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Industrial land drives economic growth but also contributes to global warming through carbon dioxide
emissions. Still, the variance in its impact on economies and emissions across countries at different
development stages is understudied. Here, we used satellite data and machine learning to map
industrial land at 30m resolution in ten countrieswith substantial industrial value-added, and analyzed
the impact of industrial land expansion on economic growth and emissions in 216 subnational regions
from2000 to2019.We found that industrial landexpansionwas the leading factor for economicgrowth
and emissions in developing regions, contributing 31% and 55%, respectively. Conversely,
developed regions showed a diminished impact (8% and 3%, respectively), with a shift towards other
economic growth drivers like education. Our findings encourage developing regions to consider the
adverse effects of climate change during industrial land expansion and that developed regions
prioritize human capital investment over further land expansion.

Industrial land is a fundamental component of urban landscapes and the
primary location for manufacturing facilities, warehouses, and other
industrial operations. Industrial land supports the growth of industrial
sectors and thus serves as a driving force of economic development1–3. Due
to the accelerated pace of urbanization and industrialization across the
world, the demand for industrial land is increasing at a substantial rate4.
However, the rapid expansion of industrial land poses threats to the
environment related to the associated increases in energy use and fossil fuel
consumption5–9. Sectors closely related to industrial land use, including
energy use in industrial activities and direct industrial processes, accounted
for approximately 29.6% of global greenhouse gas emissions in 201610,
translating to about 14.5 billion tonnes of carbon dioxide (CO2) equivalent.

Most previous studies on the impact of industrial land on economic
growth or CO2 emissions have been limited to single-country or regional
analyses, particularly in China. Many studies focusing on China have
demonstrated that industrial land expansion has a positive interaction with
economic growth4,11,12 and is a major influencing factor in CO2

emissions13–16. Regional case studies suggest that the impact of industrial
land on economic growth and CO2 emissions may differ in regions

depending on socioeconomic achievements17,18. However, there is little
understanding of how these impacts differ across multiple countries with
varying levels of development over time. One important reason for the
insufficiency of multi-country research regarding industrial land expansion
is the lack of comparable and consistent datasets to identify industrial land
in wide coverage areas.

Another research gap is that studies that concurrently explore the
impacts of industrial land expansion on economic growth and CO2 emis-
sions are scarce. As interest in sustainable development and efficient land
use continues to grow rapidly, we need a more comprehensive under-
standing of the interactions among industrial land expansion, economic
growth, and CO2 emissions. Such understanding can inform effective
industrial land management, balancing economic development with
minimizing environmental damage.

In this study, we developed a methodology for high-resolution (30m)
mapping of urban industrial land (IND) areas. Utilizing a synergistic
approach involving multiple satellite-based datasets and machine learning
techniques, we comprehensively mapped IND across ten countries with
large industrial value-added —China, the United States, Japan, Germany,
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India, South Korea, Italy, France, Vietnam, and Bangladesh. This metho-
dological innovation elevates the precision and accessibility of monitoring
detailed INDareadistribution,marking anotable advancement in industrial
land use studies.

We explored the impacts of IND expansion on economic growth and
CO2 emissions among216 subnational regions in ten countrieswith varying
levels of development, covering a twenty-year period from 2000 to 2019.
Expanding our scope beyond just INDareas, we also compared the effects of
other factors such as urban nonindustrial land (NIND), education level,
population density, and soil properties on economic growth and CO2

emissions. Our findings indicated that while IND expansion was a crucial
driver for economic growth and emissions in developing regions, its con-
tributiondiminished in developed regions.Weobserved a shift in developed
regions towards other drivers of economic growth, particularly education,
underscoring the importance of investing in human capital. Our study
culminated with proposing sustainable industrial land management stra-
tegies tailor-made to the specific developmental stage. These suggestions
provide crucial guidance for policymakers seeking to harmonize economic
growth with environmental considerations, enriching the global dialog on
sustainable development and climate change mitigation.

Results
Satellite-derived IND areas for ten countries
Satellite-derived maps of IND (built-ups used for industrial land use over
impervious surfaces) effectively depict the spatial distribution and growth of
dense IND regions across ten countries from 2000 to 2019 (Fig. 1a, b). Our
mapping analysis revealed that IND areas exhibited a more localized,
clustereddistribution thanNIND(remainingbuilt-upsnot classified as IND
over an impervious surface) distributions did (Fig. 1 and Supplementary
Fig. 1). Specifically, Asian countries such as China and India displayed a
considerably broader area with a higher proportion of NIND relative to
IND, as evidenced in northern India and northeast and east China. How-
ever, the expansion of IND areas in these countries from 2000 to 2019 was
larger than that of NIND areas.

During this period, China observed the most substantial increase in
IND areas, particularly in coastal regions.We found prominent expansions
of IND areas around Shanghai (Fig. 1d), for example, where these areas
dynamically expanded through the formation of clusters (e.g., Industrial
Park). Conversely, developed countries, such as the United States, Japan,
and three European nations, experienced relatively minor changes in IND
areas from 2000 to 2019. Even major industrial cities in the United States
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Fig. 1 | Distribution of Urban Industrial Land (IND). a IND area percentage in
2000 for ten countries; (b) IND area percentage in 2019 for ten countries. Note: the
percentage was calculated by total IND areawithin a 0.5° grid; (c) case example of the
distribution of IND and NIND areas in Düsseldorf, Germany (center coordinate as
51.25° N, 6.75° E); (d) case example of the distribution of IND and NIND areas in

Shanghai, China (grid center coordinate as 31.25° N, 121.25° E); (e) case example of
the distribution of IND and NIND areas in Chicago, the United States (grid center
coordinate as 41.75° N, 87.75°W).Maps were generated by the Google Earth Engine
platform (https://earthengine.google.com).
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and Germany, including Chicago (Fig. 1e) and Düsseldorf (Fig. 1c),
exhibited limited IND growth during this time.

Chinese IND areas exceeded that of the United States (Fig. 2). In 2000,
theUnitedStates had the largest INDarea (17,571 km², 37%) andChinahad
the second-largest (11,400 km², 24%), but by 2019, China’s IND area had
expanded to 32,868 km² (41%) and surpassed theUnited States’ 22,366 km²
(28%). Regarding NIND areas, China maintained the highest percentage
(2000: 74,930 km², 35%; 2019: 127,843 km², 41%), followed by the United
States (2000: 72,440 km², 33%; 2019: 92,506 km², 30%). The area gap
betweenChina and theUnited States consistently expanded throughout the
studyperiod.Among the ten countries analyzed,China, India,Vietnam, and
South Korea—all in the Asian region—experienced increased proportions
of both IND and NIND areas.

Spatial and temporal associations of per capita IND, GDP, and
CO2 in subnational regions
The spatial distributions of per capita INDcorrelated closelywith the spatial
distribution of per capita gross domestic product (GDP) across subnational
regions in the ten countries (Fig. 3a, b). Specifically, the per capita IND
maintained a strong spatial association with per capita GDP, presenting
correlation coefficients of 0.90 for 2000 and 0.88 for 2019 (Supplementary

Fig. 2a, b). This pronounced spatial association was driven primarily by
the higher values of per capita IND and GDP observed in regions within
developed nations (the United States, three European countries, South
Korea, and Japan). Conversely, regions within developing nations
(China, India, Bangladesh, and Vietnam) showed lower comparative
values. From 2000 to 2019, a considerable elevation in per capita GDP,
particularly in regions within developing nations, corresponded with
large growth in per capita IND (Fig. 4a, b). This link was further affirmed
by the remarkably high temporal correlation between per capita IND and
per capita GDP over the twenty years. A trend was particularly evident in
most developing regions whose average correlation coefficient surpasses
0.8 (Supplementary Fig. 3a). Regions with high per capita IND values
also exhibited greater per capita CO2 emissions (Fig. 3c). The correlation
coefficient for per capita IND and CO2 emissions began at 0.91 in 2000
and then decreased slightly to 0.84 by 2019 (Supplementary Fig. 2c, d).
From 2000 to 2019, notable surges (exceeding 100%) in per capita CO2

emissions were clearly observable in the regions within developing
nations (China, India, Vietnam, and Bangladesh; Fig. 4c). The temporal
correlation between per capita IND and per capita CO2 was notably high
within these developing regions, where the average correlation coefficient
exceeds 0.8 (Supplementary Fig. 3b).
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Fig. 2 | Total areas of Urban Industrial Land (IND) and Urban Nonindustrial Land (NIND) for the years 2000 and 2019 across ten countries. a IND area in 2000;
(b) NIND area in 2010; (c) IND area in 2019; (d) NIND area in 2019 for ten countries. The proportion of these areas is depicted as pie charts for each respective year.
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In contrast, many regions within developed countries (the United
States and the European countries) demonstrated a declining trend in per
capita CO2 emissions; changes fell below zero percent and in certain regions
plunged below−25%.Manyof these developed regions displayed a negative
temporal correlation between per capita IND and per capita CO2 over the
two-decade span, with an average correlation coefficient of −0.39 (Sup-
plementary Fig. 3b).Considering the generally positive changes in per capita
IND and GDP in these regions, we can infer that developed regions made
considerable efforts to mitigate CO2 emissions from 2000 to 201919,20.

The impact of per capita IND on economic growth and CO2

emissions
Our results, derived from aMixed Effect Random Forest (MERF) machine
learning model, revealed unequal contributions of per capita IND to per
capita GDP, depending on the level of development across regions (Fig. 5a,
c). The contribution of per capita IND to economic growth was larger in

developing regions (approximately 31%) than in developed regions
(approximately 8%). In developing regions, per capita INDexerted themost
pronounced impact on per capita GDP, followed by educational level and
per capita NIND. Conversely, in developed regions, the most substantial
impact came from the educational level, which accounts for approximately
35% of the influence. This suggests that the urban land level (for both IND
andNIND) is lessmarkedly associatedwith the economic level in developed
regions than in developing regions.

In developing regions, the SHapleyAdditive exPlanations (SHAP) plot
revealed that dominant contributing factors such as per capita IND and
education level exhibit a pronounced positive correlation with economic
level (Fig. 5b, d). This suggests that larger input factor levels (represented by
the color pink in the plot) are associated with substantial economic growth.
But in developed regions, factors other than the education level showed less
or nondirectional influence (samples were clustered around zero
SHAP value).
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Fig. 3 |Distribution of per capita IND,GDP, andCO2 for subnational regions. aPer capita IND in 2019; (b) per capitaGDP in 2019; and (c) per capita CO2 in 2019 for 216
subnational regions in ten countries. Note: the hatched area was excluded from the analysis due to a lack of data. Maps were created using ArcGIS v10.4.1 software.
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In developing regions, the impact of per capita IND on CO2

emissions was overwhelmingly high (Fig. 6a). In developed regions,
however, the impact of per capita IND was not as obviously evident
(Fig. 6b). For developing regions, the impact of per capita IND
(55%) presented a very distinct difference compared to other driving
factors, with the subsequent factors—such as per capita NIND
(10%) and air temperature (8%)—all showing an impact of lower
than 10%. However, in developed regions, population density
emerged as the most influential impacting factor at 35%, followed by

soil pH at 22%, with the impact of per capita IND reduced to a
mere 3%.

Weobserved an apparent positive direction for the impact of per capita
IND on CO2 emissions in developing regions (Fig. 6c). In contrast, some
regions with larger per capita IND were found to produce less per capita
CO2 emissions (See Fig. 6d where the high feature values of per capita IND,
represented in pink, appear under zero SHAP value). This could be
attributed to the notable decreasing trend in per capita CO2 from 2000 to
2019 observed in developed regions (Fig. 4d).
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Per capita GDP change
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Fig. 4 | Percent change in per capita IND, GDP and CO2 during 2000–2019 for
subnational regions. a Percent change in per capita IND; (b) percent change in per
capita GDP; and (c) percent change in Per capita CO2 during 2000 to 2019 for 216

subnational regions in ten countries. Note: the hatched area was excluded from the
analysis due to a lack of data. Maps were created using ArcGIS v10.4.1 software.
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In both developing and developed regions, the impact of per capita
IND was higher than that of per capita NIND on CO2 emissions. The
difference was more than 45% for developing regions and about 2% for
developed regions. For developed regions, the impact of per capita NIND
was contributing only 1.5%. These were consistent with those of per capita
GDP modeling (Fig. 5), given that per capita IND also exhibited a higher
impact on economic growth for developing and developed regions than per
capita NIND does.

We conducted a further sensitivity analysis through a leave-one-
region-out modeling approach for both developed and developing regions,
in terms of per capita GDP and per capita CO2 modeling (Supplementary
Fig. 4). In developing regions, per capita IND consistently surfaced as the
preeminent variable for both per capita GDP and CO2 across all models in
this analysis (Supplementary Fig. 4a, c). For developed regions, per capita
INDheld the third rank in contribution to per capitaGDP, and the sixth for
per capita CO2, a ranking that aligned with the original model’s results
(Supplementary Fig. 4b, d). The median contribution values of per capita
IND in the sensitivity analysis mirrored those of the original model
encompassing all regions (Figs. 5a–c, 6a–c).

Discussion
Satellite-based historical IND maps show that China, a representative
developing economy, exhibited the most dramatic increase in IND from
2000 to 2019 among the ten countries. Several factors could account for
China’s rapid IND expansion, such as rapid economic growth, low cost of
land and labor, and government policies to promote manufacturing7,21. In
contrast, mature industrial economies in developed countries (the United
States, Japan, and three European nations) demonstrated relatively little
change in their INDareas over the sameperiod. Slower INDgrowth in these
economies reflects structural economic changes, such as the shift toward
service sectors, the offshoring of labor-intensive manufacturing, and the
redevelopment of existing industrial zones, and limiting INDexpansion22–24.

Our findings highlight the importance of IND in driving economic
growth, especially in developing regions. IND encompassesmanufacturing,
production, and logistical operations that directly bolster economic output
by generating income, creating employment opportunities, and producing
essential goods for economic growth25,26. The expansion of IND facilitates
the transition of labor from less productive agricultural sectors to more
productive manufacturing and industrial positions21. This “structural
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Fig. 5 | Impact of driving factors on per capita GDP in different development
regions. aNormalized variable impact for per capita GDP in developing regions; (b)
SHAP value of each driving factor for modeling per capita GDP in developing
regions; (c) normalized variable impact for per capita GDP in developed regions; (d)
SHAP value of each driving factor for modeling per capita GDP in developed
regions. The magnitude of the variable impact was calculated using absolute SHAP

values, which were then normalized as a percentage share of the total impact of all
driving factors. In the SHAP plot, the color indicates the feature values from low
(blue) to high (red). Each data point represents one SHAP value for a given pre-
diction and feature. The distribution of red and blue dots provides the directionality
of each feature’s impact.
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transformation” exerted a greater impact on GDP growth in developing
regions, where a larger proportion of the workforce is initially engaged in
agriculture and other activities in the primary production sector.

We note, however, that per capita IND also produced a substantially
high impact on CO2 emissions in developing regions. Developing regions
generally possess more carbon-intensive industrial sectors and less efficient
production processes, whereas developed regions have transitioned away
from emissions-intensive industries and toward more advanced
technologies27,28. By examining the decoupling relationship between per
capita GDP and per capita CO2 from 2000 to 2019 (Supplementary Fig. 5),
we observed that strong decoupling states—economic growth while
decreasing CO2 emissions—predominate in developed regions (the United
States, several European countries, and Japan). This supports thenotion that
developed economies can achieve economic growth from industrial activity
without a commensurate increase in CO2 emissions.

Educational level appeared to be the most influencing factor for eco-
nomic growth in developed regions (Fig. 5c). A population with a high level
of education embodies a more substantial human capital, which is a crucial
driver of economic development29. Further, education cultivates innovation

by equipping individuals with the necessary skills and knowledge to pioneer
new technologies. This can lead to new industries in developed regions,
serving as a potent engine for economic growth.

Population density also emerged as a major influence on CO2 emis-
sions in developed regions. For developed regions, the impact of population
density was much larger than that of per capita IND on per capita CO2. In
developed regions in which urban expansion has reached saturation,
population dynamics appeared to predominantly dictate per capita CO2;
this underscores the critical role of demographic changes in shaping the
complex interplay between land use and environmental repercussions30,31.

In developed regions, particular soil properties have proven crucial
contributing variables, specifically soil organic carbon for per capita GDP,
and soil pH for per capita CO2. This could be linked to the spatial dis-
tribution of soil properties: regions rich in organic carbon generally display
higher per capita GDP, while regions with lower soil pH tend to correlate
with higher CO2 emissions, as indicated by SHAP values (Figs. 5d and 6d).
This aligned with previous studies suggesting that soil acidification,
potentially leading to lower pH, could be induced by increased atmospheric
CO2 levels

32. Furthermore, soils enriched with organic carbon often drive
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Fig. 6 | Impact of driving factors on per capita CO2 in different development
regions. aNormalized variable impact for per capita CO2 in developing regions; (b)
SHAP value of each driving factor for modeling per capita CO2 in developing
regions; (c) normalized variable impact for per capita CO2 in developed regions; (d)
SHAP value of each driving factor formodeling per capita CO2 in developed regions.
The magnitude of the variable impact was calculated using absolute SHAP values,

which were then normalized as a percentage share of the total impact of all driving
factors. In the SHAP plot, the color indicates the feature values from low (blue) to
high (red). Each data point represents one SHAP value for a given prediction and
feature. The distribution of red and blue dots provides the directionality of each
feature’s impact.
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high agricultural productivity, thereby contributing markedly to economic
growth33.

A key methodological contribution lies in the extensive temporal
and spatial analysis of IND area changes across both developed and
developing regions. This was accomplished by directly generating high-
resolution (30 m) IND areas for ten countries, utilizing a combination of
satellite-based multiple datasets and machine learning techniques. Pre-
vious research has relied on national statistical data or point-
source–based data12,14,17, which inherently limited their scope to highly
localized areas, such as individual countries. This study, by contrast,
constructed spatially continuous IND areas at a high resolution, allowing
us to trace IND distribution and its expansion over two decades across
216 subnational regions in ten countries. This led to the crucial discovery
of an inequality in the contribution of industrial land among develop-
ment levels across a multitude of regions.

Another noteworthy innovation in this study is our application of
machine learning–basedMERF for longitudinal modeling. This enabled us
to model the complex impacts among variables while addressing the mul-
ticollinearity between factors34. Furthermore, the SHAP values for each
input variable facilitated us to identify the directionality of various socio-
economic and environmental variables on economic growth and CO2

emissions.
Compared to conventional linear mixed-effects models (LMM) in

longitudinal analysis (see the Supplementary Note 1), MERF exhibited
superior performance in both developed and developing regions for per
capita GDP and CO2 (Supplementary Table 1). In developed regions, for
instance, MERF yielded an R-value of 0.987 and a root mean square error
(RMSE) of 2.26 for per capita GDP modeling. In contrast, LMM produced
an R-value of 0.965 and a higher RMSE of 3.64, thus highlighting the lower
error rate associated with MERF. Moreover, the sensitivity analysis of the
MERF model affirms its reliability (as shown in Supplementary Fig. 4),
emphasizing its proficiency in robustly discerning the variegated impacts of
industrial land.

This study is the first to separate IND and NIND areas from urban
land and to analyze their impacts on both economic growth and CO2

emissions. Compared to previous studies which treated urban land as a
single built-up area31,35, the use of IND and NIND as separate factors in
our longitudinal model leads to higher modeling accuracy (Supple-
mentary Table 1). In particular, using the urban land area as a single
factor to interpret the impacts on economic growth and CO2 emissions
(Supplementary Fig. 6) revealed the potential of overestimating the
impact of the NIND area.

We carried out an extensive analysis of the expansion of IND areas by
using long-term impervious surface data to map their distribution in 2019
and simulate historical changes (2000–2019). However, thismethod did not
address the demolition of existing IND or the conversion from IND to
NIND. Certain input variables required for mapping IND distributions—
synthetic aperture radar (SAR) data, nighttime light data, and local climate
zone (LCZ) maps—were available only in recent years. This limited the
development of historical IND mapping models on an annual basis, parti-
cularly for years prior to 2010.

In the longitudinal study, we compiled numerous variables at the
subnational level across ten countries from 2000 to 2019. Potential errors
existed in each variable. Our IND and NIND data, for instance, had an
accuracy of 91% (see the method detail), so there is still room for
improvement. TheWorldPop population data, employed in our per capita
calculations, could also introduce errors, stemming from source data quality
and assumptionsmade during themodeling process36. Other variables, such
as education and health levels,might contain errors due to their dependence
on statistical data. Likewise, observation-based data, such as satellite Nor-
malized Difference Vegetation Index (NDVI) or soil properties, possess
inherent measurement inaccuracies. Lastly, the gridded GDP data and
gridded CO2 emissions data possessed uncertainties due to errors in
interpolation and extrapolation (GDP37), and discrepancies linked to
emission factors and point source estimates (CO2

38).

Future research could broaden its geographic and temporal scope by
including a more diverse set of countries, particularly those with emerging
economies or smaller industrial bases. Moreover, should data become
available, extending the analysis to cover the period beyond 2020 would
enable us to capture the latest trends and dynamics in industrial expansion
and its economic and environmental impacts.

Further studies should also consider the impact of IND expansion
within individual regions on the economic growth of other regions (e.g.,
offshoring). The economic growth of the United States, for example, is
assisted by US companies offshoring parts of their operations to Asian
countries39. By investigating the effects of IND expansions on economic
growth in the context ofmultinational corporations and foreign investment,
the analysis can offer a more thorough understanding of the intricate
relationships between regional developments and worldwide economic
dynamics.

The framework proposed in this study can be extended to evaluate the
impact of industrial land on other environmental factors, such as air pol-
lutants. We further attempted to apply our framework to model sulfur
dioxide (SO2) emissions and fine particulate matter (PM2.5) concentrations
(refer to SupplementaryNote 2 for details). Notably, per capita INDdid not
appear as a major contributor to SO2 and PM2.5 in either developing or
developed regions, contrasting with its notable influence on CO2 emissions
in developing regions (Supplementary Figs. 7 and 8). CO2 emissions pri-
marily emanate from the combustion of fossil fuels, making CO2 the most
consequential greenhouse gas emitted from industrial activities, as com-
pared to SO2 and PM2.5. Future research could deepen this explanation by
potentially integrating insights into the health impacts and climate change
consequences of industrial land expansion.

Conclusions
We mapped IND areas for ten industrialized countries from 2000 to 2019
and compared the impact of per capita IND on economic growth and CO2

emissions across subnational regionswith different development levels. The
main finding is that industrial land exerted an unequal impact on economic
growth and CO2 emissions across varying levels of development. Specifi-
cally, in developing regions, a large and positive directional impact from the
IND level for economic growth and CO2 emissions was observed. This
impact was diminished in developed regions, with no discernible trends in
CO2 emissions. Another keyfinding is that the level of education emerges as
the primary driver of economic growth in developed regions. This could be
associated with the emphasis on human capital investment in these
advanced stages of development. We also observed that per capita IND
surpassed that of per capita NIND in economic growth and CO2 emissions,
regardless of a region’s development status.

This study demonstrated that while IND promoted economic growth,
developing regions continued to experience substantial CO2 emissions from
IND. Policymakers should strive for a balanced approach between fostering
economic growth and mitigating emissions when developing sustainable
IND management strategies. In developing regions, the facilitation of IND
expansion can enhance productivity, job creation, and economic growth.
Alongside these efforts, policy interventions must address environmental
consequences by prioritizing cleaner energy sources and low-carbon tech-
nology to reduce CO2 emissions from IND activities40,41. Meanwhile, in
developed regions, especially where CO2 emissions have decoupled from
economic growth, the optimization of existing industrial land use and the
promotion of technical innovation driven by human capital can maximize
output gains42.Whenmultinational corporations from developed countries
build IND facilities in developing regions, they should conduct thorough
environmental impact assessments and implement measures to minimize
local emissions. Enabling the transfer of best management practices and
clean technologies for IND operations from developed to developing
regions can improve landuse efficiency, lower emissions, and support global
carbon neutrality goals. Government policies and international develop-
ment initiatives should actively encourage the sharing of such knowledge
and technology.
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Methods
Study area
Ten countries, such as China, the United States, Japan, Germany, India,
South Korea, Italy, France, Vietnam, and Bangladesh, were selected for the
study area. Excluding Bangladesh and Vietnam, the eight countries are the
top eight for a share of global manufacturing output based on the United
Nations Statistics Division in 201943. We chose Bangladesh and Vietnam
because they achieved rapid industrial development and are Asia’s most
promising textile-producing nations44. The selected study period for the
analysis was from 2000 to 2019, considering the availability of the data in
use. In addition, this period is notable because it was found that economic
growth contributed to global urban expansion at a higher rate after the year
2000 than pre-200031.

The IND mapping framework
Wedevised a framework tomap the IND areas for the ten countries in 2000
and2019 at 30mspatial resolution. First, the INDmap for the year 2019was
produced using multisource satellite-based datasets and machine learning.
Then, the distribution of IND areas from 2000 to 2019 was extracted from
historical impervious surface data. The overall flow of the framework is
shown in Supplementary Fig. 9.

Human settlement built-ups and impervious surfaces, which are fun-
damental to defining the spatial distribution of IND and NIND areas, were
obtained from the World Settlement Footprint (WSF) and global imper-
vious surface area dataset (GISA), respectively. TheWSF provided a binary
masked representation of human settlement built-ups on a global scale and
was generated by the German Aerospace Center (DLR). We obtained
WSF2019, which was produced at a spatial resolution of 10m for the year
2019 using multitemporal Sentinel-1/2 imagery. To delineate historical
impervious surfaces, we used the most recent version of the GISA dataset,
GISA2.0, which was generated based on Landsat imagery covering the
period from 1972 to 2019, with a spatial resolution of 30m. GISA 2.0 is
known tobe themost accurate and stable compared to the existinghistorical
global urban datasets45. To construct reference data for modeling the
identification of IND and NIND regions, we utilized the OpenStreetMap
(OSM) land use data, which was downloaded in Polygon shapefile format
for ten countries.

The area ofWSF2019 located on the impervious surface was extracted
using GISA2.0. Then, human settlement built-ups over impervious surface
pixels distributed within the polygon boundary corresponding to the
industrial category of OSM land use data were selected, and IND samples
were constructed by converting them into point data. In the case of NIND,
OSM land uses polygons corresponding to non-industrial classes under the
‘developed’ land category (e.g., commercial, residential, and institutional)
were extracted. The human settlement built-ups over impervious surface
pixels distributed within the non-industrial polygon boundary were
extracted and converted into points to obtain NIND reference samples.

Several multi-source data, mainly satellite data that can represent the
characteristics of industrial land, were used as input data for INDmapping.
A total of six surface reflectance (three visible bands (blue, green, and red),
one near-infrared band, and two short-wave infrared bands) at 30m spatial
resolution were used from the Landsat-8 surface reflectance data. This
surface reflectance was widely used as major input data for satellite-based
land cover and land usemapping studies due to the unique characteristics of
each wavelength band. Landsat-8 surface temperature, which is 30m
resolution resampled from 100m data, was also used as input data to
account for the relatively large heat emission characteristics of industrial
buildings46. The USGS Landsat-8 Level 2 collection was used to obtain the
surface reflectance and temperature, and all images available covering study
regions during the period 2019-2020 were acquired.

We used the SAR data as an input feature, which is known as a suitable
source of building feature extraction47. VV and VH dual polarizations with
10m spatial resolution were obtained from Sentinel-1 SAR Ground Range
Detected (GRD) data. Considering that some industrial buildings are
actively operatedat night, satellite-basednighttime lightwas also considered

as input data. Monthly average radiance composites using nighttime data
from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night
Band (DNB) with 500m spatial resolution were used. All available data for
the period 2019-2020 were obtained for the Sentinel SAR and VIIRS DNB,
respectively.

LCZ was also selected as an input feature based on its standard for
characterizing urban landscapes. The LCZ consists of 17 classes where ten
classes for distinguishing urban forms based on building height and density
and seven for natural type. An open-source global LCZ with 100m reso-
lution produced by machine learning on a 2018-year basis was obtained48.
We used some human impact variables, such as population density and
human modification measures, as input data. The population density was
selectedwith the assumption that the people are relatively less distributed in
the industrial area than in the residential and commercial areas. WorldPop
data with 100m spatial resolution was used for the population density.
WorldPop is produced by disaggregating the admirative unit’s population
data throughmachine learning, anddata has beenprovidedona yearly basis
from 2000 to the present. We also used the global Human Modification
dataset (gHM) data, which can cumulatively measure howmuch terrestrial
lands have been modified due to human activity, including energy pro-
duction and electrical infrastructure. gHM is a 1 km resolution data pro-
vided byConservation SciencePartners, produced in 2016 by integrating 13
individual datasets, including electrical infrastructure, mining, and energy
production. The gridded gHM has a value between 0 and 1 by the pro-
portion of human modification at each pixel.

Since Landsat-8 surface reflectance and surface temperature are vul-
nerable to the cloud, only scenes under a 30%cloud ratiowere selected from
all images from 2019 to 2020. Cloud areas were masked using the quality
assessment information. One single image for each band was obtained by
median calculation from the remaining clear-sky scenes for the six surface
reflectance.

The surface temperature could vary largely even for the same type of
industrial buildings due to geographical and weather conditions. To reduce
this effect, we extracted the temperature value only for the impervious
surface, and the min-max normalized over the selected areas for each clear-
sky scene. Then, themedianproduced one single surface temperature image
for the normalized images.

Furthermore, for a total of seven Landsat-8 multispectral bands, we
devised a method of extracting the surrounding information of each pixel
location and using it as an additional input feature, considering the char-
acteristics of industrial buildings, mainly clustering11. Here, the mean,
maximum, minimum, and standard deviation values of the neighboring
pixels were obtained using a circle-shaped kernel. At this time, 5, 10, 15, and
20pixelswere set as candidates for the size of the radius of the kernel, and the
ideal size was selected for each study area to learn through empirical
experiments. A total of 28 neighboring information layers from seven
Landsat-8 multispectral bands (four for each band) with 30m resolution
were constructed as input features.

The median values of all available images in 2019-2020 were obtained
for the VV and VH bands from Sentinel SAR and monthly average VIIRS
DNB data. The population of 2019 was chosen from the yearly WorldPop.
Because LCZ and gHM are single-period data, they were used as input data
without specific period selection. All input features were resampled to 30m,
which is the target spatial resolution in this study.

We developed a separate model for each subnational region of ten
countries. We adopted the subnational region delineation provided by the
Global Data Lab (GDL)49. Such administrative divisions may include states,
provinces, or regions, depending on the country’s administrative structure.
Here, some of the original subnational regions were merged with adjacent
regions because the number of references to IND samples was insufficient
(described in Supplementary Fig. 10). The training and test sets were
separated from the entire reference data. If samples included in the same
OSM polygon are used for training and testing, overestimates of accuracy
may occur50. To deal with this, we randomly divided theOSMpolygons into
8:2 for INDandNIND, respectively. Then the reference samples originating
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from the polygons corresponding to 80% were used as training sets, and
samples from the polygons corresponding to 20%were used as test sets. For
the increasing modeling efficiency, only 10,000 IND samples and 10,000
NIND samples were extracted from each unit’s full training set as the final
training samples. For thefinal test samples, a total of 10,000 INDand 10,000
NIND were extracted from the full test sets per country. Here, stratified
random sampling was performed considering the ratio of the impervious
surface of each subnational unit in each country (Supplementary Fig. 10).

Machine learning random forest (RF) was used for modeling. RF is an
ensemble tree-based statistical model and is actively used in global land
cover classification due to its high accuracy, stability, and relatively fast
processing speed51. The tree size, which is themain factor of RF,was selected
as 200, and even if the tree size becomes larger here, itwas confirmed that the
accuracy does not change substantially due to sufficient ensemble. The
model was trained using training samples, and the performance was eval-
uated using test samples. Overall Accuracy (OA) and F1 Score were used in
accuracy evaluation indices. A final map of ten countries was produced by
classifying entire human settlements built-ups over impervious surfaces into
IND and NIND for 2019. The GOOGLE EARTH ENGINE platform was
used for modeling and mapping. The accuracy of the 2019 IND map was
found to range between 88.5% and 96.6% for ten countries, with an area-
weighted overall accuracy of approximately 91% (Supplementary Table 2).

The framework used tomap the IND in 2019 is difficult to apply to the
year 2000 due to the limited availability of relevant input features over that
period. Assuming a high association between the expansion of IND and
NINDareas and the growthof their underlying impervious surface areas,we
overlaid the 2019 IND (with NIND) map—generated using machine
learning—onto the GISA2.0 impervious surface area data for each year
between 2000 and 2018. This procedure led to the creation of historical IND
and NIND maps spanning the years 2000 to 2019.

Economic growth and CO2 emissions analysis
This study set the subnational region (defined by GDL, Supplementary
Fig. 11) as the basis for analyzing economic growth and CO2 emissions.We
classified the subnational regions of the ten countries into two groups based
on the development level, using the human development index (HDI)
provided by the Subnational Human Development Database. We selected
2010, the median year of the research period, as the base year. The regions
with an HDI lower than 0.8 were classified as developing regions, while
those with a higher HDI were classified as developed regions. The 0.8 HDI
threshold follows theUnitedNationsDevelopment Programme’s definition
of high human development.

Among all the GDL’s subnational regions in the ten countries, we
excluded regions where the total area of IND and NIND in 2019 (the last
year in the study period) was less than 5 km2. This helps minimize the
impact of high omission errors inherent in the datasets we utilized in IND
and NIND area extraction, such as GISA and WSF. Furthermore, regions
for which GDL did not provide HDI values were excluded. Finally,
216 subnational regions across ten countries were used in the analysis
(Supplementary Fig. 11).

To derive the GDP data as an economic indicator, we used the global
gridded GDP dataset developed by37. This dataset provides GDP values in
2011 US dollars, covering 1992 to 2015 at a 5-arc-minute spatial resolution.
We extracted the total summed GDP within each subnational region
annually from2000 to 2015. Since thisGDPdatawas only available by 2015,
we predicted GDP from 2016 to 2019 using Gross National Income (GNI)
values provided by the Subnational Human Development Database. Based
on the assumption that GDP growth is highly correlated with GNI growth
over time52, we performed a linear regression between GNI and GDP from
2000 to 2015 for each subnational region. Using the regression models, we
extrapolatedGDP from 2016 to 2019 to construct a time series of total GDP
for each subnational region from 2000 to 2019.

As a CO2 emissions indicator, we employed the Open-Data Inventory
for Anthropogenic CarbonDioxide (ODIAC) dataset38. ODIAC offers high

spatiotemporal resolution data on CO2 emissions from fossil fuel com-
bustion, spanning from2000 to the present. TheODIACproduct computes
CO2 emissions resulting from the combustion of coal, oil, and natural gas by
integrating fuel consumption statistics with spatial allocation factors that
reflect the dispersion of emission sources. Specifically, we utilized the
ODIAC2020b version, which provides monthly CO2 emissions estimates
covering January 2000 to December 2019 at a 0.01° resolution. We gener-
ated annual CO2 emissions by summing the monthly data.

To facilitate appropriate comparisons between regions with differing
population sizes, we computed metrics such as per capita GDP and per
capita CO2 for each subnational region. Using WorldPop population data,
we determined the total population of each subnational region from2000 to
2019. Subsequently, we calculated the per capita indices (per capita GDP
and per capita CO2) for each subnational region in the ten countries under
study from 2000 to 2019.

To assess the impact of industrial land on economic growth and CO2

emissions, we used per capita IND as an input variable. Additionally, per
capitaNINDwas obtained as an input to discern the effects of the remaining
urban land areas, excluding industrial land (such as commercial and resi-
dential land). These comparisons are intended to aid in understanding the
relative impacts of these areas on economic growth and CO2 emissions.We
derived these two input variables by aggregating data from the developed
30m resolution IND and NIND area maps for each subnational region
across the ten countries, spanning a 20-year period.

We compiled several additional socioeconomic variables at the sub-
national level for theperiod2000–2019.We includedhealth andeducational
level as input variables in our study because of their established associations
with both economic growth and CO2 emissions53–55. These indices were
obtained from the Subnational Human Development Index (SHDI) Data-
base, curated by GDL. The health level was defined by life expectancy at
birth, while the education level was established based on an equal combi-
nation of two factors: mean years of schooling for adults aged 25 and over,
and expected years of schooling. These SHDI-based values were obtained
from Eurostat for European countries, and from national statistical offices
for other countries. A comprehensive explanation of the SHDI data can be
found in49. We also calculated the population density for each subnational
region using WorldPop population data over a 20-year period.

Environmental factors were also incorporated as input variables. We
collected air temperature data, known to interactwith economic growth and
CO2 concentration

56,57. We used TerraClimate’s monthly climate datasets,
which are generated at approximately a 4 km resolution globally. Terra-
Climate employs a method called climatically aided interpolation, where
high-spatial resolution climatological normals from theWorldClim dataset
are combined with temporally varying data from CRU Ts4.0 and the
Japanese 55-year Reanalysis (JRA55) that have a coarser spatial resolution58.
We first computed the monthly average of maximum and minimum air
temperatures, and then calculated the annual mean value for each subna-
tional unit to derive air temperatures for the 20-year period.

We used ‘greenness’ as a variable to represent the amount of vegetation
in each region, which can influence the economic level from an agricultural
productivity perspective andCO2 emissions concerning its role in emissions
mitigation59,60. The measure of ‘greenness’ was obtained from the NDVI, a
satellite-basedmeasure of vegetation greenness. Specifically, we utilizeddata
from the TerraModerate Resolution Imaging Spectroradiometer (MODIS)
Vegetation IndicesMonthly (MOD13A3)Version 6.1,which offers a spatial
scale of 1 km. Subsequently, we computed the annual mean value of NDVI
for each subnational region for the period of 2000 to 2019. Here, our cal-
culation of the annual greenness only averaged the NDVI for the vegetation
growing season (May to October), to mitigate potential distortion effects,
such as snow cover during the cold season.

Finally, we used soil properties as input variables because they have
been identified as contributing to economic growth by increasing agri-
cultural yield61,62, and to CO2 concentrations due to the role of healthy soil
physical properties in mitigating greenhouse emissions63,64. We selected key
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soil attributes: soil bulk density (a physical property), soil pH, and soil
organic carbon (both chemical properties) from the top0-5 cmof soil depth,
using the 250m SoilGrids 2.0 dataset65. We then computed the average for
these soil properties across all subnational units. The statistics of each
variable used in the analysis comparing developing and developed regions
were presented in Supplementary Table 3.

We carried out a longitudinal analysis over 20 years (2000–2019),
examining the impact of per capita IND on per capita GDP and per capita
CO2 emissions across different regions. We employed the MERF machine
learning model for the longitudinal analysis. MERF, an extension of the RF
model, incorporates both fixed and random effects, combining the benefits
of traditional linearmixedmodelswith theflexibility of RF inhandling non-
linear relationships and interactions between predictors (See Supplemen-
tary Note 3). This makes MERF an ideal choice for analyzing complex
longitudinal data66.

For the per capita GDPmodel, the input variables included per capita
IND, per capita NIND, health level, education level, population density, soil
bulk density, soil pH, soil organic carbon, air temperature and greenness.
For the per capita CO2 model, per capita GDP was added as an additional
input variable to the same ten driving factors. All input and target variables
were transformed to log2-scale in order to address skeweddata, as suggested
by67. The MERF model was run separately for development-level groups
(developing anddeveloped regions) and for the two target factors (per capita
GDP and per capita CO2).

To interpret the output of the MERF model, we computed the SHAP
values for each input variable. SHAP values quantify the contribution of
each variable to the model’s prediction for a specific instance, providing an
explanation of the model’s prediction68. The direction of impact for each
variable on the model’s prediction can also be determined using SHAP
values. A positive SHAP value for a variable implies that the presence of the
feature increases the model’s prediction relative to the expected value,
whereas a negative SHAP value suggests a decrease in the prediction.

To assess the impact of each driving factor, we calculated the mean
absolute SHAP value for each input variable and normalized the values by
dividing each impact by the total sumof all input impacts. TheMERFmodel
and SHAP values were computed using Python, utilizing themerf and shap
packages.

Data availability
Thedatasets supporting thefindingsof this study are available in theZenodo
repository, accessible via: https://doi.org/10.5281/zenodo.10802879. The
repository contains: A comprehensive list of public data sources with cor-
responding links for industrial land mapping; Detailed public datasets with
links for conducting the longitudinal impact analysis onCO2 emissions and
economic growth; and the input datasets employed in MERF longitudinal
modeling, which facilitate the examination of variable contributions to CO2

emissions and economic growth across developing and developed regions,
are provided separately.

Code availability
Scripts for MERF longitudinal modeling, calculation of SHAP values, and
generation of figures for the analysis of CO2 emissions and economic
growth are available in the Zenodo repository at https://doi.org/10.5281/
zenodo.10802879. TheGoogle Earth Engine code used in the industrial land
mapping can be provided by Q.W. or C.Y. upon request.
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