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Large spread in marine heatwave
assessments for Asia and the Indo-Pacific
between sea-surface-temperature
products
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Prolonged extremely warm ocean temperatures have great impacts on both natural ecosystems and
human communities. Thesephenomena (i.e.,marine heatwaves) could be easilymonitoredglobally by
satellite-based sea surface temperatures; however, the choice of datasets may lead to potential
uncertainties in the marine heatwave assessment. Here we compared the marine heatwaves using
three commonly used satellite products to illustrate the uncertainties over Asia and the Indo-Pacific.
Distinct differences were found in the occurrence, duration, and long-term trend of marine heatwaves
over both coastal and open oceans, while some discrepancies could become comparable with the
obtained metrics themselves. Although differences in mean sea surface temperatures or their
variances among datasets could not explain the abovementioned discrepancies, different sensors,
procedures, and sea ice treatments in each dataset may contribute partially. Overall, our study
suggests that the use of multiple datasets is crucial for evaluations of extreme events.

Prolonged extremely warm ocean temperatures, namely marine heatwaves
(MHWs), are proven to have a great impact on the marine ecosystem, the
atmosphere aloft, and human communities1–5. Generally, MHWs could be
identified by discrete prolonged warm events with the ocean temperature
(mostly, the sea surface temperature, SST) anomalies above a certain
threshold6. Based on that, recent studies suggest that MHWs are becoming
longer and more frequent all over the world7–9, while more long-lasting
MHWs have been observed10–12. Particularly, from 1925 to 2016, the global
increase in MHW frequency and duration led to 54% more MHW days13.
More recently, it is also found that coastal MHW occurrence and duration
increased by about 1−2 events per decade and 5−10 days per decade
globally during the past 25years, respectively14. Some studies further suggest
that the globally averaged MHW days may become over 112 days per year
by the end of the twenty-first century under current carbon emissions, and
the most severe MHWs that occur once every hundreds of years may
become annual events7.

The enhancement ofMWHshas beenobservedglobally; however, they
did not increase homogeneously due to their various drivers8,13–15, including
SST warming16,17, climate variations18,19, and ocean dynamics20,21, leading to

challenges in predicting/projecting their future changes22,23. It is found that
the warming of mean SST acts as the main driver of increasing MHWs16,
which also has a certain impact on the SST variance and further enhances
MHW occurrence18. Global and regional scale climate changes, such as the
El Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation,
greatly modulate MHW characteristics via their impacts on the surface
heating (by influencing the pressure system and hence the cloud cover) and
air-sea interactions (e.g., wind-current responses and mixed layer
processes14,19,24). In addition to that, oceanic phenomena, like the western
boundary currents15,25 and coastal upwellings26, could influence MHWs via
heat transport. Moreover, these drivers may act coherently, resulting in
complex responses ofMHWs in some specific regions, such as Asia and the
Indo-Pacific (AIP) region20,27.

On the other hand, as more and more studies focused on MHWs and
their variabilities, a few studies noticed that the detected MHWs strongly
depend on the selected dataset6,8,14. Particularly, a recent study was con-
ducted usingmulti-product-based analysis for coastalMHWsand showeda
large variety in bothmagnitude and trend among the results using different
satellite-based SSTs14. Although some studies suggest the spatial
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distributions and the time series ofMHWsusing different SSTdatasetswere
generally similar13, the spread was actually large from a regional perspective
(see Fig. S4 in ref. 13). One possible reason is that recent SST products do
have similar mean states and variabilities, making them all acceptable in
climate studies28. However, as shown in the studiesmentioned above, itmay
not be true for evaluating MHWs.

Among the hotspots ofMHWs, the AIP region is of particular interest,
as it is dominated by complex climate and oceanic variations. With the
world’s largest population and abundant marine biodiversity, including the
large area of coral reefs and relatedmarine ecosystems, theAIP region is also
one of the most vulnerable regions to MHWs29–31. Recent studies also
demonstrated that theAIP regionhaswarmed faster than theglobalmean in
the last four decades32–35, which induced the increase inMHWactivity. Such
enhancementwas observed in the entireAIP region from the tropics tomid-
latitudes27,36–38. Nevertheless, most previous studies were conducted based
on only one dataset, leading to potential uncertainties in our current
assessments of MHWs over this region.

Therefore, in this study, our primary goal is to estimate the general
characteristics of MHWs over the AIP region and provide quantitative
analyses of the potential uncertainties when using different datasets.
Further interest is also given to whether the discrepancies have certain
patterns or sources, which may help us reduce them. To do so, we
compared MHWs obtained by three commonly used SST datasets,
including the Optimum Interpolation Sea Surface Temperature
(OISSTv2.139,40), the Operational Sea Surface Temperature and Ice
Analysis (OSTIA41) system, and the Merged satellite and in situ data
Global Daily Sea Surface Temperature (MGDSST42), which are proved to
have low biases compared to in situ data28,43. Moreover, since the refer-
ence depths of each SST dataset are not identical, we focused on the
occurrence and related durations, which are sufficient to represent the
likelihood of the estimated MHWs. Based on our analyses, while all
three datasets show some similar patterns, large uncertainties (defined by
the ratios between the variance of metric differences and the variance
of the baseline fromOISST) were seen in their occurrence, durations, and
long-term trends. These discrepancies were not related to the mean SSTs
or their variances in different datasets; however, the configurations in
each SST analysis may contribute partially. Globally extended works are
also conducted, suggesting such discrepancies are common in all the
oceans (see Supplementary Figs. 8 and 9).

Results and discussion
General Conditions of MHWs
Figure 1 shows the occurrences andmean durations ofMHWsover theAIP
region based on three SST datasets: OISST, OSTIA, and MGDSST. In
general, during the last four decades,MHWs tend to be foundnear the coast
and the regions dominated by warm currents, such as the Kuroshio and its
extension region. Results also show that some MHW-rich areas were con-
nected and covered large regions of the marginal seas and the Maritime
Continent (MC), suggesting those MHW events may not have occurred
individually but were highly organized. On the other hand, more frequent
MHWs were often accompanied by shorter durations (Fig. 1e-g; also see
Supplementary Fig. 1 for the relations between occurrence and durations).

It is found that MHWs last about 10−15 days in most regions, while
only some specific regions suffered fromMHWswith durations longer than
20 days, such as the eastern coast of the northern Korean Peninsula, the
Oyashio region, and the western subarctic gyre region (the northeast corner
of our domain). In addition, unlike the occurrence, durations of MHWs
exhibited aweak but clear dependence on the latitude,which is longer in the
north and shorter in the south (Fig. 1h).

Although we obtained some similar patterns of MHWs based on the
three SST datasets, great differences among them could not be ignored. In
the tropical regions,much fewerMHWsweredetectedbyOISST (Fig. 1a, d),
while the numbers could become almost 50% larger if we used OSTIA (see
Supplementary Fig. 2). Compared to them, although MGDSST showed
moderate numbers of MHWs, it showed more MHWs over the offshore
regions away from coastlines, such as the central Bay of Bengal (BOB) and
the areas northwest of Kalimantan Island. However, situations changed in
higher latitudes. In the regions north of 20°N, OISST had the highest
occurrence among the three datasets, whilemuch fewerMHWswere found
in MGDSST, especially near 40°N (Fig. 1d).

Interestingly, although the occurrence of MHWs showed large dif-
ferences between OSTIA and OISST, they had similar mean durations in
most regions with differences of no more than 3 days (Fig. 1e, f), except in
theMC, the centralNorthPacific, and the Sea ofOkhotsk (OS; Fig. 1d, f; also
see Supplementary Fig. 2). Unlike the small differences between OISST and
OSTIA,MHWshadmuch longer durations inMGDSST, resulting in about
5-day biases over the entire domain (Fig. 1h).

Note that we did not find clear dependence on the SST types (i.e., the
reference depths) either in MHW metrics or in the errors related to
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observations (see Supplementary Figs. 5 and 6), and the abovementioned
discrepancies will be discussed later.

Long-term variations of MHW activity
After examining the general characteristics of MHWs, we’d like to focus
on the temporal variations ofMWHs over the AIP region. In addition, by
considering the climate regime shift in the late 1990s as mentioned in
previous studies27,44, two separate periods were considered in this study.
As shown in Fig. 2a, b, while both occurrence and duration of MHWs
reached their highest levels in 1998, distinct differences in their trends
were also found before and after 1998. To avoid unexpected under/
overestimations, we excluded the year 1998 during the trend estimations.
During the early period (1982−1997), MHWs remained few, and the
annual durations were also short, having almost no clear trends before
1998.Meanwhile, by considering their spatial distributions,MHWs in the
early period were more likely localized phenomena and less organized,
while large changes were only seen over some small regions, such as some
coastal areas in the East China Sea and the OS (see 1982−1997 panels
in Fig. 2).

By contrast, MHW activity was significantly enhanced after 1998,
covering large areas over bothmarginal seas and the open ocean.As a result,
more and longer MHWs were observed over most regions in our domain.
Results show that the occurrence ofMHWsdoubledormoreduring thepast
two decades (>0.83 per 10 yr), while their durations increased by over 30%
(>18.96 d per 10 yr). Interestingly, large increasing trends were seen over
almost all the tropical/subtropical and subarctic regions but were limited

within a fewhot spots inmid-latitudes, such as theBohai Seaor the southern
part of the Sea of Japan.

Although MHW activity obtained by the three datasets varied in a
similar way, their differences were not negligible, especially in the estimated
long-term trends. For example, during the early period, we did not obtain
consistent results using different datasets due to the relatively weak MHW
activities, even though the trends were statistically significant inOSTIA and
OISST (Fig. 2a). In addition,MGDSST provided some unique patterns with
strong descending signals over the tropics and central Pacific regions, which
could be barely seen in other datasets (Fig. 2k, m). On the other hand, while
the recent enhanced MHW activities were found in all three datasets, the
estimated trends varied widely (e.g., Fig. 2b; also see panels for 1999−2020
in Fig. 2).

Uncertainties in regional evaluations
To quantify the extractedMHWs using different datasets and to find which
region suffered the most, we introduced an uncertainty index based on the
variance of metric differences and used the metrics from OISST as the
baselines (Fig. 3; see a global version in Supplementary Fig. 9). It is found
that the largest uncertainties are concentrated mainly in tropical regions,
especially over the MC covering both marginal seas and open ocean areas.
Meanwhile, relatively large uncertainties were also observed in the BOB, the
Bohai-Yellow-East China Sea (BS-YS-ECS), and the OS.

To further evaluate the influences of such uncertainties, Fig. 3e−h
show the temporal variations of the estimated occurrence and durations of
MHWs in four sub-regions. We found that the results in these regions

Fig. 2 | Long-term trends of the annual occurrence anddurations ofMHWs.Time
series of the domain-averaged annual (a) occurrence and (b) duration of MHWs
(solid lines) and their linear trends (dotted lines) based on OISST (blue), OSTIA
(green), and MGDSST (red) datasets in two periods: 1982−1997 and 1999−2020,

together with (c−n) the spatial distributions of grid-based trends. The linear trends
obtained by the Theil-Sen estimator are embedded in (a, b) (values and dashed lines)
with insignificant trends marked by the Italic font, which were based on the annual
values. In (c−n), only significant values (p < 0.1) are plotted.
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shared similar interannual variations with correlation coefficients over 0.74;
however, unlike the results in Fig. 2a, b, they showed non-monotonic biases
that varied year to year, leading to the large spread in the estimated linear
trends (see Supplementary Table 1).

In addition to the temporal biases, one should also be aware of the
differences in their spatial distributions. Figure 4 shows the extracted
MHWs in 2020 based on three datasets, and large differences in occurrence
and durations among the datasets could easily be seen. It is found
that MHWs may exist in one dataset but not in others, or they could be
found in totally different areas in a small sub-region. For example, based on
OISST, MHWs were detected near the eastern coast of BOB (Fig. 4d), but
OSTIA showed they occurred mainly in the western areas (Fig. 4e).

Meanwhile, only a few MHWs were detected in OISST and MGDSST
within the MC; however, that was not the case in OSTIA which showed
muchmore and longerMHWs, especially near thewestern coast of Sumatra
Island (Fig. 4b, e). Similar to that,MHWsdidnot even exist near thewestern
coast of the Korean Peninsula in OISST, but the other two datasets showed
them. In addition, even for those events that were detected in all datasets,
their magnitude could still have a large spread.

One may consider that the regions with large discrepancies may share
similar situations or environments; however, our results did not support
that. First of all, these regions are located from the tropics to higher latitudes
and from coastal areas to the center of open oceans with depths from~50m
(e.g., the Bohai Sea) to thousands ofmeters (e.g., the tropical IndianOcean),
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iations of area-averaged annual occurrence (solid line) and durations (dashed lines)
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East China Sea (BS-YS-ECS), and (h) the Sea of Okhotsk (OS), which are marked by
the boxes in (a).
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which are also dominated by different climate and/or weather systems.
Meanwhile, their oceanic conditions are also different. Both regions with
andwithout strongoceancurrents suffered largeuncertainties (e.g., theBOB
and the OS), while the mixed layer depths (hence the upper ocean stratifi-
cation) also varied much among these regions45, which are believed to be
important in MHW formations46.

Note that the uncertaintiesmentioned here were designed to represent
the spread among the datasets but not to indicate which dataset is better or
worse. Similar conclusions could also be obtained by using OSTIA or
MGDSST as the baseline (see Supplementary Fig. 3).

Influences of the mean SSTs and their variances
Previous studies suggest that MHWs strongly depend on the mean SSTs
and the SST variances16,18. Therefore, one may consider the biases and
related uncertainties shown above could be attributed to the differences in
mean SSTs and their variance among the datasets. To confirm that, we
compared three SST datasets and summarized them in Fig. 5. Results
indicate that the domain-averaged SSTs and variances of SST anomalies
correlated well with the duration (Fig. 2b) and the occurrence (Fig. 2a) of
MHWs, respectively (also see Supplementary Fig. 4 for correlation
coefficients between SSTs andMHWs). However, as shown in Fig. 5b−g,
neither the differences of SSTs nor the variances could explain the dis-
tributions of uncertainties found above (Fig. 3a, b), especially for those in
tropical regions. For example, although large uncertainties were found in
the BOB and the MC, the differences in mean SSTs or variances were
quite small. By contrast, the large differences in variance in the Sea of
Japan did not lead to large uncertainties. Note that the dot-like patterns in
Fig. 5c−g represent the bias-correction in three SST datasets by the
Tropical Atmosphere Ocean/Triangle Trans-Ocean buoy Network
(TAO/TRITON) Array, which reduced the differences among the data-
sets; however, our results suggest that such adjustments were limited in
about 2-degree area around the buoys and did not reduce the uncer-
tainties in MHW estimations (e.g., Fig. 3a−d).

Possible influences of configurations during the SST analysis
It is known that all three SST datasets ingest in situ observations from ships
and buoys, while OISST also started to include the Argo floats in 201640.

Therefore, it is not a surprise to see these datasets showing good agreement
with each other and having low errors when compared to most in situ
data28,43,47,48 (also see Supplementary Figs. 5, 6, and Supplementary Table 2
for a simple comparison using in situ SST dataset49). However, their inputs
and relatedprocedures couldpossibly influence their performance inMHW
assessments.

Among the three datasets, OISST only uses the Infra-Red (IR) sensor,
while the others combine both IR andmicrowave (MW) sensors. Although
the IR sensors have a better spatial resolution, they also suffer from the
influences of cloud cover and weather conditions50. With the help of in situ
observations, it may not be a large problem; however, as shown in Fig. 1,
OISST did exhibit the lowest MHW occurrence in the MC where vigorous
convection develops51. Similar issuesmay also influence the uncertainties in
coastal regions.When the IR image is not available, theMWsensors cannot
obtain high-quality signals near land52, leading to relatively large errors and
hence the discrepancies among the datasets near the coastline47,53. On the
other hand, although we regridded OSTIA onto a 0.25° mesh, its original
high-resolution data could still have some advantages in coastal regions43

and may result in the relatively higher MHW occurrence there (Fig. 1).
In addition to that, previous studies suggest that the interpolation

procedures used for generating satellite SSTs could induce attenuation or
spurious small-scale features54, when a few high-resolution inputs are
available. This problem could further induce part of uncertainties by pro-
ducing spurious MHWs. Meanwhile, MGDSST may suffer more from the
smoothing issue, because of its cut-off procedures for high-frequency
signals55,56, which might be the source of its 5-day-longer biases.

Another influence could come from the differences in sea ice treat-
ments. OISST set the SST to −1.8 °C for 100% sea ice concentration (IC),
and it also uses a linear ice-to-SST conversion algorithm when IC is larger
than 50%39 (35% in version 2.1 from201640). Same asOISST,MGDSST also
set the SST to−1.8 °Cwhen IC reaches 100%, but noothermodificationwas
applied42. Unlike the other two datasets, OSTIA uses a NEMOVAR data
assimilation scheme57, which determines the background SST with a ‘decay
timescale’ varying from 5 days to 30 days depending on IC41. Therefore, the
SSTs over the frequently freezing regions (e.g., the OS) could have great
differences among the datasets, leading to large uncertainties in MHW
assessments.
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Note that one may consider the multi-product ensemble SST analysis
could have better performance in representing SSTs and hence MHWs.
However, previous studies suggest that the ensemble median SST does not
have to show the lowest errors28,43. In addition, our simple three-dataset
mean SSTalso shows similar results and exhibits lowerMHWoccurrence in
the AIP region (see Supplementary Fig. 7), although three datasets are not
enough to obtain a robust ensemblemean. Finally, wewould like to reiterate
that we only tried to assess the uncertainties inMHWsobtained by different
datasets but not to provide a quality judgment of them, which should be
conducted based on independent in situ data and more proper analyses.

Conclusion
In this study, we analyzed the general characteristics (occurrence and
duration) of MHWs over Asia and the Indo-Pacific (AIP) region based on
three commonly used SST datasets. In summary, during the last four dec-
ades, MHWs tend to occur in the regions near the coastlines and/or with
strongwarm currents. The occurrence and durations ofMHWswere highly
correlated, and more frequent MHWs often led to their shorter durations.
By contrast, results showed a weak but clear latitude dependence in the
mean duration of MHWs, but none was found in their occurrences. In
addition, MHWs were rare and inactive before 1998 but were significantly
enhanced after 1998withmore and longerMHWs in almost the entire AIP
region.

On the other hand, although all SST datasets showed some similar
patterns, the large regional differences could not be ignored. Table 1 sum-
marizes the area-averaged MHW metrics (occurrence, duration, and
uncertainties) over the AIP region and four subregions mentioned above.
Overall, OSTIA showed a 5−10% larger MHW occurrence in most AIP
regions, while MGDSST exhibited the lowest, especially in high latitudes.
One exception was found in theMaritime Continent, where OISST showed
much fewer MHWs. In addition to the occurrence, a large diversity of the
locations of MHWs was also found among the datasets. As for MHW

duration, a 5-day-longer bias was seen in MGDSST, while the differences
between the other two datasets were relatively small. These differences
further lead to large uncertainties in MHW metrics and their long-term
trends in both coastal and open ocean areas, especially in the Maritime
Continent and theEastAsiamarginal seas; yet no clear dependencewas seen
in their spatial distributions. Based on an uncertainty index defined by the
ratios of variances, discrepancies among the datasets could exceed 0.6 or
more. Moreover, although we found that the domain-averaged metrics of
MHWs generally followed themean SSTs and the variances of climatology-
removed SSTanomalies, neither of themcould explain theuncertainties and
their distributions. On the other hand, these discrepancies may partially be
contributed by sensors, interpolation/smoothing procedures, and sea ice

Fig. 5 | Mean SSTs and variances of daily
climatology-removed SST anomalies. aTime series
of domain averaged SSTs and variances of SST
anomalies. b−g Spatial distributions of mean SSTs
and the variances of SST anomalies based on OISST
and (c, d, f, and g) their differences. Note that panels
f-g show the differences of variances, not the var-
iances of differences.
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Table 1 | Mean metrics of MHWs in 1982−2020 over Asia and
the Indo-Pacific (AIP) and four selected regions: the Maritime
Continent (MC), the Bay of Bengal (BOB), the Bohai-Yellow-
East China Sea (BS-YS-ECS), and the Sea of Okhotsk (OS)
together with their uncertainties (in brackets), which are
defined by the ratios between the variance of metric differ-
ences and the variance of the baseline fromOISST (see Fig. 3)

Regions AIP MC BOB BS-YS-ECS OS
Occurrence (Uncertainty)

OISST 87.48 (n/a) 87.46 (n/a) 93.61 (n/a) 95.21 (n/a) 91.35 (n/a)

OSTIA 92.28 (0.65) 97.67 (0.93) 99.45 (0.90) 96.79 (0.85) 86.01 (0.86)

MGDSST 84.65 (0.66) 91.80 (0.76) 93.13 (0.64) 82.00 (0.75) 80.86 (0.90)

Duration (days) (Uncertainty)

OISST 10.47 (n/a) 9.30 (n/a) 9.93 (n/a) 10.38 (n/a) 11.51 (n/a)

OSTIA 11.43 (0.45) 10.74 (0.85) 10.10 (0.59) 11.12 (0.73) 13.53 (0.55)

MGDSST 16.04 (0.62) 14.55 (1.00) 14.58 (0.66) 17.04 (0.95) 16.59 (0.86)
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treatments in different SST datasets, which greatly influence the small-scall
and high-frequency features that are important in MHW assessments.
Overall, our study suggests that the use of multiple datasets is crucial for
evaluating extreme events.

Thediscrepancies and spreadof datasets are often considered andwell-
treated in model-based studies58; however, they were barely mentioned in
the studies using observational datasets, especially the widely-used SSTs.
Although previous studies demonstrated the mean state and variations of
present SST products are consistent and good for climate studies28, thismay
not be true when investigating extreme events. Nowadays, more frequent
and longerMHWsare observednot only inAsia and the Indo-Pacific region
but also around the global oceans due to the rapidly warming climate59,60.
Our extended work shows that a large spread in MHW assessments could
also be found globally (see Supplementary Figs. 8 and 9), which could
further induce large uncertainties in the evaluations and decision-making
processes for their impacts on the ecosystem and socio-economy. Although
some studies suggest using an ensemble mean of multiple datasets13, such a
process may also lead to the loss of extreme values that are critical inMHW
assessments. In addition to that, some recent studies suggest detecting
MHWs as spatiotemporally connected pixel-based events61,62, which could
help facilitate the driving mechanisms of MHWs and suppress unexpected
spurious events. It could be one possible solution for mitigating some of the
discrepancies, but it requires further analyses. More studies also need to be
done on this issue, such as more detailed evaluations of SST datasets by
independent in-situ observations, investigations on optimal MHW detec-
tion algorithms or definitions for different datasets, and the improvement of
satellite retrieval algorithms52.

Method
Data
The daily SST datasets were utilized to diagnose the physical processes of
individual MHW events over Asia and the Indo-Pacific regions
(80° ~ 170°E, 10°S ~ 60°N). Concerning the different sources and algo-
rithms among different datasets28, three commonly used global SST analysis
datasets that cover the study period of 1982−2020 are selected for com-
parison, including the National Oceanic and Atmospheric Administration
(NOAA) 0.25° daily OISSTv2.139,40, the U. K.MetOffice 0.05°OSTIA41, and
the 0.25° dailyMGDSST42 from the JapanMeteorological Agency (JMA). In
particular, for ease of intercomparison, the 0.05° OSTIA SST was regridded
to 0.25° based on the first-order conservative remapping by using the Cli-
mate Data Operators software63. In addition, theNOAA In situ SSTQuality
Monitor (iQuam)dataset49 is also obtained for error estimations in our extra
analyses in the Supplementary Information.

All three satellite SST datasets include in situ observations but with
different combinations of satellite sensors. OISST uses the Advanced Very
High Resolution Radiometer (AVHRR) only during our study period.
MGDSST combines both IR and MW sensors, including the AVHRR, the
Visible/Infra-red Imager Radiometer Suite (VIIRS), the Spinning Enhanced
Visible Infra-Red Imager (SEVIRI), theWindSat, the AdvancedMicrowave
ScanningRadiometer 2 (AMSR-2), and theAMSR-EarthObserving System

(AMSR-E). OSTIA uses both IR and MW sensors, including AVHRR,
VIIRS, the Sea and Land Surface Temperature Radiometer (SLSTR), and
AMSR-2. Despite different observation inputs, these datasets also use dif-
ferent algorithms and thresholds for the areas with ice cover. For ease of
comparison, a summary of general information for the three datasets is
given in Table 2.

Detection of MHWs
Following previous studies, we defined MHWs as the discrete prolonged
anomalously warm events based on the 90th percentile threshold of the
climatology-removed SST anomalies from 1982 to 20206. The same period
was used for calculating the daily climatology, which is simply definedas the
mean SST on a given day of a year computed from the total 39 years. After
that, anMHWevent is identifiedwhen the abnormalwarmperiod lasts over
five consequent days or more at each grid point. The same processes were
applied to all three datasets using their own thresholds. Note that although
no moving window was applied to the 39-year daily climatology, our esti-
mates on MHWs are consistent with previous studies13,15 and the dis-
crepancies among the three datasets are still clear when using a 31-day
moving threshold and 2-gap-day-allowed method6 (see Supplementary
Fig. 1e−g).

After the detection of MHWs, two metrics (occurrence and duration)
were estimated for an MHW event at each grid point. In addition, to
investigate the long-term variations of MHWs, the monthly metrics were
also calculated. Specifically,we calculated the ‘monthly occurrence’basedon
the fractions of their total durations for the long-lasting MHWs that con-
tinued over several months9,64. For example, the occurrence of a 5-day
MHWevent from July 30 to August 3 will be counted as 0.4 in July (i.e., two
days of its 5-dayduration) and0.6 inAugust, respectively.Consequently, for
simplicity, themonthly duration is obtained by the sumof allMHWs in one
month (i.e., MHW days in previous studies7), and the annual metrics were
the sum of all months in a year. Accordingly, the long-term trends were
calculated based on the Theil-Sen estimator using the Python package
PyMannKendall65.

Data availability
The data used in this study are listed as follows: the Optimum Interpolation
Sea Surface temperature (OISST; https://psl.noaa.gov/data/gridded/data.
noaa.oisst.v2.highres.html), the Daily Sea Surface Temperatures in the
Global Ocean (MGDSST; https://www.data.jma.go.jp/gmd/goos/data/pub/
JMA-product/mgd_sst_glb_D), the reprocessed foundation SST from the
Operational Sea Surface Temperature and Ice Analysis system (OSTIA;
https://podaac.jpl.nasa.gov/dataset/OSTIA-UKMO-L4-GLOB-REP-v2.0),
and the in situ observational SST from the NOAA In situ SST Quality
Monitor (iQuam; https://www.star.nesdis.noaa.gov/socd/sst/iquam).

Code availability
The regridding of OSTIA was performed based on the Climate Data
Operators software, which is publicly available at https://code.mpimet.mpg.
de/projects/cdo. All analyses were performed using Python. Our codes for

Table 2 | Descriptive summary of the SST datasets used in this study, where the abbreviations of Infra-Red (IR) andmicrowave
(MW)sensorsare listedhere: theAdvancedVeryHighResolutionRadiometer (AVHRR), theVisible/Infra-red ImagerRadiometer
Suite (VIIRS), the Spinning Enhanced Visible Infra-Red Imager (SEVIRI), the Advanced Microwave Scanning Radiometer 2
(AMSR-2), the AMSR-Earth Observing System (AMSR-E), and the Sea and Land Surface Temperature Radiometer (SLSTR)

Dataset Time Range Observation input for SST Type of SST Resolution Iceconcentration threshold for theSST
treatment

OISST39,40 1982−2020 IR (AVHRRa), in situ (ship/buoy/Argo) SST at 0.2 m 0.25° 50% (35% from 201647)

OSTIA41 1982−2020 IR (AVHRR/VIIRS/SLSTR), MW (AMSR2), in situ
(ship/buoy)

Foundation SST 0.05° (regridded
to 0.25°)

50%

MGDSST42 1982−2020 IR (AVHRR/VIIRS/SEVIRI), MW (WindSat/AMSR-2/
AMSR-E), in situ (ship/buoy)

SST depth 0.25° 100%

aOISST switched to the NOAA Advanced Clear Sky Processor for Ocean (ACSPO) satellite SSTs retrieved from both AVHRR and VIIRS since November 202143, but we only used data up to 2020.
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MHW detection are available at https://doi.org/10.5281/zenodo.10475583,
and another detectionmethodused for comparison in Supplementary Fig. 1
is obtained from https://github.com/ecjoliver/marineHeatWaves. The
PyMannKendall package is publicly available at https://github.com/
mmhs013/pymannkendall.
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