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Irrigation-driven groundwater depletion
in the Ganges-Brahmaputra basin
decreases the streamflow in the Bay
of Bengal
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Ganges and Brahmaputra, two of Asia’smost prominent rivers, have a crucial role in Southeast Asia’s
geopolitics and economy and are home to one of the world’s biggest marine ecosystems. Irrigation-
driven groundwater depletion and climate change affect the Ganges-Brahmaputra’s hydrology,
threatening the stability of the Bay of Bengal. Here, we quantify, using results from a land reanalysis,
the impacts of a changing climate and intensive irrigation on the surface water flowing into the Bay of
Bengal. The effects of such activities mostly occurring in the Ganges basin, either intensified or
lesseneddependingon theareaby the climatic conditions, decrease freshwater flow into thebaybyup
to 1200 m3/s/year. While the increase in precipitation in the Ganges basin reduces the effects of
groundwater depletion on the streamflow, the decrease in precipitation and the snowmelt decline in
the Brahmaputra basin exacerbate streamflow reduction due to groundwater depletion at the delta.

Climate change and agricultural activities have serious consequences that
are yet to be quantified on Asia’s most prominent river basins. Located in a
densely populated area, the basins of the Ganges and Brahmaputra Rivers
cover six countries: India,Myanmar, Bhutan,Nepal, China, andBangladesh
(Fig. 1). These rain- and snow-fed transboundary rivers are critical for the
lives ofmore than a billion people1–3 andhave allowed civilization to develop
and thrive along their tributaries for centuries. The Ganges River, with a
draining area of ~1,086,000 km2, takes its source in the glaciated area of
Gomukh in the Himalaya Mountains and merges with the Brahmaputra
River, with a draining area of around 500,000 km2, which also originates
from the Himalayas in the glaciated zone of Lake Mana Sarovar, before
emptying out into the Bay of Bengal. The Bay of Bengal plays a vital role in
global geopolitics and economy due to its strategic geographical location in
Southeast Asia. The Bay of Bengal also hosts one of the biggest marine
ecosystems and the Sundarbans, which are the largest mangrove forests on
Earth4 and have vast deposits of hydrocarbon resources andmineral wealth.
Therefore, upstream changes in streamflow caused by groundwater deple-
tion and climate change can impact the ecosystem, economy, and geopo-
litics of the bay as well as its inhabitants5.

Like the greater region, the so called HighMountain Asia, the Ganges-
Brahmaputra basin experiences warming at a rate that is double the global
average (0.32 °C per decade comparedwith the global average of 0.16 °C per
decade),making it one of Earth’smost vulnerable basins1. Because the basin
is subject to glacier and snow melt, extreme monsoons, and sea level rise,
climate change will likely intensify the hydrologic cycle. Warming in the
region has increased precipitation and decreased snowpack and glaciers2,6–8,
which significantly impact groundwater and streamflow. Moreover, chan-
ges in precipitation phase (i.e., more precipitation is falling in the form of
rain than snow) shift the dynamics and the seasonality of the land surface
processes with consequences on water management and hazards7,9,10. In
addition to these natural changes, the Ganges-Brahmaputra basin has the
highest rate of groundwater use on Earth11–13 with India withdrawing about
230 billionm3 of groundwater annually for irrigation14. As a result, sig-
nificant groundwater depletion has been documented in the region15–17 with
dramatic consequences on streamflow5,18,19, which has been decreasing in
the Ganges River despite an increasing trend in precipitation19. The
unprecedented changing climate, along with human footprints has caused
the vegetation to rapidly change20,21. The region experiences one of the
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highest greening rates onEarth, altering thewater and energy balances20,22,23.
This moisture-induced greening, triggered by irrigation, decreases in snow,
and increases in precipitation affect the surface albedo andhence the climate
system and the water resources21,24.

A holistic and cumulative assessment of the impact of all these factors
on the water availability over the Bay of Bengal is currently lacking.
Therefore, we focus on disentangling the impacts of groundwater depletion
and climate change on the Bay of Bengal’s freshwater flow, as it has
important implications for the sustainable management of water
resources11,25 in this region. Changes in streamflow can intensify water
scarcity and food insecurity and worsen the already devasting floods
affecting the economy and the lives of the inhabitants of this basin. More-
over, a declining streamflow in the Bay of Bengalmay accelerate the impacts
of sea level rise and seawater intrusion, with consequences on water quality,
environment, and human migrations. In this study, we provide a compre-
hensive examination of the impacts of the interactions between ground-
water depletion and changes in climate (i.e., increases and decreases in
precipitation and decreases in snowmelt due to warming) over the entire
Ganges-Brahmaputra basin. Comparatively, prior studies have only focused
on the influence of groundwater depletion on streamflow reduction over the
Ganges basin alone19. Integrating the entire basin is necessary to better
understand and quantify the contribution of the drivers of the changes in
streamflow in the Bay of Bengal. To represent the impacts of irrigation-
driven groundwater depletion, we develop a land surface model reanalysis
from 2003 to 2020 by assimilating remote-sensing based observations of
irrigation, TerrestrialWater Storage (TWS), leaf area index (LAI), and snow
water equivalent (SWE) into the land surface model Noah-Multi-
Parameterization (Noah-MP26).

Results and discussion
The land surface model reanalysis has been validated by comparing the
trends in simulated key hydrologic variables such as streamflow (Supple-
mentary Figs. 4 and 5), runoff and groundwater storage (Supplementary
Fig. 6), and evapotranspiration (Supplementary Fig. 7) to the trends derived
from ground and remotely sensed measurements. We also evaluate the
probability of snow detection of our model (Supplementary Fig. 8). We
mainly focus on the evaluation of the simulated trends since the main
purpose of this study is to shed light on the causes of the observed trends in
streamflow in the region. To quantify the effects of groundwater pumping
for irrigation, we compare the simulation with the effects of irrigation (i.e.,
land surface model reanalysis) to a simulation performed by only
accounting for the impacts of a changing climate (i.e., changes in pre-
cipitation and decreases in snow). Our results reveal the severe effects of
irrigation-driven groundwater depletion on the streamflow in the Bay of
Bengal. Irrigation-driven groundwater depletion occurring upstream in the
Ganges-Brahmaputra basin decreases the streamflow in the Bay of Bengal

by up to 1200m3/s/year despite the increase in precipitation in the Ganges
basin. While the increase in precipitation in the Ganges basin (up to
~315mm/year in the western Ganges) reduces the effects of the declining
groundwater storage on the streamflow upstream, the reduction in pre-
cipitation at a rate of ~22mm/year and the declining snowmelt in the
Brahmaputra basin exacerbate the impacts of groundwater depletion on its
streamflow.Therefore, although groundwater depletion in theGanges basin
is the highest, the Brahmaputra basin has the highest decrease in streamflow
increasing its vulnerability to groundwater depletion and sea level rise.

Synergistic impacts of groundwater depletion and climate
change on Bay of Bengal’s water availability
The streamflow has a decreasing trend of more than 200m3/s/year from
2003 to 2020 in most areas of the Ganges-Brahmaputra basin, but the Bay
of Bengal has the highest loss in streamflow (1200m3/s/year, Fig. 2a).
However, theChambal andBetwabasins, locatedon the southwestern edge
and tributaries of the Ganges River, are characterized by a rise in stream-
flow of about 60m3/s/year. Streamflow reduction is more pronounced in
the Brahmaputra, reaching 1000m3/s/year than in the Ganges, especially
upstream where these decreases are of the order of 100m3/s/year. Such a
decline in streamflow is not detectedwhen only considering the changes in
climate (i.e., an increase in precipitation and a decrease in SWE due to
warming) in modeling. In such simulations, where only climate impacts
are considered and without the effects of irrigation, streamflow has an
annual increase of around 100m3/s/year in the Ganges basin whereas
streamflow in the Brahmaputra basin has no significant trends (Fig. 2g and
Supplementary Figs. 1–3). Therefore, these decreases in streamflow are
likely not caused by climate dynamics, rather by the anthropogenic
activities. Similar trends are depicted in Fig. 3, illustrating the annualmean,
minimum, and maximum simulated streamflow in the Ganges and the
Brahmaputra rivers at the Bay of Bengal. Without accounting for irriga-
tion, the streamflow of the Ganges basin has an increasing trend up to
552m3/s/year during peak flow, whereas with the impacts of irrigation, the
streamflow is decreasing by up to 803m3/s/year. In the Brahmaputra basin,
irrigation practices change the trends in the streamflow from a statistically
no significant trend to a decreasing trend up to 1024m3/s/year.

In theGanges-Brahmaputra basin, the precipitationhas a bidirectional
trend, with an overall increasing trend in the Ganges basin of 315mm/year
locally and a decreasing trend in the Brahmaputra basin reaching ~22mm/
year locally (Fig. 2b). Though very localized, someareas of the Brahmaputra
basin (i.e., over Bhutan) are characterized by a noteworthy increasing trend
in precipitation greater than 20mm/year.Despite the significant increase in
precipitation in the Ganges basin, our results reveal statistically significant
decreases in streamflow. The Ganges basin is subject to intense agricultural
activities, which cause a loss in TWS locally of up to 50mm/year (Fig. 2c).
Only theChambal andBetwabasins showrising trends inTWSgreater than
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Fig. 1 | Map of the Ganges-Brahmaputra basin. Irrigated areas82 are indicated in green, rivers in blue, basin boundaries in gray and the political boundaries in black.
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10mm/year because their catchments are not subject to intense pumping
and experience an increase in precipitation. Groundwater depletion led the
subsurface flow to decline by 0.21mm/d/year in the Ganges basin (Fig. 2e).
Nonetheless, these trends remain twice lower than the decreases in sub-
surface flow in the Brahmaputra basin (>0.27mm/d/year), where the
decreases inTWS(20mm/year) are inferior to those observed in theGanges
basin. Although both rainfall and snowmelt decline over the Brahmaputra
basin (Fig. 2b, f), there are no statistically significant trends in streamflow in
most areas of the basin when accounting only for the changes in climate
(Supplementary Fig. 1). This is likely because of the influence of the loca-
lized increase in precipitation occurring in the other regions of the basin
(i.e., high elevation zones of Bhutan and Bangladesh) on the streamflow.
The streamflow reduction as well as the decreases in subsurface flow in the

Brahmaputra basin, which is subject to smaller declines in TWS, are higher
than those over the Ganges basin (characterized by high declines in TWS).
This is because the effects of groundwater depletion are exacerbated by the
decrease in precipitation in the Brahmaputra basin though such climatic
factors alone are not sufficient to trigger statistically significant decreases in
streamflow (as shown in the simulationwith only the impacts of a changing
climate, Fig. 2g and Supplementary Figs. 1–3). In the Ganges basin, the
impacts of groundwater depletion on streamflow remain relatively low
because (1) the high increase in precipitation reduces the effects of the
decrease in groundwater storage and TWS, even though the basin receives
lower total precipitation than the Brahmaputra basin; and (2) the Chambal
and Betwa Rivers flowing into the Ganges River contribute to further
dampening streamflow due to their positive trends.

Fig. 2 | Trends in streamflow and other hydrologic components.Annual trends in
(a) streamflow, (b) precipitation, (c) terrestrial water storage (TWS), (d) surface
runoff, (e) baseflow, and (f) snowmelt obtained with the reanalysis (i.e., the simu-
lation with the effects of irrigation). gDifferences between the simulations with and
without the effects of irrigation in the annual trends in streamflow. Trends were

computed using the Mann–Kendall test with a confidence level of 95%, non-
significant trends were set to 0. Despite the increases in precipitation, the streamflow
has decreasing trends due to the decreases in TWS. The positive differences show
that the negative trends of the streamflow are higher in the simulationwith the effects
of irrigation than in the one without.
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Synergic effects of irrigation and climatic conditions decrease
thedry-seasonstreamflow in theGangesbasinand themonsoon
streamflow in the Brahmaputra basin
In theGanges basin, precipitation significantly increases during both the dry
season (14.6mm/year from December to February, 21.9 mm/year from
March toMay) and the monsoon (>100mm/year from June to August, the
maximum rise in annual precipitation, Fig. 4). Though TWS shows a
decrease throughout the year, the highest loss, up to 55mm/year, occurs
during the monsoon. The maximum decrease in subsurface flow is in the
dry season from December to February (0.2mm/d/year) and from Sep-
tember to November (0.16mm/d/year) when the increasing trends in
precipitation are small and the total precipitation is low compared to the
monsoon precipitation. The increase in precipitation (>70mm/year) in the
Chambal and Betwa basins mostly occurs during the monsoon. As a result,
monsoonal TWS and subsurface flow have remarkable increases of about
5mm/year and 0.14mm/d/year, respectively. Although the highest decline
in TWS occurs during the monsoon, the decreases in streamflow are more
preponderant in the post-monsoon season from September to November
because the post-monsoon precipitation is not sufficient to diminish the
impacts of groundwater pumping for irrigation.

A different behavior is observed in the Brahmaputra basin, which
experiences decreases in monsoon precipitation by up to 182mm/year
(Fig. 4a, JJA). Thedecreasing trends inprecipitation are very lowor statistically
insignificant during the dry season. As a result, the annual trend in pre-
cipitation ismostlydrivenby the trends inmonsoonrainfall.However,wenote
that, locally, there are significant increases inmonsoonprecipitationwithin the
basin, which explain the occurrences of floods. Even though the decrease in
TWS is two times lower than that over the Ganges (Fig. 2c), the decreases in

subsurface flow are four times higher in the Brahmaputra basin than in the
Ganges basin (Fig. 2e). These reductions in subsurface flow are preponderant
(>0.87mm/d/year) during both the monsoon (from June to August) and the
dry season (from September to November), yet during the monsoon, the
highest decline in the subsurface flow was observed because most of the
decrease in rainfall is during that period. As for the subsurfaceflow, the largest
reduction in streamflow isduring themonsoon, reachingup to1800m3/s/year
downstreameven though themajority of the rainfall in theBrahmaputra basin
falls during that season. In addition to themonsoon rainfall, snowmelt reaches
its maximum in summer27 and increases the streamflow. The combination of
the decline in snowmelt in the summer (Fig. 2f) and the decreases inmonsoon
rainfall exacerbates the effects of groundwater depletion on the streamflow in
the Brahmaputra basin. Such climatic changes make the Brahmaputra basin
very vulnerable to groundwater depletion.

Both Ganges and Brahmaputra Rivers are characterized by decreasing
trends in streamflow, thoughwith differentmagnitudes flow into the Bay of
Bengal. Therefore, the changes in streamflow in the bay are important
(>1800m3/s/year) notably from June to August, i.e., during the monsoon
due to the compounding effects of groundwater withdrawals, decrease in
precipitation, and snowmelt decline.

Long-term impactsof irrigation-drivengroundwaterdepletionon
the streamflow versus the impacts of climate change
With the onset of climate change, projections are important and provide
guidelines for future strategies. However, most of the future projections of
the changes in hydrologic dynamics and water resources in the Ganges-
Brahmaputra basin solely rely on climatic conditions28–31. As such, these
studies predict an increase in streamflow due to an increase in

Fig. 3 | Changes in streamflow at two points located in the Ganges and the
Brahmaputra rivers. Comparisons between the trends in streamflow obtained with
the land reanalysis and the simulation only accounting for the changes in climate and
without irrigation at two points located over (a) the Ganges River and (b) the
Brahmaputra River, the locations of these points can be seen on the right-hand side.
Annualmean in black,minimum (i.e., baseflow) in red,maximum (i.e., peak flow) in
blue simulated streamflow at two locations in the Ganges and the Brahmaputra
rivers. The dots represent the values (mean, max, and min) obtained with the

simulation only accounting for the changes in climate andwithout irrigation and the
dotted lines represent their corresponding slopes (the values of these slopes are also
indicated in the figure). The thick lines represent the values (mean, max, and min)
obtained with the land reanalysis and the dashed lines represent their corresponding
slopes (the values of these slopes are also indicated in the figure). The reanalysis has
decreasing trends whereas the simulation without the effects of irrigation generally
shows increasing trends.
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precipitation28–31. Nevertheless, irrigation-driven groundwater depletion
could actually change the direction of the trends in water availability.
Because of the significant impacts of groundwater withdrawals on stream-
flow, it is essential to account for them in future projections.

Due its climatic conditions, theBrahmaputra basin is highly vulnerable
to groundwater depletion; unfortunately, decreases in precipitation and
snowmelt could further increase the rates of pumping, with serious con-
sequences on the streamflow, notably in the Bay of Bengal, and therefore on
water availability. Such behaviors intensify drought conditions, make the
drought recovery longer32, worsen water scarcity, and enhance the vulner-
ability of the basin. Because both basins empty into the Bay of Bengal, the
decreases in streamflow in the bay are noteworthy. A decline in streamflow
may intensify sea level rise and seawater intrusion,with consequences on the
environment and water quality. Future studies could analyze the impacts of
a decrease inprecipitationonpumping rates and applied irrigatedwater and
their subsequent effects on streamflow reduction in the Bay of Bengal. For
example, projections have shown that the consumption of nonrenewable
water resources will increase by around ~40% by the end of the century33, as
such, future studies could use this water use projection in conjunction with

climatic projection to better estimate changes in streamflow and quantify
the impacts of such rise in freshwater use on sea level rise. Because these
rivers are recharged by glaciers, the increase in temperature causing glacier
melt could increase the streamflow. Nonetheless, our results show that the
streamflow keeps decreasing, and such trends are consistent with observa-
tions. Although we did not account for glacier melt in our model, the
assimilation of GRACE TWS implicitly accounts for the global changes in
TWS. In addition, previous studies have shown that the contribution of
glacier melt to the streamflow is low i.e., less than 10%19. Irrigation also
impacts the land surface processes by changing the precipitation patterns,
nonetheless, we did not study these impacts in our study as changes in
precipitation measured by remotely sensed platforms are defined as model
inputs, thereby, any changes in precipitation resulting from irrigation has
been accounted for.

Methods
The quantification of the changes in streamflow in the Ganges-
Brahmaputra basin is challenging due to the complex dynamics of the
basin. First, an accurate representation of the atmospheric dynamics of the

Fig. 4 | Seasonal trends in precipitation and streamflow. Seasonal trends in (a)
precipitation and (b) streamflow obtained with the reanalysis (i.e., the simulation
with the effects of irrigation). Trends were computed using the Mann–Kendall test

with a confidence level of 95%, non-significant trends were set to 0. Despite the
increases in precipitation (notably in MAM and JJA), the streamflow keeps
decreasing for all seasons.
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region is difficult to undertake due to the harshness of the environment,
which is not easily accessible due to its complex orographic patterns and its
high elevation34–36. As a result, climate dynamics are poorly constrained and
forcing products derived from satellite remote sensing and/ormodels fail to
provide consistent estimates37. Second, the spatiotemporal variations of
human footprints are difficult to estimate due to a lack of data. For example,
accurate estimates of the spatiotemporal variations of irrigation and
pumping are not available. Third, the lack and/or the limited amount of
available ground measurements of hydrologic variables make the model
evaluation and comparison difficult to perform,making some uncertainties
irreducible. In this study, we rely on multiple observation-based datasets to
reduce these uncertainties. First, we develop an ensemble consensus pre-
cipitation estimates using the IntegratedMulti-satellitERetrievals forGlobal
Precipitation Measurement IMERG38, the Climate Hazards group Infrared
Precipitation with Stations CHIRPS39, and the ECMWFReanalysis ERA540,
whichwere blendedbyusing theprobabilitymatchedmethod41.We selected
these products after comparing the averages and trends in sevenwidely used
gridded precipitation products in the region37. Second, we assimilate five
different variables to account for the anthropogenic activities in the region
and better constrain our model. We use the Noah-Multi-Parameterization
(Noah-MP26 version 4.0.1) land surface model to simulate the land surface
processes in the Ganges-Brahmaputra basin and to assimilate the selected
variables from 2003 to 2020. We select this time frame based on the avail-
ability of the assimilated datasets. The Noah-MP model is run at a spatial
resolution of 5 km and a temporal resolution of 15min. The simulations
were performed within the NASA Land Information System (LIS42).

Model set-up
Noah-MP represents the next generation of the Noah land surface model
development and incorporates extensive upgrades, including dynamic
vegetation phenology, a carbon budget and carbon-based photosynthesis,
an explicit vegetation canopy layer, and the addition of an unconfined
groundwater aquifer26. Moreover, Noah-MP allows a representation of
irrigationprocesses andgroundwaterwithdrawals. InNoah-MP, the surface
energy balance is computed at both the canopy layer and the ground surface.
In the canopy layer, a two-stream radiation transfer approach along with
shading effects are used to accurately compute the surface energy andwater
transfer processes following43,44. The model’s vegetation dynamics follow
Dickinson’s et al. approach45. The model also combines a Ball-Berry pho-
tosynthesis-based stomatal resistance46. The soil with a depth of 2m is
divided into four layers, and the water movement is simulated using the
Richards equation47. An unconfined aquifer is added below the 2m of the
soil column. The temporal variation of the groundwater storage in the
unconfined aquifer is equal to the difference between the recharge rate
calculated usingDarcy’s law and the discharge. Groundwater discharge and
surface runoff are simulated using the TOPMODEL approach which con-
sists of expressing these terms as exponential functions of the water table
depth26,48,49. The water table depth is converted from the aquifer water sto-
rage by using the specific yield, which is a constant equal to 0.2.

We drive the land surface model Noah-MP simulations with the
ensemble precipitation dataset and downscaled ERA5 surface
meteorology50,51 (temperature, shortwave, and longwave radiation, wind
speed, relative humidity, and surface pressure). The model uses high-
resolution datasets of elevation, slope, and aspect derived from the Multi
Error Removed Improved Terrain (MERIT52) Digital Elevation Model, the
landcover data derived from the Moderate Resolution Imaging Spectro-
radiometer (MODIS53) at a resolution of 500m, soil types derived from the
International Soil Reference and Information Centre54 at 250m resolution.
The initial conditions for the model simulations are generated by running
the model twice from 1990 to 2018 and reinitializing it in 2003.

To simulate the surface water dynamics, including streamflow, we use
theHydrologicalModeling andAnalysis Platform (HyMAP55).HyMAP is a
state-of-the-art, globalscale floodmodel capable of simulating surface water
dynamics, including water storage, elevation and discharge in-stream, in
rivers and floodplains. In LIS, HyMAP is coupled with numerous land

surfacemodels, includingNoah-MP.Users can choose differentmethods to
solve the fullmomentumequation of open channelflow56.Here,we adopted
the kinematic wave equation. The Courant–Friedrichs–Lewy (CFL) con-
dition was used to determine HyMAP’s optimal sub timesteps. River geo-
metry were derived from global empirical equations55. River network
parameterswerederived fromtheMulti-Error-Removed Improved-Terrain
(MERIT) Hydro dataset at 3-arcsec spatial resolution57. The model simu-
lates horizontal water fluxes over continental surfaces where the runoff and
baseflow generated by Noah-MP are routed through a prescribed river
network to oceans or inland seas.

Assimilations
Data assimilation approaches consist in improving the model estimates by
merging measurements of any type including remote sensing observations
to themodel estimates58,59. The latter are updated to reflect the observations
to be assimilated by accounting for the model and the observation errors
(indicated in Supplementary Table 1). The assimilation is performed at any
grid cell and time step whenever the observations are available. We
assimilatefive variables: (1) applied irrigatedwater provided byZhou et al.60,
(2) soil moisture provided by the European Space Agency Climate Change
Initiative (ESACCI61), (3) LAI provided byMODIS62, (4) SWE provided by
Kraaijenbrink et al.63, and (5) TWS provided by the GRACE GSFC
mascons64 during the entire period of our simulation i.e., from2003 to 2020.
The applied irrigated water was directly added to the model as a source of
water (which is extracted from the groundwater), and the simultaneous
assimilation of LAI, soil moisture, and SWE was based on the one-
dimensional ensemble Kalman Filter (EnKF65) algorithm, and GRACE
TWS was assimilated using the one-dimensional ensemble Kalman
smoother (EnKS66). EnKF is the optimal sequential data assimilation
method for nonlinear dynamics and has been widely used to assimilate
remotely sensed variables into the land surface model Noah-MP67–71.

Irrigation
We assimilate spatiotemporal values of applied irrigated water generated by
combining a static irrigationdataset theGlobal IrrigatedAreaMap (GIAM),
and a time-varying irrigation map for India from Ambika et al.72, which is
generated by combining yearly MODIS—Normalized Difference Vegeta-
tion Index (NDVI) data, Indian Remote Sensing Land Use and Land Cover
data, and vegetation condition index data. The applied irrigated water
dataset has a resolutionof 0.05°, like ourmodel. Therefore,wedirectly added
these estimates as a water source in the model using the sprinkler irrigation
scheme. Though other irrigation schemes are used in the region, a shift in
irrigation practice is not likely to have an impact on the results in terms of
groundwater depletion as the latter has been represented by assimilating
remotely sensed data. We assumed that the applied irrigated water origi-
nates from groundwater as previous studies have demonstrated that irri-
gated water in HMA mostly originates from groundwater—groundwater
accounts for more than 80% of irrigated water—which explains the high
decline of groundwater in India17,32. However, because of the setting of the
model, we deducted all the applied irrigated water from groundwater.
Because we assimilated the TWS provided by GRACE to model the
depletion of groundwater due to irrigation, the choice of the source of the
applied irrigated water is relatively inconsequential in impacting ground-
water changes. Future studies can investigate the impacts of the sourceof the
applied irrigated water on the hydrologic system. Following Nie et al.73, the
irrigation scheme implanted in Noah-MP subtracts the groundwater irri-
gation amount from the model’s groundwater storage term, and the water
table depth and groundwater storage are updated accordingly. Though
irrigation impacts the atmospheric dynamics by changing the precipitation
patterns, we did not model these effects because the precipitation is set as a
model input in Noah-MP.

Soil moisture
We assimilated the combined ESA CCI soil moisture v05.2 generated by
blending the soil moisture retrievals from active and passive microwave
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remote sensing instruments. The ESA CCI soil moisture, with a spatial
resolution of 0.25°, was downscaled to the resolution of ourmodel using the
nearest neighbor approach. For the assimilation of soil moisture, as
described by Kumar et al.67, the observations are rescaled to the model
climatology using the cumulative density function (CDF). CDFs are derived
separately from both the ESA CCI soil moisture retrievals and the soil
moisture simulated by Noah-MP at each grid point during the entire
simulation period following Kumar et al.67,74.

Leaf area index (LAI)
Because of the irrigation-induced greening in the Ganges-Brahmaputra
basin, the assimilation of LAI is essential to better incorporate these changes
in land surface processes.Moreover, the assimilation of LAIhas been shown
tohelp improve the simulationof thewaterbudget and the representationof
hydrodynamics in irrigated lands27. We assimilate the LAI values provided
by the MCD15A2H Version 6 of MODIS62 at a spatial resolution of 500m
and a temporal resolution equal to 8 days following Kumar et al.27. The
MCD15A2H LAI was upscaled to the model resolution using the average
procedure. In this assimilation framework, the updated LAI from assim-
ilation is used to update the leaf biomass by dividing the LAI value with the
specific leaf area, which varies with vegetation type, consistent with the
Noah-MP physics formulations75. However, other vegetation mass prog-
nostic variables in Noah-MP related to the stem, wood, and root mass are
not updated as part of the assimilation.The assimilationof LAI is performed
using the EnKF algorithm, therefore, we perturbed the different variables to
capture the errors.

Snow water equivalent (SWE)
We assimilate the SWE reconstruction developed by Kraaijenbrink et al.63,
which employs a temperature indexmelt model76 along with ERA5 forcing,
and MODIS snow cover77 to develop multidecadal estimates of SWE. The
dataset has a spatial resolution similar to our model and we applied the
nearest neighbor approach to project the SWE values to the model grid.
More details about the SWEmodel calibration and evaluation can be found
in ref. 63. The SWE assimilationmethodology is described by Kumar et al.27.

Terrestrial water storage (TWS)
Due to high decreases in TWS caused by anthropogenic activities
observed in the Ganges-Brahmaputra basin, the assimilation of GRACE
TWS is important since these processes cannot be represented in the
natural system due to the lack of accurate estimates of anthropogenic
activities. The assimilation of GRACEwill improve the representation of
groundwater depletion and irrigation processes. We assimilate the TWS
provided by GRACE GSFC mascon product which has a resolution of
0.5° using the EnKS algorithm as described by Zaitchik et al. and Kumar
et al.66,78 GRACE GSFC mascon product was downscaled to the resolu-
tion of our model by using the bilinear interpolation technique. In this
method, GRACE observations are assimilated into the model at the
monthly scale, whenever the observation is available. The assimilation of
GRACE TWS was performed in two iterations for each month. The
EnKS first generates the model predicted TWS observations by aver-
aging simulated TWS. These predictions are then used to calculate the
assimilated increments for the month. Next, the second iteration con-
sists of applying these increments. Irrigation is applied during both the
first and the second iteration to account for groundwater withdrawal for
irrigation in the calculation of TWS.

Multivariate assimilation
A model ensemble of size 20 was created by perturbing the hourly
meteorological forcing inputs (precipitation, downward longwave and
shortwave radiation), the modeled (e.g., soil moisture, LAI, SWE, snow
depth, and groundwater storages), and the observed variables derived from
observations. The selected perturbations are shown in Supplementary
Table 1.

In addition to the multivariate assimilation (i.e., simulation of the
impacts of irrigation), we also perform a simulation without the impacts of
the irrigation by solely accounting for the changes in climate; we, therefore,
only assimilate SWE in this simulation. The simulationwithout the impacts
of irrigationwill allow investigating the impacts of irrigation (changes in soil
moisture, LAI, and TWS) on the system.

Model validation
The model validation consists in evaluating the simulated streamflow,
runoff, groundwater storage, ET, and snowcover.We compared the outputs
of ourmodel with remotely sensed observations and groundmeasurements
that have not been assimilated in the model from 2003 to 2020. We mainly
compared the trends of the different variables because of the main purpose
of this study is to understand the causes of the decreasing trends in
streamflow. Because of the lack of sufficient data, we did not assimilate
streamflow in the region, however, we expect the different assimilations to
affect the streamflow. Therefore, we compare the simulated streamflow to
observations collected at two gages located in both theGangesRiver and the
Brahmaputra River. Overall, the comparisons (illustrated in Supplementary
Figs. 4 and 5) of the trends and the averages of streamflow indicate that the
simulationswith the impacts of irrigation (i.e.,multivariate assimilation)has
allowed to significantly improve the modeled hydrodynamics and the
obtained results are consistent with the observations. We note that our
simulations overestimate the measured baseflow and underestimate the
measured peak flow (Supplementary Fig. 5). However, because the study is
targeting the trends, thesebiases arenot affecting the overall trends as shown
by the comparisons of the trends in Supplementary Fig. 2.We also compare
the simulated trends in runoff and groundwater storage to the trends in
runoff data provided by Ghiggi et al.79 and groundwater storage derived
from ground measurements (Supplementary Fig. 6). Our multivariate
assimilation allows reproducing the decreasing trends in measured
groundwater. Our trends in runoff are consistent with the trends in runoff
provided by Ghiggi et al.79 in low elevation areas of the Ganges-Brahma-
putra, over the Himalayas, our model indicates decreasing trends in runoff
whereas the global runoff data indicates increasing trends such incon-
sistencies may arise from the differences in meteorological forcing. As
shown in Supplementary Fig. 7, the increasing trends in simulated ETwere
consistent with the trends in the MODIS80 ET and the Global Land Eva-
poration Amsterdam Model (GLEAM81) ET. Finally, we also evaluate the
probabilities of detection and false alarm of snow cover of our multivariate
assimilation by relying on the snow cover data provided by MODIS77. As
depicted in Supplementary Fig. 8, the probability of detection is high (i.e.,
greater than 75%)over theHimalayas, however, the false alarm ratio reaches
50% in the upper regions of the Himalayas.

Data availability
Datasets used in this study can be found in the following websites: HMA
land reanalysis: https://nsidc.org/data/hma2_nlsmr/versions/1; ERA5 for-
cing: https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5;
IMERG Precipitation: https://gpm.nasa.gov/taxonomy/term/1372;
CHIRPS Precipitation: https://www.chc.ucsb.edu/data; SWE reconstruc-
tion by Kraaijenbrink et al.63: https://zenodo.org/record/4715786#.
YqDY0S-B1pI; MODIS LAI: https://lpdaac.usgs.gov/products/
mcd15a2hv006/; ESA CCI soil moisture: https://www.esa-soilmoisture-
cci.org/data; GRACE data: https://earth.gsfc.nasa.gov/geo/data/grace-
mascons.

Code availability
The Nasa Land Information System (LIS) used in this study is an open-
source software that can be found here: https://github.com/NASA-
LIS/LISF.

Received: 25 April 2023; Accepted: 26 March 2024;

https://doi.org/10.1038/s43247-024-01348-0 Article

Communications Earth & Environment |           (2024) 5:169 7

https://nsidc.org/data/hma2_nlsmr/versions/1
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://gpm.nasa.gov/taxonomy/term/1372
https://www.chc.ucsb.edu/data
https://zenodo.org/record/4715786#.YqDY0S-B1pI
https://zenodo.org/record/4715786#.YqDY0S-B1pI
https://lpdaac.usgs.gov/products/mcd15a2hv006/
https://lpdaac.usgs.gov/products/mcd15a2hv006/
https://www.esa-soilmoisture-cci.org/data
https://www.esa-soilmoisture-cci.org/data
https://earth.gsfc.nasa.gov/geo/data/grace-mascons
https://earth.gsfc.nasa.gov/geo/data/grace-mascons
https://github.com/NASA-LIS/LISF
https://github.com/NASA-LIS/LISF


References
1. Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate

change will affect the Asian water towers. Science 328,
1382–1385 (2010).

2. Pritchard, H. D. Asia’s shrinking glaciers protect large populations
from drought stress. Nature 569, 649–654 (2019).

3. Qiu, J. China: the third pole. Nature 454, 393–396 (2008).
4. UNESCOWorld Heritage Centre. The Sundarbans. UNESCOWorld

Heritage Centre. https://whc.unesco.org/en/list/798/ (1997).
5. Getirana, A. et al. Avert Bangladesh’s looming water crisis through

open science and better data. Nature 610, 626–629 (2022).
6. Matsuo, K. & Heki, K. Time-variable ice loss in Asian high mountains

from satellite gravimetry. Earth Planet. Sci. Lett. 290, 30–36 (2010).
7. Smith, T. & Bookhagen, B. Changes in seasonal snow water

equivalent distribution in HighMountain Asia (1987 to 2009).Sci. Adv.
4, e1701550 (2018).

8. Treichler, D., Kääb, A., Salzmann, N. & Xu, C.-Y. Recent glacier and
lake changes in High Mountain Asia and their relation to precipitation
changes. Cryosphere 13, 2977–3005 (2019).

9. Li, Y., Chen, Y., Wang, F., He, Y. & Li, Z. Evaluation and projection of
snowfall changes in High Mountain Asia based on NASA’s NEX-
GDDP high-resolution daily downscaled dataset. Environ. Res. Lett.
15, 104040 (2020).

10. Maina, F. Z. &Kumar, S. V. Diverging trends in rain-on-snowoverHigh
Mountain Asia. Earths Future 11, e2022EF003009 (2023).

11. Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water
balance of global aquifers revealed by groundwater footprint. Nature
488, 197–200 (2012).

12. Siebert, S. et al. Groundwater use for irrigation—a global inventory.
Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).

13. Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable
groundwater sustaining irrigation: a global assessment.Water
Resour. Res. 48, W00L06 (2012).

14. Mishra, V., Asoka, A., Vatta, K. & Lall, U. Groundwater depletion and
associatedCO2emissions in India.EarthsFuture6, 1672–1681 (2018).

15. Dangar, S. & Mishra, V. Natural and anthropogenic drivers of the lost
groundwater from the Ganga River basin. Environ. Res. Lett. 16,
114009 (2021).

16. Goldin, T. India’s drought belowground.Nat. Geosci. 9, 98–98 (2016).
17. Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based

estimates of groundwater depletion in India. Nature 460, 999–1002
(2009).

18. Wada, Y. et al. Global depletion of groundwater resources.Geophys.
Res. Lett. 37, L20402 (2010).

19. Mukherjee, A., Bhanja, S. N. & Wada, Y. Groundwater depletion
causing reductionof baseflow triggeringGanges river summer drying.
Sci. Rep. 8, 12049 (2018).

20. Chen, C. et al. China and India lead in greening of the world through
land-use management. Nat. Sustain. 2, 122–129 (2019).

21. Maina, F. Z., Kumar, S. V., Albergel, C. & Mahanama, S. P. Warming,
increase in precipitation, and irrigation enhance greening in High
Mountain Asia. Commun. Earth Environ. 3, 1–8 (2022).

22. Piao, S. et al. Characteristics, drivers and feedbacks of global
greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

23. Zhu, Z. et al. Greeningof the Earth and its drivers.Nat.Clim.Change6,
791–795 (2016).

24. Maina, F. Z., Kumar, S. V. & Gangodagamage, C. Irrigation and
warming drive the decreases in surface albedo over High Mountain
Asia. Sci. Rep. 12, 16163 (2022).

25. Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4,
945–948 (2014).

26. Niu, G.-Y. et al. The community Noah land surface model with
multiparameterization options (Noah-MP): 1. Model description and
evaluation with local-scale measurements. J. Geophys. Res. Atmos.
116, D12109 (2011).

27. Kumar, S. V. et al. NCA-LDAS land analysis: development and
performance of a multisensor, multivariate land data assimilation
system for the National Climate Assessment. J. Hydrometeorol. 20,
1571–1593 (2019).

28. Alam, S., AliMd,M., Rahaman, A. Z. & Islam, Z.Multi-model ensemble
projection of mean and extreme streamflow of Brahmaputra River
Basin under the impact of climate change. J. Water Clim. Change 12,
2026–2044 (2021).

29. Anand, J., Gosain, A. K., Khosa, R. & Srinivasan, R. Regional
scale hydrologic modeling for prediction of water balance, analysis
of trends in streamflow and variations in streamflow: the case
study of the Ganga River basin. J. Hydrol. Reg. Stud. 16,
32–53 (2018).

30. Gain, A. K., Immerzeel, W.W., SpernaWeiland, F. C. & Bierkens, M. F.
P. Impact of climate change on the stream flow of the lower
Brahmaputra: trends in high and low flows based on discharge-
weighted ensemble modelling. Hydrol. Earth Syst. Sci. 15,
1537–1545 (2011).

31. Masood,M., Yeh, P. J.-F., Hanasaki, N. & Takeuchi, K.Model study of
the impacts of future climate change on the hydrology of
Ganges–Brahmaputra–Meghna basin. Hydrol. Earth Syst. Sci. 19,
747–770 (2015).

32. Asoka,A.&Mishra,V. Anthropogenic andclimatecontributionson the
changes in terrestrial water storage in India. J. Geophys. Res. Atmos.
125, e2020JD032470 (2020).

33. Wada, Y. & Bierkens, M. F. P. Sustainability of global water use: past
reconstruction and future projections. Environ. Res. Lett. 9,
104003 (2014).

34. Palazzi, E., von Hardenberg, J & Provenzale, A. Precipitation in the
Hindu-KushKarakoramHimalaya: observations and future scenarios.
J. Geophys. Res. Atmos. 118, 85–100 (2013).

35. Yoon, Y. et al. Evaluating the uncertainty of terrestrial water
budget components over High Mountain Asia. Front. Earth Sci. 7,
120 (2019).

36. You, Q., Min, J., Zhang, W., Pepin, N. & Kang, S. Comparison of
multiple datasets with gridded precipitation observations over the
Tibetan Plateau. Clim. Dyn. 45, 791–806 (2015).

37. Dollan, I. J.Maina, F. Z., Kumar, S. V., &Maggioni, V.Anassessment of
griddedprecipitationproductsoverHighMountainAsia.J.Hydrology.
52, 101675 (2024).

38. Huffman, G. J., Bolvin, D. T. & Nelkin, E. J. Integrated Multi-satellitE
Retrievals for GPM (IMERG) Technical Documentation. NASA/GSFC
Code 612, 47 (2015).

39. Funk, C. et al. The climate hazards infrared precipitation with stations
—a new environmental record for monitoring extremes. Sci. Data 2,
150066 (2015).

40. Hersbach, H. et al. The ERA5global reanalysis.Q. J. R.Meteorol. Soc.
146, 1999–2049 (2020).

41. Clark, A. J. Generation of ensemblemeanprecipitation forecasts from
convection-allowing ensembles. Weather Forecast. 32,
1569–1583 (2017).

42. Kumar, S. V. et al. Land information system: an interoperable
framework for high resolution land surface modeling. Environ. Model.
Softw. 21, 1402–1415 (2006).

43. Dickinson, R. E. Land Surface processes and climate—surface
albedos and energy balance. In Advances in Geophysics, Vol. 25 (ed.
Saltzman, B.) 305–353 (Elsevier, 1983).

44. Niu, G.-Y. & Yang, Z.-L. Effects of vegetation canopy processes on
snow surface energy and mass balances. J. Geophys. Res. Atmos.
109, D23111 (2004).

45. Dickinson, R. E., Shaikh, M., Bryant, R. & Graumlich, L. Interactive
canopies for a climate model. J. Clim. 11, 2823–2836 (1998).

46. Ball, J. T., Woodrow, I. E. & Berry, J. A. A model predicting stomatal
conductance and its contribution to the control of photosynthesis
under different environmental conditions. In Progress in

https://doi.org/10.1038/s43247-024-01348-0 Article

Communications Earth & Environment |           (2024) 5:169 8

https://whc.unesco.org/en/list/798/
https://whc.unesco.org/en/list/798/


Photosynthesis Research: Volume 4 Proceedings of the VIIth
International Congress on Photosynthesis Providence, Rhode Island,
USA, August 10–15, 1986 (ed. Biggins, J.) 221–224 (Springer, 1987).

47. Richards, L. A. Capillary conduction of liquids through porous
medium. J. Appl. Phys. 1, 318–333 (1931).

48. Niu, G.-Y., Yang, Z.-L., Dickinson, R. E. & Gulden, L. E. A simple
TOPMODEL-based runoff parameterization (SIMTOP) for use in
global climate models. J. Geophys. Res. Atmos. 110, D21106 (2005).

49. Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., Gulden, L. E. & Su, H.
Development of a simple groundwater model for use in climate
models andevaluationwithGravityRecovery andClimate Experiment
data. J. Geophys. Res. Atmos. 112, D07103 (2007).

50. Xue, Y. et al. Assimilation of satellite-based snow cover and freeze/
thaw observations over High Mountain Asia. Front. Earth Sci. 7,
115 (2019).

51. Xue,Y. et al. Evaluation ofHighMountainAsia-LandDataAssimilation
System (Version 1) from 2003 to 2016: 2. The impact of assimilating
satellite-based snow cover and freeze/thaw observations into a land
surfacemodel. J. Geophys. Res. Atmos. 127, e2021JD035992 (2022).

52. Yamazaki, D. et al. A high-accuracy map of global terrain elevations.
Geophys. Res. Lett. 44, 5844–5853 (2017).

53. Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land
Cover Type Yearly L3 Global 500m SIN Grid V006. https://doi.org/10.
5067/MODIS/MCD12Q1.006 (2019).

54. ISRIC—World Soil Information. ISRIC—World Soil Information
https://www.isric.org (2020).

55. Getirana, A. C. V. et al. The hydrological modeling and analysis
platform (HyMAP): evaluation in the AmazonBasin. J. Hydrometeorol.
13, 1641–1665 (2012).

56. Getirana, A., Peters-Lidard, C., Rodell, M. & Bates, P. D. Trade-off
between cost and accuracy in large-scale surface water dynamic
modeling.Water Resour. Res. 53, 4942–4955 (2017).

57. Yamazaki, D. et al. MERIT hydro: a high-resolution global
hydrographymap based on latest topography dataset.Water Resour.
Res. https://doi.org/10.1029/2019WR024873 (2019).

58. Reichle, R. H. Data assimilation methods in the Earth sciences. Adv.
Water Resour. 31, 1411–1418 (2008).

59. Clark,M.P.etal.Hydrologicaldataassimilationwith theensembleKalman
filter: use of streamflow observations to update states in a distributed
hydrological model. Adv. Water Resour. 31, 1309–1324 (2008).

60. Zhou, Y. et al. Satellite-informed simulation of irrigation in South Asia:
opportunities and uncertainties. https://essopenarchive.org/doi/full/
10.1002/essoar.10512174.1; https://doi.org/10.1002/essoar.
10512174.1 (2022).

61. Dorigo, W. et al. ESA CCI soil moisture for improved Earth system
understanding: state-of-the art and future directions. Remote Sens.
Environ. 203, 185–215 (2017).

62. Myneni, R., Knyazikhin, Y. & Park, T. MOD15A2H MODIS/Terra Leaf
Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006. https://doi.
org/10.5067/MODIS/MOD15A2H.006 (2015).

63. Kraaijenbrink, P. D. A., Stigter, E. E., Yao, T. & Immerzeel, W. W.
Climate change decisive for Asia’s snowmeltwater supply.Nat. Clim.
Chang. 11, 591–597 (2021).

64. Loomis, B. D., Felikson, D., Sabaka, T. J. & Medley, B. High-spatial-
resolution mass rates from GRACE and GRACE-FO: global and ice
sheet analyses. J. Geophys. Res. Solid Earth 126,
e2021JB023024 (2021).

65. Reichle, R. H., McLaughlin, D. B. & Entekhabi, D. Hydrologic data
assimilation with the ensemble Kalman filter.Mon. Weather Rev. 130,
103–114 (2002).

66. Zaitchik, B. F., Rodell, M. & Reichle, R. H. Assimilation of GRACE
terrestrial water storage data into a land surfacemodel: results for the
Mississippi River Basin. J. Hydrometeorol. 9, 535–548 (2008).

67. Kumar, S. V. et al. Assimilation of remotely sensed soil moisture and
snow depth retrievals for drought estimation. J. Hydrometeorol. 15,
2446–2469 (2014).

68. Lahmers, T. M. et al. Assimilation of NASA’s airborne snow
observatory snow measurements for improved hydrological
modeling: a case study enabled by the coupled LIS/WRF-Hydro
System. Water Resour. Res. 58, e2021WR029867 (2022).

69. Liu, Y. et al. Assimilating satellite-based snow depth and snow cover
products for improving snow predictions in Alaska. Adv. Water
Resour. 54, 208–227 (2013).

70. Reichle,R.H., Kumar, S. V.,Mahanama, S. P. P., Koster, R.D. &Liu,Q.
Assimilation of satellite-derived skin temperature observations into
land surface models. J. Hydrometeorol. 11, 1103–1122 (2010).

71. Slater, A. G. & Clark, M. P. Snow data assimilation via an ensemble
Kalman filter. J. Hydrometeorol. 7, 478–493 (2006).

72. Ambika, A. K., Wardlow, B. & Mishra, V. Remotely sensed high
resolution irrigated areamapping in India for 2000 to 2015.Sci. Data 3,
160118 (2016).

73. Nie, W. et al. Groundwater withdrawals under drought: reconciling
GRACE and land surface models in the United States High Plains
aquifer.Water Resour. Res. 54, 5282–5299 (2018).

74. Kumar, S. V. et al. A comparisonofmethods for a priori bias correction
in soil moisture data assimilation.Water Resour. Res. 48,
W03515 (2012).

75. Liu, X., Chen, F., Barlage, M., Zhou, G. & Niyogi, D. Noah-MP-Crop:
introducing dynamic cropgrowth in theNoah-MP land surfacemodel.
J. Geophys. Res. Atmos. 121, 13,953–13,972 (2016).

76. Hock, R. Temperature index melt modelling in mountain areas. J.
Hydrol. 282, 104–115 (2003).

77. Hall, D.,George,K., Riggs,A. &Salomonson, V. V.MODIS/TerraSnow
Cover 5-Min L2 Swath 500m, Version 5. https://doi.org/10.5067/
ACYTYZB9BEOS (2006).

78. Kumar, S. V. et al. Assimilation of gridded GRACE terrestrial water
storage estimates in the North American land data assimilation
system. J. Hydrometeorol. 17, 1951–1972 (2016).

79. Ghiggi, G., Humphrey, V., Seneviratne, S. I. & Gudmundsson, L.
G-RUN ENSEMBLE: a multi-forcing observation-based global runoff
reanalysis.Water Resour. Res. 57, e2020WR028787 (2021).

80. Running, S., Mu, Q. & Zhao, M. MOD16A2 MODIS/Terra Net
Evapotranspiration 8-Day L4 Global 500m SIN Grid V006. https://doi.
org/10.5067/MODIS/MOD16A2.006 (2017).

81. Martens, B. et al. GLEAM v3: satellite-based land evaporation
and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925
(2017).

82. Salmon, J. M., Friedl, M. A., Frolking, S., Wisser, D. & Douglas, E. M.
Global rain-fed, irrigated, and paddy croplands: a new high resolution
map derived from remote sensing, crop inventories and climate data.
Int. J. Appl. Earth Obs. Geoinf. 38, 321–334 (2015).

Acknowledgements
This researchwas supportedby the grant from theNational Aeronautics and
Space Administration High Mountain Asia program (19-HMA19-0012).
Computing was supported by the resources at the NASACenter for Climate
Simulation.

Author contributions
F.Z.M., A.G. and S.V.K. contributed with conceptualization, data analysis,
and writing. M.S., N.K.B., S.M. and R.A. contributed with the data
acquisition. S.V.K. was responsible for funding acquisition. All authors have
read and agreed to the published version of the manuscript.

Competing interests
The authors declare no competing interests.

https://doi.org/10.1038/s43247-024-01348-0 Article

Communications Earth & Environment |           (2024) 5:169 9

https://doi.org/10.5067/MODIS/MCD12Q1.006
https://doi.org/10.5067/MODIS/MCD12Q1.006
https://doi.org/10.5067/MODIS/MCD12Q1.006
https://www.isric.org
https://www.isric.org
https://doi.org/10.1029/2019WR024873
https://doi.org/10.1029/2019WR024873
https://essopenarchive.org/doi/full/10.1002/essoar.10512174.1
https://essopenarchive.org/doi/full/10.1002/essoar.10512174.1
https://essopenarchive.org/doi/full/10.1002/essoar.10512174.1
https://doi.org/10.1002/essoar.10512174.1
https://doi.org/10.1002/essoar.10512174.1
https://doi.org/10.1002/essoar.10512174.1
https://doi.org/10.5067/MODIS/MOD15A2H.006
https://doi.org/10.5067/MODIS/MOD15A2H.006
https://doi.org/10.5067/MODIS/MOD15A2H.006
https://doi.org/10.5067/ACYTYZB9BEOS
https://doi.org/10.5067/ACYTYZB9BEOS
https://doi.org/10.5067/ACYTYZB9BEOS
https://doi.org/10.5067/MODIS/MOD16A2.006
https://doi.org/10.5067/MODIS/MOD16A2.006
https://doi.org/10.5067/MODIS/MOD16A2.006


Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43247-024-01348-0.

Correspondence and requests for materials should be addressed to
Fadji Z. Maina.

Peer review information Communications Earth & Environment thanks
Soumendra Nath Bhanja and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. Primary Handling Editors:
Rodolfo Nobrega, Joe Aslin and Aliénor Lavergne. A peer review file is
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s43247-024-01348-0 Article

Communications Earth & Environment |           (2024) 5:169 10

https://doi.org/10.1038/s43247-024-01348-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Irrigation-driven groundwater depletion in�the Ganges-Brahmaputra basin decreases the streamflow in the Bay of�Bengal
	Results and discussion
	Synergistic impacts of groundwater depletion and climate change on Bay of Bengal’s water availability
	Synergic effects of irrigation and climatic conditions decrease the dry-season streamflow in the Ganges basin and the monsoon streamflow in the Brahmaputra�basin
	Long-term impacts of irrigation-driven groundwater depletion on the streamflow versus the impacts of climate�change

	Methods
	Model set-up
	Assimilations
	Irrigation
	Soil moisture
	Leaf area index�(LAI)
	Snow water equivalent�(SWE)
	Terrestrial water storage�(TWS)
	Multivariate assimilation
	Model validation

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




