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Projected changes in compound hot-dry
events depend on the dry indicator
considered
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The intensification of compound hot-dry events due to climate change is a pressing concern,
underscoring the need for precise analysis. However, the impact of different dry indicators on
projections of these events has not been quantitatively evaluated, nor has its importance been
compared with other sources of uncertainty. Here we examine the sensitivity of projected changes in
compound hot-dry events to different dry indicators. We use data from 22 Coupled Model
Intercomparison Project Phase 6 (CMIP6) models to characterize global dry conditions based on
precipitation, runoff, soil moisture, and a multivariate index combining these variables through
trivariate copulas. Our findings reveal large differences in projected changes in the likelihood of
compoundhot-dry events across different dry indicators.Whilemodel uncertainty remains theprimary
source of uncertainty for compound hot-dry event projections, the uncertainty associated with dry
indicators is also substantial, surpassing scenario uncertainty in specific regions.

Droughts and heatwaves often occur together due to the influence of both
local land-atmosphere feedbacks1 and large-scale ocean-atmosphere
circulations2,3. These feedbacks lead to an increase in surface sensible heat
from droughts and a subsequent rise in temperature, which can be propa-
gated downwind through heat advection4,5. With an increase in the fre-
quency of both heatwaves and droughts6,7, and stronger land-atmosphere
feedback triggered by atmospheric warming8, compoundhot-dry events are
becomingmore common and severe across different regions of theworld9,10.
These events have substantial adverse impacts on ecosystems, agriculture,
water resources, and human health11–13.

To develop effective strategies for adapting to and mitigating the
impacts of these events, it is critical to understand and project their future
characteristics. However, defining compound hot-dry events as a new
topic in climate change research is a complex task. The choice of dry
indicators can drastically impact the projected changes in dry events14–16,
potentially altering the magnitude and even the sign of the projected
changes in compound hot-dry events. Such discrepancies can have sub-
stantial implications for adaptation and mitigation strategies, as different
definitions may require different types of infrastructure investments and
spatial planning to prepare for and mitigate the impacts of these events17.
Therefore, evaluating the impact of different dry indicators on projections
of compound events is crucial to ensure that decision-makers have access

to accurate and reliable information for effective planning and decision-
making.

Dry events in compoundhot-dry events in climate change studies have
typically been defined based solely on precipitation18–22, but this may
oversimplify the underlying complexities of such events. To better capture
these complexities, some studies have incorporated additional variables,
such as runoff and soil moisture8,23. Recent studies comparing different
definitions based on precipitation, runoff, and soil moisture have high-
lighted large differences in the projected changes in compound hot-dry
events and associated uncertainties24,25. However, since these variables are
interrelated components of the sameprocess25, it is essential to consider their
interactions for accurate projections of compound hot-dry events26.
Unfortunately, global-scale compound hot-dry event projections that
incorporate the interconnections between low precipitation, soil moisture,
and runoff are currently lacking.

Properly understanding the uncertainty in future projections of com-
pound hot-dry events is crucial for interpreting the impacts of climate
change and making informed policy decisions to mitigate the associated
risks27. However, while traditional sources of uncertainty in climate change
projections such as climatemodels and scenarios have beenwell studied28–31,
less attention has been given to uncertainties associated with other factors,
including hazard definition. Although recent studies have highlighted the
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importance of including dry event definitions in uncertainty analyses32,33, its
relative significance for compound hot-dry event projections compared
withother sources of uncertainty remains unclear. Specifically, there is a lack
of understanding regardinghowmuchprojected changes in compoundhot-
dry events can vary depending on dry indicators. Addressing this issue can
help quantify the amount of uncertainty that can be reduced by refining the
event definition.

To bridge these knowledge gaps, this study aims to project global
compound hot-dry events using 22 global climatemodels (GCMs) from the
Coupled Model Intercomparison Project Phase 6 (CMIP6) under four
Shared Socioeconomic Pathways (SSPs). The study characterizes com-
pound hot and dry precipitation, soil moisture, and runoff extremes, as well
as compound hot and multivariate dry extremes. The study then compares
the uncertainties arising from different definitions of dry conditions for
compound hot-dry events with those arising from GCMs and SSPs.

Results
Having established that the CMIP6 GCMs have undergone comprehensive
evaluations for simulating compoundhot-dry events in prior studies21,24,34,35,
our focus remains on investigating how different dry indicators impact
projections of compound hot-dry events (Fig. 1). A comparison of changes
in the probability of compound hot-dry events, with dry events character-
ized based on precipitation [HDI-P], runoff [HDI-R], and soil moisture
[HDI-S], reveals a similar spatial distribution (Fig. 1). Across all indices, the
probability of compound events is projected to increase worldwide by the
end of this century under different scenarios. The most substantial increase
is anticipated in most of South America, Central America, southern North
America, southern and northern Africa, southern and central Europe,
western Asia, and Australia. However, the magnitude of the increase in
compound event probability noticeably varies among the different indices.
Generally, the increase in probability for HDI-P is lower than that for HDI-
R andHDI-S, and this disparity is more pronounced in regions expected to
experience the most severe impacts from compound events. Based on the
CMIP6 ensemble median, the global maximum increase in compound
event probability differs noticeably across the various indices, with values
ranging from0.12 to 0.26 forHDI-P, 0.26 to 0.60 forHDI-R, and0.31 to 0.59
forHDI-S, depending on the scenarios.Although the difference between the
increase in probability for HDI-R and HDI-S is small, the increase in

probability for HDI-R andHDI-S is consistently 2-3 times larger compared
with HDI-P.

In addition to defining dry conditions for compoundhot-dry events by
linking temperature with various hydrological variables, an alternative
approach involves defining compound events based on the combination of
these variables, referred to as theHDI-MSDI (Fig. 1).When compoundhot-
dry events are defined using HDI-MSDI, the projected changes exhibit
collective variations in the different hydrological variables, evident in both
spatial distribution andmagnitude. The spatial pattern of projected changes
in the probability of HDI-MSDI closely resembles that of HDI-P, HDI-R,
and HDI-S, with similar regions expected to be most impacted. In terms of
magnitude, the expected increase in the probability of HDI-MSDI is greater
than that of HDI-P, but smaller than that of HDI-R and HDI-S.

The projected changes based on HDI-P, HDI-R, HDI-S, and HDI-
MSDI are globally significant at the 5% level (Supplementary Fig. 1). Even
when reducing the significance level to 1%and0.1%, the substantial changes
obtained by HDI-P continue to encompass 100% of the global land areas.
However, the coverage marginally decreases for the other indices, spanning
95-100% of the land area. Notably, HDI-P yields the highest signal-to-noise
ratio (S/N), followed byHDI-MSDI, while the lowest ratios are observed for
HDI-R andHDI-S. This S/N pattern is opposite to the pattern found for the
changes.

A regional analysis of the changes reveals that HDI-R exhibits the
largest increase in the probability of compound events in 12, 9, 8, and 9
regions out of the total 20 regions under SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5, respectively (Fig. 2). This is followed byHDI-S, which leads to the
greatest increase in the probability of compound events in 8, 10, 11, and 10
regions under the respective scenarios. Conversely, compound events
defined based on HDI-P result in the smallest increase in the probability of
events in 11, 11, 10, and 11 regions under SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5, respectively.

Overall, the Amazon, Australia, Central America, Mediterranean,
southern Africa, South Asia, and Southeast Asia regions are anticipated to
experience the most substantial increases in the likelihood of compound
hot-dry events (Fig. 2). In the worst-case scenario (SSP5-8.5), the Medi-
terranean andAmazon regionsmay experience a potential increase of up to
0.19 and0.18, respectively, in the probability of compoundevents.While the
magnitude of the increase varies with different scenarios, this growth is
however spatially heterogeneous. For example, the Mediterranean region is
initially ranked as the fifth most important hotspot region for future com-
poundhot-dry events under SSP1-2.6, but climbs tobecome the fourth,first,
and first most important hotspot under SSP2-4.5, SSP3-7.0, and SSP5-8.5,
respectively. Conversely, southernAfrica drops frombeing the secondmost
important hotspot region under SSP1-2.6 to the fourth most important
hotspot under SSP5-8.5.

Following the global pattern, significant changes are observed in all
regions using all indices; however, HDI-P may not necessarily yield the
largest S/N in every region (Fig. 3). When comparing regional S/N across
different indices,HDI-Pexhibits thehighest S/N in17, 18, 19, and19 regions
out of the total 20 regions underSSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5,
respectively. In contrast, either HDI-R or HDI-S exhibits the lowest S/N in
75-85%of the regions. For all scenarios, southernAfrica shows the largest S/
N, even though it is not among the top three hotspot regions in terms of the
magnitude of projected changes in compound hot-dry events, highlighting
the importance of projection uncertainty. Another example is the Amazon
region, which ranks among the top two hotspot regions based on the
magnitude of changes but is not even among the top five hotspot regions in
terms of S/N.

To account for the sensitivity of the results to the chosen threshold
defining compound hot-dry events, the analysis is replicated using two
alternative thresholds of –0.9 and –1 within the same threshold range
associated with amoderate compound hot-dry condition, in addition to the
original−0.8. A comparison of the results reveals similar spatial patterns of
changes across different thresholds (Fig. 1; Supplementary Figs. 2 and 3).
However, in terms of magnitude, changes tend to decrease when the

Fig. 1 | CMIP6 ensemblemedian changes in the probability of compound hot-dry
events over the long term (2061–2100) relative to the baseline period
(1971–2010) under different scenarios. The figure depicts changes in the prob-
ability of compound hot-dry events defined using HDI-P, HDI-R, HDI-S, andHDI-
MSDI under the scenarios a–d SSP1-2.6, e–h SSP2-4.5, i–l SSP3-7.0, andm–p SSP5-
8.5. HDI-P, HDI-R, andHDI-S represent the standardized compound hot-dry event
index that utilizes respectively precipitation (P), runoff (R), and soil moisture (S) to
define dry events. HDI-MSDI represents the standardized compound hot-dry event
index that uses all precipitation, runoff, and soil moisture based on a multivariate
standardized drought index (MSDI) to define dry events. A compound hot-dry event
was defined when HDI <−0.8.
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threshold is increased from –0.8 to –1. Regionally, an increase in the
magnitude of the change is observed in all regions for all indices (Fig. 4).
Specifically, for SSP5-8.5, the change magnitude for the –0.8 threshold is
46–101% larger than that for the –1 threshold. This breaks down to 51–76%
for HDI-P, 46–67% for HDI-R, 51–101% for HDI-P, and 50–86% for HDI-
MSDI. This pattern remains consistent across other scenarios (Supple-
mentary Figs. 4–6), where the change magnitude for the –0.8 threshold is
45–97% larger than that for the –1 threshold. It is worth noting that the
regions experiencing the most substantial changes (e.g., the Mediterranean
and Amazon) exhibit the lowest sensitivity to the threshold.

To assess the relative importance of dry indicators for future com-
pound hot-dry event projections, the uncertainty arising from the choice of
dry indicators is compared with that stemming from GCMs and scenarios
(Fig. 5). GCMuncertainty emerges as the dominant source of uncertainty in
17 out of 20 regions, accounting for an average of 48% across the regions.
Scenario uncertainty takes precedence in Central America and the Medi-
terraneanwhile holding a slightmargin in easternNorthAmerica: 40.3% for
scenario uncertainty compared with 39.8% for GCM uncertainty. In these
three regions, themagnitude of the increase in compound event probability
escalates rapidly across scenarios, with the increase under SSP5-8.5 being

2-3 times larger than that under SSP1-2.6.On average across the regions, the
uncertainty associatedwith scenarios is 33%,while theuncertainty related to
dry indicators for compound events averages at 19%. Notably, the dry
indicator uncertainty surpasses the scenario uncertainty in four regions: east
and west Africa, South Asia, and Tibet. Additionally, a noticeable uncer-
tainty related to dry indicators (i.e., 27%) is seen in central and north Asia
regions.

GCM uncertainty dominates the total uncertainty of compound hot-
dry event projections, being the dominant source in 66% of the global land
area (Fig. 6). GCM uncertainty of > 40% in compound hot-dry event pro-
jections are observed in 69% of the global land area, with 30% of the area
showingGCMuncertainty of > 50% (Fig. 7). However, in regions where the
expected increases in the likelihood of compound hot-dry events are large,
scenario uncertainty is dominant, accounting for 22%of the global land area
(Fig. 6). The uncertainty associated with the choice of dry indicators for
compound hot-dry events is largest in the Middle East and parts of central
Asia and central Africa, accounting for 12% of the global land area (Fig. 6).
Scenario uncertainty of > 40% in compound hot-dry event projections is
observed in 27% of the global land area, while dry indicator uncertainty of >
40% is seen in 11% of the global land area (Fig. 7).

Fig. 2 | Regional comparisons of changes in the probability of compound hot-dry
events defined based on HDI-P, HDI-R, HDI-S, and HDI-MSDI under different
scenarios. The changes are for the long term (2061–2100) relative to the baseline
period (1971–2010) based on the CMIP6 ensemble median for the scenarios a SSP1-
2.6, b SSP2-4.5, c SSP3-7.0, and d SSP5-8.5. A compound hot-dry event was defined
whenHDI < –0.8. Figure 2e displays the continental and subcontinental land regions

of the globe. ALA: Alaska; AMZ: Amazon basin; AUS: Australia; CAM: Central
America; CAS: central Asia; CNA: central North America; EAF: eastern Africa; EAS:
east Asia; ENA: eastern North America; MED: Mediterranean basin; NAS: north
Asia; NEU: northern Europe; SAF: southern Africa; SAH: Sahara; SAS: south Asia;
SEA: southeast Asia; SSA: southern South America; TIB: Tibet; WAF: western
Africa; WNA: western North America.

https://doi.org/10.1038/s43247-024-01352-4 Article

Communications Earth & Environment |           (2024) 5:220 3



Discussion
The discernible intensification of compound hot-dry events, as evidenced
through various station, reanalysis, and satellite-based observational data-
sets, is well-documented in recent studies3,10,34,36–41. This growing trend
underscores the imperative of scrutinizing these events for their future
implications. In this study, we contribute to this line of research by con-
ducting an analysis to examine the evolving likelihoodof compoundhot-dry
events under various future scenarios.Ourfindings are consistentwith prior
research, supporting the notion that compound hot-dry events are expected
to intensify due to climate change42–44. This intensification is particularly
evident in regions projected to face severe droughts15,43,45,46. When the
impacts of dry events combine with the negative effects of hot events,
resulting in compound hot-dry events, the overall consequences become
even more severe. This means that the negative impacts of hot and dry
events reinforce each other, leading to increased risks and potentially more
pronounced environmental, ecological, and socioeconomic consequences.
The interrelated nature of the physical processes responsible for dry and hot
extreme events leads to cascading effects47, with distinct timescales of
interaction, and sensitivity to changes in the soil-plant-atmosphere con-
tinuum hydroclimatic drivers, and background aridity48.

A key focus of this study was the issue of defining dry conditions for
compoundhot-dry events,whichhas received limited attentiondue tobeing
a relatively new frontier in research. In contrast to recent studies that rely on
individual hydrological variables to characterize dry events24,26, we explored
the interactions between different hydrological variables and their influence
on projections of compound hot-dry events. Our findings demonstrate that
using a multivariate index that incorporates precipitation, runoff, and soil
moisture to link with air temperature yields different results comparedwith
cases where individual hydrological variables are used. In fact, compound
events defined using the multivariate index demonstrate larger changes
compared with those defined solely based on precipitation, yet they exhibit
smaller changes than those relying on runoff and soil moisture. It is crucial
to include these interactions in future projections of compound hot-dry
events, given that land-atmosphere interactions are expected to strengthen
under warming conditions49.

Furthermore, our study identified limitations in drought character-
ization when relying solely on precipitation, such as the Standardized

Precipitation Index (SPI). Such an approach overlooks critical land surface
and soil conditions that play a substantial role in drought development.
Additionally, certain plant processes can influence how precipitation
droughts manifest in the soil, such as the reduction in plant stomatal con-
ductance during drought stress or the increased vegetation total water use
efficiency under elevated atmospheric CO250,51. These processes create
feedback loops in the near-surface climate thatmay vary geographically due
to variations in vegetation (e.g., phenology, land cover) and land surface
properties (e.g., soil moisture content, soil type, topography)52. The SPI’s
inability to incorporate the influencing factors restricts its ability to offer a
comprehensive understanding of drought dynamics, especially in regions
where these additional variables play a crucial role33,53. This becomes par-
ticularly relevant in cases where precipitation changes in the opposite
direction compared with soil moisture15,54.

In regions with modest or low climatological precipitation, precipita-
tion alone may not suffice as a measure of drought55. Moreover, the pre-
cipitation deficit is not a reliable indicator of extreme drought56. Extreme
drought is often determined by drought intensity, primarily driven by
temperature57. Higher air temperatures can intensify evaporative demand,
leading to increased evaporative losses from the surface and higher soil
moisture deficits58. A study using GCMs demonstrated that up to 80% of
surface rainfall can be lost through evaporation and transpiration, under-
scoring the substantial impactof temperatureondrought severity59. Even for
characterizing atmospheric water deficit, precipitationmay not be themost
suitable variable.Due to the limited availabilityofwater for evaporationover
land compared with the ocean, land surfaces warm approximately 50%
more thanocean surfaces60, andwater vapor content cannot increase rapidly
enough to overcome this deficit. Consequently, further drying over land is
anticipated as the climate continues to warm61, leading to an increasing
disparity between actual and saturation water vapor concentrations.
Therefore, the vapor pressure deficit (VPD), which also governs evapo-
transpiration demand, is expected to increase much faster by percentage
than changes in other hydrological variables, such as precipitation61,62.
Indices like the Standardized VPD Drought Index (SVDI)63 may be more
appropriate in these situations.

Hence, we caution against relying solely on precipitation-based dry
indicators, as it may lead to biased climate change impacts on compound

Fig. 3 | Regional comparisons of signal-to-noise ratio (S/N) for the probability of
compound hot-dry events defined based on HDI-P, HDI-R, HDI-S, and HDI-
MSDI under different scenarios. The changes are for the long term (2061–2100)
relative to the baseline period (1971–2010) based on the CMIP6 ensemble median

for the scenarios a SSP1-2.6, b SSP2-4.5, c SSP3-7.0, and d SSP5-8.5. A compound
hot-dry event was defined when HDI <−0.8. See Fig. 2 for the definition of the
regions.
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hot-dry events. Instead, we recommend the inclusion of all pertinent vari-
ables in characterizing dry events and considering the interactions between
them. Using a multivariate index to characterize dry conditions in com-
pound hot-dry events is advisable, by directly analyzing climate model
outputs rather than using a separate offline impact model which is poten-
tially subject to large biases. Compared to precipitation, runoff, and soil
moisture can more explicitly represent the core physical processes for
drought assessments50,64. Our findings indicate that quantifying dry events
based on soil moisture yields results closest to those derived from multi-
variate indices that comprehensively account for interactions between
precipitation, soil moisture, and runoff.

Using precipitation to define dry conditions for compound hot-dry
events, however, results in lower projection uncertainty and thus a larger

S/N compared with the dry event quantification based on runoff, soil
moisture, and a multivariate index. This is attributed to the lower uncer-
tainty in precipitation projections compared with runoff and soil moisture
projections15. In simulating soil and runoff, climate models are required to
incorporate soil, landscape, and vegetation attributes alongside climate
processes, potentially introducing an additional layer of uncertainty to their
projections65. Our results show that the compound hot-dry events defined
based onHDI-R,HDI-S, andHDI-MSDI inherit this uncertainty, leading to
a smaller signal-to-noise ratio comparedwith the compoundhot-dry events
defined based on HDI-P.

To assess the relative importance of the characterization of dry con-
ditions for compound hot-dry event projections, we compared the uncer-
tainty arising from the choice of dry indicators with that originating from

Fig. 4 | Sensitivity of the results to the chosen threshold for defining a compound
hot-dry event under the SSP5-8.5 scenario.The figure compares projected changes
in the probability of compound events defined using a HDI-P, b HDI-R, c HDI-S,

and d HDI-MSDI based on three thresholds: −0.8, –0.9, and –1. These changes are
evaluated for the long term (2061–2100) relative to the baseline period (1971–2010)
using the CMIP6 ensemble median. Refer to Fig. 2 for the definition of the regions.
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GCMs and scenarios. Consistent with previous research on extreme
events27,66,67, we found that GCMs remained the primary source of uncer-
tainty in our study. However, we also observed that the uncertainty asso-
ciated with the event definition was substantial, reaching up to 30% in
certain regions and even surpassing the uncertainty attributed to scenarios.
Our study highlights the importance of giving careful attention to the choice
of dry indicators when projecting compound hot-dry events, particularly in
Africa (east and west Africa) and Asia (north, central, and south Asia, and
Tibet). It emphasizes that this aspect should not be overlooked but rather
acknowledged as a substantial source of uncertainty that can impact the
findings and implications of studies concerning compound hot-dry events.

In addition to the primary focus of this paper, which explores the
sensitivity of future compound hot-dry event projections to dry indicators,
we also investigated their sensitivity to the chosen threshold for defining
such events. Our findings reveal that future compound hot-dry event pro-
jections exhibit sensitivity to the chosen threshold. Determining the
appropriate threshold entails striking a balance between statistical inference
and event extremity68. A higher threshold leads to the selection of more
extreme events but results in a smaller sample size, introducing bias into
statistical analyses. Conversely, a lower threshold detects a greater number
of events but leads to less extreme events being included. Hence, selecting
the appropriate threshold for defining compound events should be guided
by the objectives of impact modeling (e.g., crop modeling, hydrological
modeling), while also considering potential statistical biases in the analyses.

While our study offers a quantitative and spatial assessment of the
relative impact of the characterization of dry events for compound hot-dry
event analyses compared with other sources of uncertainty, there are
opportunities for future studies to expandupon thiswork.Although climate
models generally depict historical trends in compound hot-dry events
accurately35,69, their future projections remain subject to uncertainties.
Importantmodelinguncertainties exist for several underlyingprocesses that

Fig. 5 | Fractional contribution of individual sources to total uncertainty in
projected changes in the probability of compound hot-dry events (HDI <−0.8)
in the continental and subcontinental regions by 2061–2100 relative to
1971–2010. Dry indicator uncertainty represents the uncertainties associated with
the choice of a dry indicator for defining compound hot-dry events. The continental
and subcontinental land regions of the globe are shown in Fig. 2e.

Fig. 6 |Dry indicator uncertainty for compound hot-dry event projections and its
importance in relation to other sources of uncertainty. The figure depicts a the
spatial distribution of absolute uncertainty associated with the choice of dry indi-
cators for compound hot-dry events (HDI <−0.8) and b its relative importance
compared to uncertainties in GCMs and scenarios. Uncertainties were calculated
using the VD-SSS method.

Fig. 7 | Spatial distribution of fractional uncertainties for different sources. The
uncertainties associated with aGCMs, b dry indicators for defining compound hot-
dry events (HDI <−0.8), and c scenarios were calculated using the VD-SSS method.

https://doi.org/10.1038/s43247-024-01352-4 Article

Communications Earth & Environment |           (2024) 5:220 6



drive compound extremes, including changes in aridity70, land-atmosphere
interactions71, dynamics of snow-atmospheric coupling72, natural
vegetation51, and precipitation73. In our research, we primarily focused on
investigating the sensitivity of compound hot-dry event projections and
uncertainty to dry indicators. We employed climate model outputs, which
directly capture core physical processes like soil moisture and runoff, to
characterize dry conditions, enabling a more accurate assessment of
the impacts of climate change on dry events50,64. However, the World
Meteorological Organization (WMO) identified over 50 drought indices
based on varying drought indicators (e.g., precipitation, temperature,
evapotranspiration)74. It would be intriguing to explore how employing
commonlyusedoffline impactmodels,whichmaybeprone to large biases64,
such as the StandardizedPrecipitationEvapotranspiration Index (SPEI75) or
thePalmerdrought severity index76, to definedry eventswould influence the
results of compoundhot-dry events. Comparing outcomes based on climate
model outputs, which directly capture core physical processes, with those
derived from offline impact models could offer a more comprehensive
understanding of the implications of different dry indicators and the
potential biases introduced by using separate offline impact models.

Additionally, future research should explore the effects of defining hot
events based on different variables, such as air temperature, dew tempera-
ture, and humidity. Different indices that capture these variables could be
utilized to define hot events and investigate their influence on the outcomes
of compound hot-dry event projections. This would contribute to a more
comprehensive understanding of the interplay between different variables
and indices in defining compound events. Nonetheless, our study has
provided valuable insights into the significance of the dry condition defi-
nition for compound hot-dry events and the consideration of interactions
between different hydrological variables to capture underlying physical
processes and the complexities of events. We have demonstrated that
neglecting or underestimating the significance of dry indicators can result in
misleading assessments of the potential impacts of climate change on
compound hot-dry events.

Materials and methods
Data
Ouranalysis incorporatedprecipitationflux (includingboth liquid and solid
phases), total runoff (which includes drainage through the base of the soil
model), total soil moisture content (summed water in all phases across all
soil layers), and air temperature. To conduct our analysis, we utilized 22
CMIP6 GCMs, including ACCESS-CM2, ACCESS-ESM1-5, BCC-CSM2-
MR, CAMS-CSM1-0, CanESM5, CESM2-WACCM, CNRM-CM6-1,
CNRM-ESM2-1, FGOALS-f3-L, FGOALS-g3, GFDL-ESM4, INM-CM4-8,
INM-CM5-0, IPSL-CM6A-LR, MCM-UA-1-0, MIROC6, MPI-ESM1-2-
HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM, NorESM2-MM, and
TaiESM1. We analyzed monthly data for precipitation, runoff, soil moist-
ure, and air temperature from these models for both historical simulations
and four future tier 1 scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5)
covering the period 1971-2100 (historical+SSP). These scenarios represent
plausible pathways towards different levels of radiative forcing and alter-
native socioeconomic developments, ranging from sustainable to fossil-
fueled development77. Our study encompassed the entire global land area
grid cells except Greenland due to its perennial snow and ice cover. While
compound hot-dry events may not have immediate practical relevance for
deserts and hyper-arid regions, they are still useful in providing insights into
the potential impacts of climate change.

Quantification of dry events
We characterized dry events using precipitation, runoff, and soil moisture,
as well as a multivariate index that combines these variables. For this pur-
pose, we utilized the standardized precipitation index (SPI78), the standar-
dized runoff index (SRI79), and the standardized soil moisture index (SSI80)
as dry indicators. The standardized indices were computed for the 3-month
time scale, representing seasonal droughts. We employed the Gringorten
plotting position to determine the empirical probability of each variable for

everymonth.The resultingprobabilitieswere standardizedusing the inverse
normal transformation to obtain SPI, SRI, and SSI values. Negative SPI, SRI,
and SSI values indicate a dry climate condition (drought), whereas positive
values signify awet climate condition. A value close to zero indicates normal
climate conditions.

To develop a multivariate standardized drought index (MSDI80), for
each grid cell of theCMIP6GCMs, we used copula functions to estimate the
joint distribution of precipitation, runoff, and soil moisture. The MSDI is a
trivariate index for the 3-month scale of the variables and is expressed as:

H x1; x2; x3
� � ¼ C F1 x1

� �
; F2 x2

� �
; F3 x3

� �� � ¼ C u1; u2; u3
� � ð1Þ

Here, H is a three-dimensional distribution function of random vari-
ables x1 (e.g., precipitation), x2 (e.g., runoff), andx3 (e.g., soilmoisture),C is a
copula function, and u1, u2, and u3 are variables generated by marginal
distribution functions F1, F2, and F3, respectively. Since constructing three-
dimensional functions using copulas can be challenging, we used two
bivariate copulas to build a three-dimensional function as:

C u1; u2; u3
� � ¼ C2 C1ðu1; u2Þ; u3

� � ¼ p ð2Þ

Here, C1 is the first bivariate copula function that corresponds to
variables u1 and u2, C2 is the second bivariate copula function that corre-
sponds to variables C1ðu1; u2Þ and u3, and p is the joint probability. C1 and
C2 are of the same type of copula function. We used the Gaussian copula in
this study with its parameters estimated by themaximum likelihoodmethod.
Previous studies also reported that the differences resulting from the use of
different copula functions were negligible when considering changes in
drought characteristics and compound hot-dry events at large scales25,81.

Finally, we computed the MSDI for each grid cell based on the joint
probability p (Eq. 2) as:

MSDI ¼ φ�1 p
� � ð3Þ

where φ is the standard normal distribution function. Similar to SPI, SRI,
and SSI, a negativeMSDI points to a dry climate condition (drought), while
a positive value indicates awet climate, with anMSDI close to zero denoting
normal climate conditions.

Quantification of compound hot-dry events
After characterizing dry events using various methods, we proceeded to
quantify compound hot-dry events. To define hot events, we utilized the
standardized temperature index (STI82). For the detection of compound
hot-dry events, we employed bivariate copula functions. We derived the
joint distribution probability between the 3-month dry event index, sepa-
rately for each of the four indices (SPI, SRI, SSI, and MSDI), and monthly
STI values83, using the Gaussian copula. By applying the standard normal
distribution (Eq. 3) to transform the remapped joint probability obtained
from copula functions, we obtained the standardized compound hot-dry
event index (HDI), following the principles of drought indices. We refer to
the HDI that uses precipitation (P), runoff (R), soil moisture (S), andMSDI
todefinedry events asHDI-P,HDI-R,HDI-S, andHDI-MSDI, respectively.
To assess climate change impacts, we calculated the changes in the prob-
ability of occurrence during the historical (1971–2010) and future
(2061–2100) periods. The probability of occurrence for each period was
determined by the ratio of instances with a compound event (HDI <−0.8)
to the total number of months in each period (40 years x 12 months =
480 months). The threshold of –0.8 corresponds to a moderate compound
hot-dry condition, representing the 20th percentile84. In contrast to an
approach where a compound event is defined only if both margins (dry
index andhot index) exceeda specific threshold, our copula-based threshold
procedure widens the event space. This procedure incorporates not only
events that are jointly marginally extreme but also those that are extreme in
the context of the bivariate distribution, even if not necessarily extreme in
both margins85. Consequently, when both variables fall below an alarm
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threshold,HDI leads to amore severe extreme condition than either the dry
or hot index alone80. To evaluate the impact of varying the threshold settings
on the results, we also calculated the probability of compound events using
two alternative thresholds of –0.9 and –1 within the same threshold range
(–0.8 to –1.2) associated with a moderate compound hot-dry condition84.

To evaluate the robustness of projected changes in compound hot-dry
events, we utilized the signal-to-noise ratio (S=N), as defined by Kendon
et al.86:

S=N ¼ �y � �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2x þ σ2yÞ=2

q ð4Þ

where an overbar denotes averaging over the ensemble members, and σ2x
and σ2y are the variances across the ensemble in the historical (x) and future
(y) periods, respectively.

To test the statistical significance of S=N , we applied the t-test. In
contrast to the approach of Aalbers et al.87, who employed a two-sided t-test
for precipitation changes, accommodating both increases and decreases, we
opted for a one-sided test for compound hot-dry events (HDI), projected to
increase globally (see Fig. 1). The significance criterion is given by:

S
N

≥ tn�1;0:05 ×
1ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p ð5Þ

Forour sample size ofn ¼ 22, the critical t-value tn�1;0:05 ¼ 1:72 anda
statistically significant change at the 5% level is indicated by S=N

�� �� ¼ 0:38.
The critical values for the 1% and 0.1% significance levels are S=N

�� �� ¼ 0:55
and S=N

�� �� ¼ 0:77, respectively.

Uncertainty analysis
To assess the importance of dry indicators for compound hot-dry events
relative to GCMs and SSPs, we used the variance decomposition-same
sample size (VD-SSS) method27 to partition the cascade of uncertainties in
compound event changes. This method overcomes the limitations of tra-
ditional VD methods, which artificially amplify uncertainty contributions
from sources with larger sample sizes88. In the VD-SSS iterative sampling-
theory based bootstrapping procedure, we used n to denote the smallest
sample size among the uncertainty components, which included four
sample sizes from dry indicators and SSPs. N represents the size of the
largest uncertainty source, which was 22 for the GCM ensemble. After
taking the median across the other uncertainty components, we randomly
drew n from N and calculated the standard deviation across the bootstrap
samples. We repeated this process multiple times (in our case, 1000 itera-
tions) and calculated the median of the empirical bootstrap distribution of
sample standard deviation to determine the uncertainty. For the uncertainty
component of size n (dry indicator and SSP), we applied the traditional VD
method. To determine the fractional uncertainties, we divided the uncer-
tainty of each source by the total uncertainty, which is the sum of the
uncertainty contributions (GCMs, SSPs, and dry indicators).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The CMIP6 soil moisture, runoff, precipitation, and temperature data used
in this study can be accessed online through the Earth System Grid Fed-
eration (ESGF) systemat https://esgf-data.dkrz.de/search/cmip6-dkrz/. The
model output data used to produce Figures are available at https://doi.org/
10.5281/zenodo.10878698.

Code availability
The MATLAB codes used in this study are available upon reasonable
request from the corresponding author.
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