. First, the transport distances from BB areas are
smaller than from urban areas, consistent with both the faster chemical
decay in BB regions and the lower surface roughness in urban areas. Second,
the magnitude of the outward transport tends to be larger than inward
transport, consistent with greater chemical loss occurring when polluted

plumes are transported into more polluted regions. There are 4 special
regions, three of which are always exporting regions (PC2-BB3-Pos always
exports to surrounding urban areas, and PC2-Urban1-Neg and PC1-
Urban3-Pos always export to surrounding suburban areas), and one of
which is always an importing region (PC1-Urban2-Pos is surroundedby the

Fig. 3 | Spatial and temporal patterns of typical extreme. Different EOF distributions and PC time series aggregated over (a, b) BB2 areas, and (c, d) Urban1 and
Urban2 areas.
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even more intensely emitting urban and manufacturing centers of
Guangzhou, Dongguan, Shenzhen, Xiamen, Xinbei and Taibei, as well as
being downwind from biomass burning exported from NEI and the
Northern CSA). The special case of BB3 is always negative as its emissions
are advected away from the mountains on the West and the East into the
central urban areas exclusively ondays 1 to 90withPC1-Urban3-Pos,which
consequently is the same time as the high-speed west-to-east wind induced
by the transition in the AsianMonsoon50. The special case of PC3-Urban3-
Negdemonstrates amostly positive environmentwhich occurs infrequently
from days 30 to 90 when the biomass burning emissions are high, but
otherwise randomly throughout the year consistent with a blocking type of
meteorological environment near the surface39,41. Consequentially, some of
the regions with the greatest amount of import and export may been
dependent onmeteorological and climate factors driven far from the source
regions51.

NOx emissions
The daily emissions computed on days 51 and 362 have large urban sources
of NOx emissions (Fig. 4). It is clearly demonstrated that the geospatial
distribution of emissions captures the largest urban areas including a cluster
in SCC and YRD, a second cluster in the PRD, Fujian and Taiwan Island,
and a third cluster around NEI and Bangladesh. By comparison, the daily
emissions computed on days 72 and 119 represent high emissions from BB
regions (Fig. 4). The geospatial distribution of emissions clustered in
Northern CSA, Southern CSA, and NEI. These results demonstrate both
large sources of NOx emissions from Myanmar, Laos and NEI as well as
urban regions in the outer parts of the YRD and SCC, although the a priori

inventories are very lowor non-existent on these days. The ability to identify
and quantify emissions occurring at either thewrong time and/or thewrong
place, or sources which are heavily impacted by changes in climate or other
dynamical effects, is essential for attribution work, since areas with zero
emissions cannot be scaled or otherwise easily accounted for48,52. This
finding is clearly demonstrated in the case of the Hong Kong Special
Administrative Region’s inverted NOx emissions, which matches the well-
knownwest to east high to lowemissions gradient (SupplementaryFig. 2), as
well as general magnitude (15.3 ± 3.5 kt yr−1 over a total of 48 days
(325 ± 75 t d−1), as compared to the Hong Kong Government’s value of
89.7 kt yr−1 (249 t d−1)), even though major emissions data sets (including
EDGAR and MEIC) do not have emissions data for Hong Kong in 2016.

The annual mean and normalized standard deviation of the extreme
event emissions calculated in this work and the merged EDGAR and FINN
emissions are given in Fig. 5. The net a priori emissions show a wider
geospatial coverage due to the 22.3% of the domain identified herein that
does not have anOMI columnNO2 signal which changes enough in at least
one of either space or time to be identified using this approach. Over the
regions identified, the a priori emissions on average are a factor of 7.5 times
lower than the mean, with considerable variability occurring in different
regions. In the rapidly developing urban areas of Dhaka, Bangkok, Ho Chi
Minh,Manila, Kuala Lumpur, andHanoi, the emissions are 11 times higher
than the a priori, consistentwith rapid increases in energy use and economic
development and biomass burning in upwind areas. Themean emissions in
the PRD is a factor of 4.2 higher than the a priori, consistent with the rapid
growth in most of the region outside of the core areas of Guangzhou,
Foshan, Dongguan, Hong Kong, and Shenzhen, as observed in both the

Fig. 4 | NOx Emissions of four typical days. Daily NOx Emissions computed on four distinctly characteristic days (a–d): Days 51, 72, 119, and 362.
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amount andgeospatial distribution of factories and transport sources aswell
as a broadening of the residential density (both a magnitude and an
extension of geographic extent of emissions). This finding is consistent with
the ongoing changes to rapidly increase the development of the PRD into an
integrated economic region inclusive ofHongKong andMacau53. Themean
emissions in the biomass burning areas of Myanmar, Northern Laos, and
Northern Thailand is higher than the a priori emission by a factor of 2.5,

consistent with increased forest fires. Inland urbanizing regions in China,
includingWuhan,Changsha andNanchang, havemean emissions 2.1 times
higher than the apriori, consistentwith theoverall pushbyChina to increase
economic expansion and development in central regions54. However, the
most highly developed coastal cities of the region, Shanghai, Suzhou,
Hangzhou, Fuzhou, Xiamen, Taibei, and Singapore, have the smallest
increase inmean emissions from the apriori, being a relatively smaller factor

Fig. 5 | Statistics of daily emissions over the EOF regions defined during different
specific days. a, b are days defined by the PCs (extreme conditions), (c, d) are days
defined by FINN (biomass burning), and (e, f) are days given by EDGAR (entire

year). a, c, e represent themean [kg m−2 s−1] andb,d, f the ratio of standard deviation
to mean respectively of NOx emissions.

https://doi.org/10.1038/s43247-024-01424-5 Article

Communications Earth & Environment |           (2024) 5:255 7



of 1.8 higher, consistent with higher quality and less rapid growth, as well as
better a priori knowledge55. The normalized standard deviation of emissions
in Northern Laos, most of Myanmar, Northern Thailand, NEI, and Cam-
bodia is a factor of 0.87 lower than the normalized standard deviation of the
a priori inventories (Fig. 5), consistent with the fact that there are both 11
days of emissions covering 5.7% of the domain which this approach has
identified but are missed by FINN.

Over the entirety of the domain, the day-to-day statistics of NOx

emissions are given in Fig. 6. Due to low variability, the overall EDGAR a
priori NOx emission over the EOF regions has an average value of
3.2 × 10−10 kg m−2 s−1, compared with the average value over the EDGAR
domain of 2.4 × 10−10 kg m−2 s−1. The FINN emission over the EOF regions
has an average of 1.4 × 10−10 kgm−2 s−1, with a high value from day 1 to day
130 and a low value otherwise, compared with the average value over the
FINNdomainof 3.3 × 10−11 kgm−2 s−1. Thiswork’sNOx emissions exhibit a
larger mean and expanded variability, with [mean, daily variation, and
uncertainty] respectively of [1.8 × 10−9, 1.6 × 10−9, 5.1 × 10−10] kg m−2 s−1

and [1.4 × 10−9, 1.1 × 10−9, 5.4 × 10−10] kg m−2 s−1 in urban and biomass
burning areas. This work’s emissions are particularly high in urban areas
from days 1 to 35, days 50 to 125, and days 280 to 366 with the [mean, daily
variation, and uncertainty] respectively [1.9 × 10−9, 1.7 × 10−9, 5.0 × 10−10]
kg m−2 s−1, corresponding to when there is decreased UV radiation and
slower chemical loss, as well as increased coal combustion for heating and
end-of-year factory production. The emissions are particularly low from
days 125 to 280 with [mean, daily variation, and uncertainty] respectively
[9.3 × 10−10, 3.4 × 10−10, 5.3 × 10−10] kg m−2 s−1, corresponding to more UV
radiation and faster atmospheric chemistry, coupled with less power
demand required for heating and more available hydropower during the
rainy season.

Over BB regions, the differences in emissions are even larger between
the high and the lowperiods, with combustion being the primary difference.
The [mean, daily variation, and uncertainty] of NOx emissions over BB
areas from days 60 to 150 is [1.9 × 10−9, 6.9 × 10−10, 7.5 × 10−10] kg m−2 s−1

while the respective values are [1.0 × 10−9, 1.2 × 10−9, 3.6 × 10−10] kgm−2 s−1

from days 1 to 60 and days 325 to 366. It is noted that the average NOx

emissions are both very high and relatively consistent during the biomass
burning period from days 60 to 150, with low day-to-day variability and

relatively low error. During the other biomass burning periods, the average
is less high, the day-to-day variability is higher, and the error is quite low,
indicating that day-to-day variability is driving the biomass burning emis-
sions fromdays 1 to 60 and fromdays 325 to 366. This clearly demonstrates
that there are both continuous and variable phases of the burning occurring
in these regions, consistent with some amount of anthropogenic forcing
involved.

It is noted that the uncertainty is only larger than the day-to-day
variability in urban areas during very low emissions days in urban areas. The
uncertainty is smaller than the day-to-day variability in all other cases
(urban areas with medium and high emissions, and all biomass burning
areas). The uncertainty is also smaller than the mean value under all con-
ditions, indicating that the results are nearly always statistically relevant.

The computed day-to-day emissions total mean±error over all of the
EOF regions and times are found to be 61.0 ± 32.6 kt d−1 from biomass
burning in Northern CSA (44.3 kt d−1 more than FINN), 4.0 ± 2.3 kt d−1

from biomass burning in Southern CSA (3.2 kt d−1 more than FINN),
14.3 ± 6.1 ktd−1 fromurbanization inChina (5.0 kt d−1more thanEDGAR),
and 5.1 ± 3.2 kt d−1 from urbanization in NEI and Bangladesh (3.7 kt d−1

more than EDGAR). The net NOx emissions is 88.2 kt d−1, compared with
the 29.4 kt d−1 sum of FINN and EDGAR over the same region.

There is also a quantified connection between the spatial-temporal
distribution ofNOx emissions and the land-use type (Fig. 7). Cropland areas
have emissions that are lower (65.6%of emissions under 1.0 × 10−9, 15.2%of
emissions between 1.0 × 10−9 and 2.0 × 10−9, and 19.2% between 2.0 × 10−9

and 5 × 10−9), consistent with biomass burning being carefully controlled to
clear new land for future agriculture and to clean out organic rubbish.
Savanna regions have emissions that are higher than cropland emissions
(39.7%of emissions under 1.0 × 10−9, 33.1%of emissionsbetween1.0 × 10−9

and 2.0 × 10−9, and 24.4% between 2.0 × 10−9 and 5 × 10−9), consistent with
these drier regionsbeingmoreprone to accidentalfires and spread, aswell as
some amount of peat burning. Broadleaf regions have the highest andmost
variable emissions of all land-use types (27.3% of emissions under
1.0 × 10−9, 31.5% of emissions between 1.0 × 10−9 and 2.0 × 10−9, and 37.8%
between 2.0 × 10−9 and 5 × 10−9), consistent with very hot fires when large
trees burn, spread due to upwind/downwind slope effects, burning in
remote areas beinghard to control, andactive controlwhenclearing land for

Fig. 6 | Time series of estimated and emission inventory-based NOx emissions.
a Est Urban, EDGAR Urban (EOF), and EDGAR Urban (Mask) denote the time
series of dailymean estimatedNOx emissions over urban regions, EDGAR emissions
over urban EOF regions and EDGAR emissions over urbanmask regions, (b) Est BB,

FINN BB (EOF) and FINN BB (Mask) denote time series of daily mean estimated
NOx emissions over BB regions, FINN emissions over BB EOF regions and FINN
emissions over BB mask regions.

https://doi.org/10.1038/s43247-024-01424-5 Article

Communications Earth & Environment |           (2024) 5:255 8



new agriculture at the edges of existing land, or combustion of underbrush
to support commercial trees such as wood, rubber, or palm, etc. In addition,
there are further differences in similar land-use types as a function of policy,
with differences in emissions observed within the same land use type on
opposite sides of national boarders in: NEI and Bangladesh, NEI and
Myanmar, the triangular region between Myanmar, Laos and Thailand,
Thailand and Cambodia, and Cambodia and Vietnam.

These results can be applied to finer resolution satellite observations,
suchasTROPOMINO2observations and to longer time series frommerged
OMI andGOMENO2 observations, to obtain improved emissions in terms
of spatial and temporal coverage. The method can be enhanced to account
for new advances with respect to uncertainties of NO2 retrievals, chemical
methods, dynamics, and transport. The method has limitations based on
satellite retrieval issues due to high cloud cover and the limited coverage of
polar orbiting satellites. Furthermore, there are additional uncertainties
associatedwith changes in the land surface due toburning andurbanization,
changes in co-emitted BC aerosols leading to additional changes in the
retrieved NO2 signal, uncertainties associated with the vertical profile of the
emissions, uncertainties associated with hourly and other high frequency
extreme events, and other extreme events which are not sensitive enough to
be picked up. More access to ground measurements, the next-generation
geostationary satellites and improved knowledge and/or observations of the
changes in the climate itself, could be used to address many of these issues.
Finally, it is hoped that with more cooperation across the emissions com-
munity, that the improved emissions estimations in thiswould lead to a next
generation of a priori emission databases, which in turn would iteratively
assist the next generation of results using this approach.

Sensitivity of NOx emissions
Two sensitivity runs are performed to examine how the uncertainty inOMI
observations may impact the final emissions results. The first run scales all
OMI measurements by −40% [herein called Base-40%] while the second
run scales all OMI measurements by +40% [herein called Base+40%]
compared to the default run [herein called Base]. The reason for this
selection is that ±40% is considered the largest and smallest possible
uncertainty in the retrieved OMI NO2 column value found in the
literature56–63. Both of these values consider issues including additional
absorption by BC above what the a priori model driving the air mass factor
computes64–66, differences in the plume rise heights from the underlying
models (which tend to be less over the regions studiedhere, althoughmaybe
more over other regions of the world)27,67,68, and upward looking observa-
tions fromMAX-DOAS58. Thepoint of these runs is not to comprehensively
diagnose the uncertainties, but instead to put a maximum and minimum

value bound on them, allowing a minimum and maximum value of the
emissions to be quantified, and on grids and during days when this is larger
than the signal, the user can then choose to include or discard them.

For each case, a new set of emissions is computed following the same
procedures and using the same reanalysis and a priori emissions data. As
demonstrated in Fig. 8, the differences on a grid-by-grid and day-by-day
basis in urban areas are unbiased within the top 85% of data, while the
differences on both bases in biomass burning areas are unbiased within the
top 67% of data. On a grid-by-grid basis, the difference between Base-40%
and Base is always less negative than −1.49 × 10−9 kgm−2 s−1, while the
difference between Base+40% and Base is always smaller than
0.33 × 10−9 kgm−2 s−1. On a day-by-day basis the differences in urban areas
are generally larger than the differences in biomass burning areas, where
specifically the difference in urban areas between Base-40% and Base is
always less negative than −2.31 × 10−9 kgm−2 s−1 and the difference
between Base+40% and Base is always smaller than 2.44 × 10−9kgm−2 s−1,
and the difference in biomass burning areas between Base-40% and Base is
always less negative than −1.17 × 10−9kgm−2 s−1 and the difference
betweenBase+40%andBase is always smaller than0.13 × 10−9kgm−2 s−1. It
is important to note that the total number of grids in the three cases Base
+40%, Base, and Base-40% are not the same (Supplementary Tables 1–3),
and therefore all comparisons are beingmade over the regions of respective
overlap.

The daily and yearly emission and their differences over different
regions and total areas are further investigated as shown inTable2.The ratio
of daily and yearly differences between Base-40% and Base to the Base case
over the total area are found respectively to be−22%and−23.6%, so are 9%
and 10.9% for the differences between Base+40% and Base to the Base case.
In all cases the differences are smaller than the 40% changes imposed on the
OMINO2 column loadings, confirming that the approach is robust. A point
of interest is that in general the difference between Base+40% and Base
yields a much smaller magnitude in emissions than the difference between
Base-40% and Base, especially in biomass burning areas. In all cases the low
meanandvariability in the apriori emissionsdata, particularly so inbiomass
burning areas, coupled with constraints placed on the ranges of α1 and α2,
lead to anet larger constraint on the computed emissions. It is clear fromthis
sensitivity study that the emissions computed in this work may be too low,
although they are already higher than the a priori, especially in biomass
burning regions.

The a priori emissionsmean plus variability is generally so low that it
does not offer enough data to constrain α1 and α2 in a physically rea-
sonable way, in particular over biomass burning regions. This result is
clearly demonstrated in terms of the decreased number of fit points per

Fig. 7 | Relations between land cover types and spatial distribution of NOx emission. a Probability density function of annual mean daily emission over the (b)
geolocations of three different aggregated land cover types observed within the net BB areas.
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EOF/PCA due to the physical constraints in terms of pairing in the Base
+40% case as compared to standard emissions, as well as the slight
increase in the number of fit points in the Base-40% case (Supplementary
Tables 1–3). As can be observed, the valueswhich are observed in the Base
+40%case forα1 are shifted very lowwhile the values ofα2 are shifted very
high, particularly in the biomass case, which are both consistent with
colder air, as is expected from a larger fraction of the emissions being
rapidly emitted at height. In the urban regions, the majority of the dif-
ference in case Base+40% is observed in the increase of α3, which is more
consistent withmissing suburban sources or small industries located away
from city centers, which is consistent with the fact that new sources are
rapidly changing due to rapid economic growth and expansion, especially
into regions which may not be as well regulated. The physical constraints
supplied by the solution space of the three driving coefficients needing to
be realistic applies additional constraints on the calculated emissions on a
grid-by-grid and day-by-day basis. In fact, there is a number of grids for
which OMI NO2 data is available in each of these cases which are ulti-
mately not considered in the emissions calculation, with the number of
grids being discarded slightly different under each case (Base+40%, Base,
and Base-40%), with the specific numbers and resulting products
described in Supplementary Tables 1–3.

As observed, the emissions a priori seem very low compared to the
inverted emissions, possibly requiring an iterative process between the top-
down results given here and bottom-up processes done by others. Perhaps
in a step-by-step manner, top-down and bottom-up communities can be

used to improve each other. This is especially true since there are underlying
non-linear physical issues, including but not limited to: rapid vertical lofting
of emittedNOx from both biomass burning and upslope/downslope effects,
vast differences in scattered and absorbedUV radiation, and retrieval issues
related to the introduction of new sources identified in regions previously
assumed to have a value of zero.

Methods
Selected spatial and temporal domain of study
ElNiño, anatural anomaly effecting the climate throughoutEastAsia, South
Asia, and CSA, was particularly active from January to November 2016,
resulting in major changes in equatorial water temperatures, air tempera-
tures, and precipitation throughout most of the region studied in this
work50,54. Furthermore, in 2016 the global distribution of the Indian Ocean
Dipole and theNorthAtlanticOscillationwere also observed inCSA,with a
similar set of effects. These net effects resulted in increased land-surface
dryness, decreased atmospheric wet removal, stronger winds, and lower
cloudiness, all leading to more drought and likely higher than normal
emissions50. In fact, the period in January and February 2016was the second
hottest on record during the modern era, with the present year 2024 being
thehottest69. For these reasons, it is expected that extremesofNOx emissions
should be relatively higher in 2016, presenting an excellent test of the
methods in this paper, as well as providingmore insight into how emissions
will behave under the effects of global climate change over the next few
decades. Therefore, the total year of 2016 is selected as the research period.

Fig. 8 | Spatial and temporal comparisons within the sensitivity analysis.Grid-by-
grid and day-by-day differences of emissions sensitivity analysis: (a) Base-40% –

Base, (b) Base+40% – Base, and (c) time series of day-by-day emission and the

respective maximum and minimum values corresponding to the cases Base+40%
and Base-40% over urban areas (red solid circle) and BB areas (blue asterisk),
respectively.
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OMI NO2 dataset
NASA launched Aura on July 15, 2004, in a sun-synchronous, near polar
(98.2-degree inclination) orbit 705 km above the Earth. OMI is a key
instrument onboard Aura, capable of observing solar backscattered radia-
tion utilizing hyperspectral imaging from the visible and ultraviolet parts of
the spectrum8, allowing detection of O3, NO2, SO2, and aerosols. OMI
provides ahigh resolution (13 × 24 km2 atnadir) imaging capability, capable
of tracking column loadings of NO2 pollution at the scale of urban centers
and large biomass burning sources. This work uses Level-3 daily global
gridded NO2 product with a 0.25 × 0.25° resolution, including both cloud
clearing and validation (Cloud Fraction<30%). This product has a known
reliability of approximately 1.0 × 1015 molecules cm−2 70. All retrieved values
which do not pass the quality assurance, are too low to be reliable, or are
otherwise missing are not considered further in this work. While this may
lead to an underestimation in the total coverage, interpolation has also been
shown to present its own errors and additional uncertainties11.

Supplementary Fig. 3 shows the daily measured climatological average
of all observations of NO2 in 2016. A higher value appears over known
urban and biomass burning regions, including Southern China, NEI and
parts of Southeast Asia such as Thailand, Laos and Vietnam. Large urban
areas which have a higher level of economic development, mature indus-
tries, and very large populations are particularly pronounced, including the
YRD and the PRD. Other rapidly developing large urban areas such as
Bangkok, Dhaka, Wuhan, Chongqing, Chengdu, Xiamen, Changsha,
Nanchang, andHanoi, andhighlydevelopedbut smaller urban areas such as
Singapore and Taibei, are also clearly observed.

There are two important aspects ofOMINO2 column retrieval bias56,57.
Themajor issues discussed include co-absorption of the NO2 by BC (which
is a function of the SSAof the BC and the height of theNO2 andBC) and the
general underestimation of total columns as retrieved from satellite with
respect to direct sun retrievals made from surface platforms. Given that the
SSA in the regions of interest in this paper are observed to be very low (from
0.84 to 0.91 as measured by AERONET71,72) and the vertical height tends to
be relatively high (from 1000m to 3000m)73.

Land cover dataset
The MODIS land cover product includes annually computed land cover
classifications using Terra and Aqua MODIS data in connection with a
decision-tree classificationmethod. Three different land cover classification
schemes are applied to derive the Leaf Area Index (LAI) at a 0.05 × 0.05°

spatial resolution. This specific work uses the Version 6 land surface type
data product specifically from 2016 based on the measurements of LAI, as
displayed in Supplementary Fig. 4. Over the area in this study, the land use
types of largest area are water (61%), savannah (16%), evergreen broadleaf
forest (11%), and grasses/cereal (7.9%).

To analyze land cover in connection with emissions, the individual
categories of land cover use are obtained over the same grid points of the net
EOF BB regions. Similar land cover classes are grouped into three larger
categories: Croplands corresponding to drier regions which are naturally
irrigated or do not require irrigation and intensively used for agriculture
including grass, cereal, and shrubs; Savanna which are drier and require
intensive artificial irrigation or other intervention to be used for intensive
agriculture; and Broadleaf which corresponds to the major forest lands, in
particular found in hilly or inland jungle conditions.

Atmospheric reanalysis data
ERA-5 is an atmospheric reanalysis product by ECMWF, providing global-
scale atmospheric wind speed and other physical and dynamical products
from 1950 to the present, with a horizontal resolution of 0.25°62. The
product is based on geophysical model physics including: long-wave
radiation, a simplified linearized parametrization scheme for surface pro-
cesses, ozone, improved land component and oceanwaves, all within an all-
sky data assimilation framework. The product iswidely used in atmospheric
models and remote sensing applications, including the AMF calculations
underlying theNO2 retrievals used in thiswork

63. Thiswork specifically uses
horizontal wind near the surface (975hPa) and at high-altitude (800hPa), to
drive the model for urban and biomass burning areas20,33.

A priori emission inventories
FINN is a fire emissions product based on the 1-km level-2 active fire
product derived fromMODIS TERRA and AURA infrared measurements
made in bands: B21(3.929-3.989 μm), B22(3.940-4.001 μm), and B31
(10.780-11.280 μm)74, with the emissions fromeachNIR/IRplumebased on
the fuel availability, plume size, and intensity14. Due to coverage gaps
between the adjacent orbits on a day-to-day basis, cloudiness, and optically
thick smoke with an AOD larger than 2.0, there are many missed obser-
vations particularly so in the equatorial region between 30°S and 30°N
latitudes75. These results have been used in a bottom-up manner with
laboratory constrained emission factors and estimated environmental fuel
loadings at a scale of 1 × 1 km2 to estimate the emissions of selected trace

Table 2 | Summary of emissions overfive aggregated regions on a day-to-day basis (top half) and aPCA integrated annual basis
(bottom half)

Daily area NOx (Base) NOx (EI) NOx (EI - Base) NOx (Base-40%) NOx (Base-40% - Base) NOx (Base+40%) NOx (Base+40% - Base)

BB_NEI 3.66 1.18 −2.48 2.83 −0.83 3.68 0.02

BB_ICP 61.0 16.7 −44.3 49.2 −11.8 65.0 4.03

BB_Cam 4.05 0.82 −3.23 2.8 −1.25 4.08 0.03

UrbanChina 14.3 9.33 −4.98 11.0 −3.29 16.6 2.31

Urban3 5.13 1.42 −3.71 2.94 −2.19 6.74 1.61

Total Area 88.1 29.5 −58.7 68.8 −19.4 96.1 8.00

Unit for daily statistics above is kt d−1.

Annual area NOx (Base) NOx (EI) NOx (EI - Base) NOx (Base-40%) NOx (Base-40% - Base) NOx (Base+40%) NOx (Base+40% - Base)

BB_NEI 311. 80.6 −230. 240. −70.4 313. 2.23

BB_ICP 2620 717. −1910 2120 −508. 2.80 × 103 173.

BB_Cam 320. 62.3 −257. 221. −98.3 322. 2.52

UrbanChina 1320 858. −458. 1010 −302. 1530 213.

Urban3 513. 142. −371. 294. −219. 674. 161.

Total Area 5080 1860 −3230 3890 −1.20 × 103 5640 552.

Unit for annual statistics above is kt yr−1.

The left column is the Base emissions, the second column is the a priori emissions (EI), the third column is the difference between EI and Base, the fourth column is the Base-40% case emissions, the fifth
column is the difference between Base-40% and Base, the sixth column is the Base+40% case, and the right column is the difference between Base+40% and Base.
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gasses and aerosols from biomass burning. This product has been used in
many common atmospheric chemical transportmodels and is considered a
standard emissions source76. It has beendemonstrated that theproduct faces
difficulty in cases of diagnosing smallfires or cloud coveredfires,whichhave
caused models to suffer difficulty reconciling the actual environment with
this dataset77. For this combination of reasons, this work utilizes FINNv1.5
from 2016 to retrieve the NOx emission for biomass burning areas in
Southeast Asia.

The EmissionDatabase for Global Atmospheric Research (EDGAR) is
an anthropogenic emission inventory product, computed using a bottom-
up technology-based emission factor approach to calculate the emission for
countries over theworld and consists of greenhouse gases and air pollutants,
such as carbon dioxide, methane, CO, NOx, VOC, ammonia, etc13. This
work uses the version 2.2 of EDGAR-HTAP, with a global gridded
(0.1° × 0.1°) anthropogenic emissions product, at monthly temporal reso-
lution, for the years 2008 and 2010 (there is no current product for 2016).
This is also a standard dataset used by many studies in the modeling and
impacts communities48,78.

Both emission inventories are interpolated to the corresponding OMI
NO2 grids (0.25° × 0.25°) to be used in the following estimation processes
shown in Supplementary Fig. 5.

Variance maximization
EOF is a mathematical method that decomposes a dataset in terms of
orthogonal basis functions into the factors which contribute themost to the
variability of the underlying dataset32. We use this method to extract the
spatial and temporal features of the extremes of the remotely sensed NO2

fields. This method has been used in the past for monthly-average clima-
tological AOD, weekly-average climatological CO, and weekly-average cli-
matological NO2

27,32.
Whenperforming anEOFanalysis, thefirst step is to quantify themost

relevant EOFs andPCs as a function of themagnitude of the eigenvalue. The
first step to separating urban regions is to identify those regions which both
(a) do have known large urban use land types, and (b) contain a large
population, or industrial or residential economic usage. To this extent, this
section follows the results as generated in Table 1. The cutoffs of the spatial
and temporal modes are quantitatively determined employing a recursive
cutoff based on the mean and one standard deviation, following the
approach in Lin27. First, the weighted average NO2 over the domain
(EOF(i,j)*NO2(i,j)) for all values i,j inside the domain is computed using the
nine equally spaced percentiles from10% through 90%of the distribution of
EOF(i,j) over the domain. Second, the temporal correlation is calculated
between the weighted NO2 and the PC. The combination of lowest possible
cutoff value with highest possible absolute value of the R statistic (as good a
fit in time with the peaks in the PC) and the lowest possible increase in
additional RMSE error for each datapoint added (as good a fit inmagnitude
with the peaks in the PC) yields the appropriate domain in space. Third, in
terms of temporal fit, the appropriate subset of times is obtained from all
data in which the PCs fall outside of the mean plus/minus one standard
deviation.When the same geographic area is identified inmultiple EOFs the
time series of these respective modes are different and can be aggregated
based on the magnitude of the EOF, so as to use the orthogonality to do a
complete reconstruction.

In all cases, this approach guarantees that our spatial-temporal
domain contains themost substantial signals of the remotely sensedNO2

fields, which in turn contribute to the maximum changes. These changes
are in turn those most responsible for changes in emissions of NOx.
These sources which are changing the most are those which are most
likely to be mis-diagnosed by current emissions inventories for two
major reasons. First, current emissions inventories do not consider day-
to-day and other high-frequency variations on a grid-by-grid basis,
which this approach makes explicit. Second, some fraction of emissions
from biomass burning and regions undergoing rapid urbanization are
completelymissing in existing emissions inventories20,32, which this work

also captures, since it is analyzing the tropospheric column, not merely
the surface.

Selection of urban and non-urban areas
Due to the considerably economic and political diversity in CSA, there are
many peoplewho live in rapidly changing communities in countries such as
Vietnam, Laos, Cambodia, Thailand, Myanmar, Indonesia and Malaysia.
Within sizable portions of each of these countries, there still is a large
amount of biomass used for cooking and clearing of farmland, with most
occurring during the local dry season from mid-February through mid-
April. The conditions are climatologically similar, although with a very
different economic and political profile in NEI and Bangladesh. Due to the
higher level of economic development andmore strict government policies,
there are fewer people in southern China cooking with biomass. On top of
this, there is a rapidly increasing number of automobiles, wide-spread city
construction, and even small but frequent wildfires that are observed in the
local dry season. Overall, throughout the regions of interest there are sizable
sources from both biomass and urban sources, which contribute to time-
varying intense air pollution events across many broad air pollutants.

Due to their orthogonal and specific nature, this work utilizes as an a
priori the respective NOx emission from FINN for biomass burning loca-
tions and EDGAR for urban regions. The total emissions have been dis-
tributed into 9 separate groups, as shown in Table 1. There are 3 specific BB
areas: BB1, BB2, BB3, three specific urban areas: Urban1, Urban2, Urban3
and three other areas: a Tibetan area, a Mixed area and an Equatorial area.
The Mixed Area is the only one which uses data from both FINN and
EDGAR, when and where overlap actually occurs.

The region defined as Urban1 area mainly covers the urban regions
over provinces along the Yangtze River, such as Sichuan, Chongqing,
Guizhou, Yunnan, Guangxi, Hunan, Hubei, Anhui, Jiangxi, Zhejiang,
Shanghai and Jiangsu, which are mainly impacted by the subtropical mid-
latitude climate. In these areas, cities in the YRD are more developed and
have a larger population density than the other cities. The region defined as
Urban2 covers the same-latitude urban regions of Guangdong, Fujian,
Taiwan Island, andHongKong,which are climatologically impacted by sea,
mountains, and the Asian Monsoon, and have a high population density
and extensive industry. The region defined as Urban3 includes the major
cities of CSA including Bangkok, Kuala Lumpur, Singapore, Hanoi, Ho Chi
Minh City, Manila, as well as Bangladesh’s Dhaka, and some cities in NEI,
likeCalcutta. Cities here are impacted by tropical climate and generally have
both a large population and high population density, and in general are less
developed economically than the former two areas (with the exception of
Singapore). The region defined as the Mixed area includes the remaining
areas of China not previously mentioned, and not contained within BB2.

The region defined as BB1 covers the BB areas in NEI, Nepal, Ban-
gladesh and Bhutan. The region defined as BB2 covers Southwestern
YunnanProvince, a small part ofNEI andmost ofNorthernCSA, including
Myanmar, Northern Thailand, Laos and Northern Vietnam. The region
defined as BB3 covers the other areas of CSA except for PeninsularMalaysia
and Singapore. These BB areas aremainly impacted by a Tropicalmonsoon
climate, including both the Indian Monsoon and the Asian Monsoon.

The region defined as the Tibetan Area mainly includes the Tibet and
the mountains of Western Sichuan, as well as some nearby high-altitudes
regions. Overall, this area has a very low population density, a low level of
atmospheric pollution, anda sizable fractionof their emissions coming from
wild fires. The Mixed Area has a combination of small to medium cities,
mountains and forests, and therefore has characteristics of the anthro-
pogenic and biomass burning types. The Equatorial Area includes the
islands around the equator in theMaritime Continent except for Singapore
(Indonesia, Malaysia and Brunei) as well as the Philippines. This area has a
high occurrence of wild fires each year in August through October, and a
large amount of rapidly developing and highly dense urban areas. However,
this region is also heavily impacted by rain, and therefore does not have
many days of measurements available.
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Mass conserving equation
The basic mass-conserving equation for a tracer in the atmosphere (in this
case NOx) is shown in Eq. (1). The terms include the time rate of change
between the previous day’s and current day’s loading of NOx,

∂ðVNOx
Þ

∂t , the
emissions ofNOx,ENOx

, the loss ofNOx due to chemical decay, LossNOx
, and

the two transport terms of NOx corresponding to advective transport and
pressure-transport, ∇ �u � VNOx

� �
, where �u denotes the horizontal wind

vector (in terms of both u and v) andV denotes the tropospheric column as
the previous studies5. Three simplifications are then made to allow the
solution to be readily solved within the context of the available measure-
ments from OMI. First, there is a linearization between NOx and NO2, α1,
whereby the ratio ofNOx/NO2 inEq. (2), is based on the thermodynamics of
theNOx formation in theflame1. Second, the loss term is linearized inEq. (3),
where α2 is the rate of reaction times the concentration of OH, COH ,
responsible for the major conversion of atmospheric NOx into nitric acid

79.
The third simplification as given in Eq. (4), α3 denotes the weighted distance
of the horizontal grid over which the transport of NOx occurs. Overall, these
terms aremerged together inEq. (5). In this equation, the gridsmissingOMI
NO2 data will be discarded, only the grids with OMI NO2 observations will
beused.The apriori emission inventorieswill also beused after interpolation
to the same resolution (0.25°x0.25°) based on the OMI NO2 product.

∂ðVNOx
Þ

∂t
¼ ENOx

� LossNOx
þ ∇ �u � VNOx

� �
ð1Þ

∂ðVNOx
Þ

∂t
¼ dðα1VNO2

Þ
dt

¼ α1
dVNO2

dt
ð2Þ

LossNOx
≈α2

0 � COH � VNOx
¼ α2

0 � COH � α1 � VNO2
¼ α2α1VNO2

ð3Þ

∇ �u � VNOx

� �
¼ α3∇ �u�α1VNO2

� �
¼ α3α1∇ �u�VNO2

� �
ð4Þ

α1
dVNO2

dt
¼ ENOx

� α2α1VNO2
þ α3α1∇ �u�VNO2

� �
ð5Þ

Tofind the best fit values for α1, α2, and α3, a least squaremethod is used.
This is a statistical procedure to find the best fit by minimizing the sum of the
squares of the residuals80, as given by Eq. (6), where f xi

� �
is based on Eq. (5),

and yi is given based on the measured a priori emission value. In this work, a
prior is given by the sum of the NOx emissions from FINN and EDGAR.

min f xð Þ ¼
Xm
i¼1

yi � f xi
� �� �2

( )
ð6Þ

Thefits ofα1,α2, andα3, andvaluesof computedweightedNOxover the
EOF fields in comparison to the PCs are further explained using correlation,
the rmse, and simple probability density functions (PDF) and analysis.

Bootstrapping
Bootstrapping is a statistical techniquewhichutilizes randomsamplingwith
repeatability of replacement, specifically capable of handling all types of
PDFs. This method is capable of being computed on a laptop or desktop
using commonly available software, in this work MATLAB was used. This
method can be widely applied to estimate the variation of statistics (bias,
variance, confidence intervals, etc.)81. In this work, this method has been
used to sample the values of α1, α2, and α3, which are then in turn used to
compute different permutations of emissions from the already constrained
PDFs of the coefficient values and their associated uncertainty ranges. The
uncertainty ranges are computed specifically by computing half of the dif-
ference between the 25th-percentile and 75th-percentile results of the
bootstrap distribution on a pixel-by-pixel and day-by-day basis. These
numbers are then combined in space and time via the root-mean-square

techniques to form a region-by-region uncertainty on a day-by-day and
year-by-year basis. Finally, themeanand standarddeviationof thesederived
individually computed emissions are finalized over each specific sub-
domain, eachmonth, and thenfinallymerged to cover the entire domains of
interest, in a bottom-up manner.

Emissions calculation
Basedon theworkflowchart ofNOx estimationpresented inSupplementary
Fig. 5, daily emissionsofNOx are calculated throughout the entire yearusing
Eq. (5) once the values of α1, α2, and α3 as derived and bootstrapping has
been undertaken. Spatially averaged emissions are calculated over the
extracted respective urban and EOF BB regions at the corresponding time
periods. Masked NOx emissions are calculated over the default urban and
BB areas shown in Fig. 1, without time constraints.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The satellite NO2 datasets used in this study are available at https://doi.org/
10.5067/Aura/OMI/DATA3007, the ERA-5 reanalysis product is available
at https://doi.org/10.24381/cds.bd0915c6. FINN and EDGAR are retrieved
from https://www.acom.ucar.edu/Data/fire and https://edgar.jrc.ec.europa.
eu/dataset_htap_v2 respectively. The MODIS land cover product is dis-
tributed at https://doi.org/10.5067/MODIS/MCD12C1.006. All of the data
and underlying figures are available for download at https://doi.org/10.
6084/m9.figshare.19334180.

Code availability
MATLABcode used to calculate the emissions is available at https://doi.org/
10.6084/m9.figshare.19334180.
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