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Recent reductions in aerosol emissions
have increased Earth’s energy imbalance

Check for updates
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The Earth’s energy imbalance is the net radiative flux at the top-of-atmosphere. Climate model
simulations suggest that the observed positive imbalance trend in the previous two decades is
inconsistent with internal variability alone and caused by anthropogenic forcing and the resulting
climate system response. Here, we investigate anthropogenic contributions to the imbalance trend
using climate models forced with observed sea-surface temperatures. We find that the effective
radiative forcing due to anthropogenic aerosol emission reductions has led to a 0.2 ± 0.1Wm−2

decade−1 strengthening of the 2001–2019 imbalance trend. The multi-model ensemble reproduces
the observed imbalance trend of 0.47 ± 0.17Wm−2 decade−1 but with 10-40% underestimation. With
most future scenarios showing further rapid reductions of aerosol emissions due to air quality
legislation, such emission reductions may continue to strengthen Earth’s energy imbalance, on top of
the greenhouse gas contribution. Consequently, we may expect an accelerated surface temperature
warming in this decade.

The Earth’s Energy Imbalance (EEI) is the difference in the net
downward shortwave (SW) radiative flux and outgoing longwave
(LW) radiative flux at the top-of-atmosphere (TOA). It causes
changes in the heat content of the oceans, ice, land, and atmosphere,
and is principally estimated by looking at in situ observations of the
heat content of the oceans, which absorb approximately 90% of the
excess heat due to EEI1. Recent estimates for the 2010–2022 period
give a value of 0.89 ± 0.26Wm−2 (ref. 2), increasing from the value of
0.79 ± 0.27Wm−2 for 2006–2018 reported in the Intergovernmental
Panel on Climate Change (IPCC) Assessment Report 6 (AR6)3. The
mean EEI from the Clouds and the Earth’s Radiant Energy System
(CERES) is constrained by adjusting SW and LW TOA fluxes within
their ranges of uncertainty such that the mean EEI from CERES for
07/2005-06/2015 is consistent with EEI from in situ observations for
the same period4,5. Variations in EEI from CERES are independent of
in situ data and have been demonstrated to be especially useful for
examining trends in EEI6. Two decades of satellite observations are
now available from CERES, and show a positive 2005–2019 trend in
the EEI of 0.50 ± 0.47Wm−2 decade−1 (ref. 6). The CERES trend is in

agreement with ocean-derived trends1,2. Single climate model simu-
lations indicate that the recent trend is only explained when
anthropogenic forcing and response are included7.

The EEI can be seen as the sum of effective radiative forcing (ERF),
which includes rapid adjustments to natural and anthropogenic instanta-
neous radiative forcing, and the radiative response to the forcing, which is
the result of global mean surface temperature change (ΔTs) and associated
climate feedbacks (α)3,7. Thus, a positive EEI confirms the lag of the climate
system in responding to forcing and implies that additional global warming
will take place evenwithout further forcing changes8. On shorter time scales,
EEI is modulated by internal variability such as the El-Niño Southern
Oscillation (ENSO)9.

The recent positive trend in EEI is mainly caused by reductions in the
reflection of SW radiation while LW radiation changes are smaller and
slightly reduce the positive net EEI trend7. The latest generation global
climate models (GCMs) are able to reproduce the pattern of TOA radiative
flux changes from CERES relatively well when forced with observed sea-
surface temperature (SST) and sea-ice until 201710, but model simulations
for a longer time period (until 2019/2020) indicate an underestimation of
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the EEI trend, especially in the SW7,11. At the same time, previous model
studies have often not accounted for recent changes in anthropogenic for-
cings (e.g., aerosol emissions) and/or radiative response (i.e., SST and sea-ice
fields), and assumptionsmade regarding these input data could have a large
influence on themodelled trends. Over China, the decline of SO2 emissions
after 2007 is not represented in the emission inventory used in Coupled
Model Intercomparison Project phase 6 (CMIP6)12. The trend in instan-
taneous and effective radiative forcing due to cooling aerosols has reversed,
now showing a robust positive trend for both aerosol-radiation interactions
(ERFari) and aerosol-cloud interactions (ERFaci)13,14, suggesting a tem-
porary acceleration in the rate of warming15. The influence of aerosols on
cloud fraction and other cloud properties is uncertain, however, and recent
models show difficulties in reproducing satellite observations16,17.

While our study addresses some of the same research questions as
Raghuraman, et al.7, we do so using a multi-model multi-ensemble
approach, recognising the substantial diversity in aerosol ERF among
models. Further, our study incorporates innovative simulations to isolate the
contributions of anthropogenic aerosol forcing to the trend in EEI.We have
performed simulations forced with observed SST and sea-ice from
2000–2019 and where the aerosol emissions are based on an inventory that
better accounts for the recent emission reductions compared to the inven-
tory used in the CMIP6 simulations (see Methods). Simulations are com-
pared to CERES and Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite observations of radiative fluxes18, Aerosol Optical Depth
(AOD)19 and cloud properties20. Additionally, dedicated sensitivity experi-
ments are conducted to further elucidate the factors contributing to the
observed positive trend in EEI.

We find that observed trends in aerosol optical depth are very well
reproduced by the model mean over regions of anthropogenic emissions
and that the ERF due to recent anthropogenic aerosol emission reductions
has contributed substantially to the increase in Earth’s energy imbalance
observed during the period 2001–2019. The trend in shortwave flux drives
the EEI trend and is caused by approximately equal contributions from
aerosol ERF and radiative response to the total forcing.

Results and discussion
Global EEI trend
Observations from the CERES satellite product reveal a significant and
positive trend in the Earth’s energy imbalance since the beginning of the
2000s, with a January 2001–December 2019 (January 2001–June 2023)
trend of 0.47 ± 0.17 (0.51 ± 0.17)Wm−2 decade−1 based on deseasonalized
monthly data (Fig. 1a; Supplementary Fig. 1). The interannual variability is
considerable and,with a fewexceptions, verywell reproduced by theGCMs;
all five models show a correlation coefficient (between models and CERES)
greater than 0.7 (Fig. 1a). The models reproduce a positive trend but the
ensemble mean trend for each model is weaker than in CERES, with
approximately 10 to 40%underestimation.ThepositiveEEI trend inCERES
and models is also in agreement with estimates of ocean heat content
anomalies for 2005-2019 (Supplementary Fig. 2).

Theweakest EEI trend is seen in theGFDL simulations (Fig. 1a), which
have usedCMIP6 aerosol emissions, in contrast tomost of the othermodels
(see Methods). However, sensitivity simulations with CESM2 indicate that
the difference in the EEI trend between simulations using aerosol emissions
as in CMIP6 (assuming SSP2-4.5 from 2015 onwards) and the newer CEDS
version of April 2021 is negligible (Supplementary Fig. 3). Thus, differences
in anthropogenic aerosol emissions between the models are unlikely to
impact the conclusions for the model ensemble, despite the different
representation of the Chinese aerosol emission decline in the two
inventories.

The model mean trend in EEI of 0.38Wm-2 decade-1 over the
2001–2019 period is, despite underestimation in all models, within the
uncertainty range of the CERES trend (Fig. 1a). In the simulation with
anthropogenic aerosol emissions kept constant (AERO2000), the model
mean trend in EEI is reduced by 0.20Wm-2 decade-1 (intermodel range of
0.15-0.28Wm-2 decade-1) to a much weaker trend of 0.18Wm-2 decade-1,

well outside the uncertainty range of CERES (Fig. 1b). The interannual
variability is less well reproduced in all models when aerosols are kept
constant, with a reduction in correlation coefficient from 0.85 to 0.76 in the
modelmean between BASE andAERO2000. Thus, results strongly indicate
that the time evolution of aerosols needs to be included in order for the
models to reproduce the observed EEI trend and variability.

The radiative response (αΔTs) is simulated by keeping all anthro-
pogenic and natural forcings constant and only letting the sea-surface

Fig. 1 | Earth’s energy imbalance (EEI) trend. Comparison of the global mean
annual anomaly in top-of-atmosphere net downward radiative flux between CERES
and the global climate models’ a BASE, b AERO2000 (anthropogenic aerosol
emissions constant) and c ALL2000 (all anthropogenic and natural forcings con-
stant) simulations. Individual ensemble members (thin solid coloured lines), intra-
model means (thick solid colored lines), intermodel mean (thick solid grey line) and
observations (thick solid black line) are shown for 2001–2019, extending to 2022 for
the observations (thick dotted black line). Linear trends are shown based on intra-
model means (thick dashed colored lines), intermodel means (thick dashed grey
line) and observations (thick dashed black line). «Model mean» is the average of
CESM2, ICON-HAM, NorESM2 and HadGEM3. Trends are based on monthly
deseasonalized values and uncertainties are given as 5–95% confidence intervals
based on spread between ensemble members. Correlation coefficients (r) between
CERES and modelled annual anomalies are shown in the legend.
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temperature and sea-ice change following the prescribed input, and this
simulation (ALL2000) shows a negative trend in all models with a model
mean trend of –0.16Wm-2 decade-1 (intermodel range from -0.08 to
-0.25Wm-2 decade-1) (Fig. 1c). Thus, the effect of holding all forcings
constant has a much larger impact on the EEI trend than holding just
anthropogenic aerosol emissions constant, but the latter still has a con-
siderable impact. In fact, the four models participating with AERO2000
simulate that the ERF due to changes in anthropogenic aerosol emissions
over the recent two decades, in which several regions have reduced aerosol
emissions due to air quality legislation, have led to an approximate doubling
of the EEI trend (Fig. 1a, b).

Contributions to EEI trend
Differences between CERES and GCMs become larger when decomposing
the radiativeflux anomalies into shortwave (SW) and longwave (LW)fluxes
(Fig. 2; all fluxes positive downwards). Both the observed 2001–2019 strong

positive SW trend of 0.67 ± 0.17Wm-2 decade-1 and the weak negative LW
trend of –0.20 ± 0.17Wm-2 decade-1 are too small in magnitude in the
models, but with intermodel differences. HadGEM3 is a notable exception,
showing SW and LW trends well within the uncertainty range of CERES.
The weaker SW trend in GFDL compared to the other models is the main
reason for this model having the weakest net EEI trend (see also Discussion
section of Raghuraman et al.7). An evaluation of the seasonal cycle of net,
SW and LW fluxes at TOA shows that the models are in good agreement
with the CERES observations (Supplementary Fig. 4). Also, the fourmodels
that were part of CMIP6 (CESM2, NorESM2, HadGEM3 and GFDL) have
smaller root-mean-square errors than the average of CMIP6 models when
compared to observed radiative fluxes and clouds (with the exception of
NorESM2 for outgoing SW radiation), and are generally among the best-
performing models (Boucher et al.21, their Figs. 18–19).

Most of the intermodel difference in the net trend in radiative response
(αΔTs) results from the positive SW trend (Fig. 2), which is positive

Fig. 2 | Contributing factors to Earth’s energy
imbalance (EEI) trend. Trend over 2001–2019
(based on deseasonalized monthly values) in top-of-
atmosphere a net, b shortwave (SW) and c longwave
(LW) downward radiative flux (i.e., EEI/total:
experiment BASE) split into contributions from the
radiative response (αΔTs: experiment ALL2000),
and effective radiative forcing (ERF: experiments
BASE-ALL2000). The ERF trend is further split into
contributions from changes in aerosols (ERFaero:
experiments BASE-AERO2000) and other (well-
mixed greenhouse gases, ozone, land use, solar)
forcings (ERFother: experiments AERO2000-
ALL2000). Whiskers represent the 90% confidence
intervals, boxes the 66% confidence intervals, and
white dots show the mean for each model, based on
the trends of individual ensemble members. Black
lines are from CERES for EEI (including grey
shading showing a 5–95% confidence interval) and
IPCC AR6 for ERFs. GFDL results for ERFaero and
ERFother (light purple boxes) are based on experi-
ments with a different setup (RFMIP; see Methods
and Supplementary Fig. 7) but are included for
comparison.
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presumably due to cloud and ice-albedo feedback. Further splitting of the
radiative response trend into clear-sky and cloud radiative effect (CRE)
reveals strongmodel diversity inCRE, indicating that the largemodel spread
in the SW trend in radiative response is due to differences in cloud feedback
(Supplementary Fig. 5a, b). The negative trend in the LW component of the
radiative response, which is caused by the Planck feedback following
increasing global mean surface temperature, is more similar between the
models (Fig. 2c).

By taking thedifference between simulations, contributions fromnatural
and anthropogenic forcings to the EEI trend can be estimated (simulations
BASE-ALL2000). The ERF trend of 0.57Wm-2 decade-1 derived from the
IPCC AR6 timeseries3 (Supplementary Fig. 6) is very similar to the modelled
trend (Fig. 2a). The contribution to the net ERF trend is almost equally split
between SW and LW (Fig. 2b, c). However, the SW contribution to the ERF
trend is entirely due to the trend in ERF of aerosols (ERFaero; simulations
BASE-AERO2000), in contrast to an analysis based on the Radiative Forcing
Modelling Intercomparison Project (RFMIP) yielding approximately 1/3 of
the SWERF trend fromgreenhouse gas cloud adjustments7. In the shortwave,
the contribution from ERFaero is approximately equal to, or even larger than,
the total radiative response (αΔTs). In contrast, the LWcontribution is almost
entirely due to other anthropogenic and natural forcings (ERFother; simula-
tionsAERO2000-ALL2000). Splitting of trends into clear-sky andCRE shows
that the trend in LW is predominantly related to clear-sky for ERFother,
strongly indicating a strengthened greenhouse effect due to increased con-
centrations of well-mixed greenhouse gases (Supplementary Fig. 5c, d). In
total, themodels showthat thenet trend inERFaero is a considerablepart (38%;
intermodel range of 30-46%) of the total ERF. RFMIP simulations indicate
that the trend in ERFaero from the GFDL model would have been near the
lower end of this range (Fig. 2a; Supplementary Fig. 7).

The multi-model mean trend in ERFaero of 0.21Wm-2 decade-1

(intermodel range of 0.15-0.28Wm-2 decade-1) for 2001–2019 (Fig. 2a) is
higher than the GFDL AM4 trend of 0.12Wm-2 decade-1 estimated for
2001-2020 using RFMIP simulations in Raghuraman et al.7. The trend
estimate for the same GFDL simulations but for 2001–2019 still shows a
relatively small trend (0.13Wm-2 decade-1) (Fig. 2a; Supplementary Fig. 7).
The setup of the RFMIP GFDL AM4 simulations is different from simu-
lations in this study, most notably because pre-industrial background cli-
matology is being used in RFMIP (e.g., for SST and sea-ice fields), but the
difference in total forcing trend arising from the different setup has been
deemednegligible (Table 1 inRaghuraman et al.7). The difference in setup is
therefore unlikely to be a main cause of the weaker ERFaero trend. A more
likely factor is related to how different models respond to a change in
aerosols, both through radiative fluxes directly and throughmodification of
cloud properties. This uncertainty is large, and a comparison of the 2014
(relative to pre-industrial) ERF of aerosols (sum of aerosol-radiation
interactions and aerosol-cloud interactions) was made between several
CMIP6 models in Zelinka et al.22 (their Table 2). Based on this, the GFDL
model is among themodels with the smallest negative aerosol ERF (i.e., less
sensitivity to aerosols), 1.5 standard deviations away from the multi-model
mean, and thismaypartly explain the smaller contribution of aerosols to the
recent EEI trend obtained in Raghuraman et al.7.

The four models used here (CESM2, ICON-HAM, NorESM2 and
HadGEM3)have amorenegative aerosolERF than theCMIP6multi-model
mean but are collectively well within one standard deviation from the
mean22 (their Table 2; note that ICON-HAM shares the same aerosol
module as the CMIP6 model MPI-ESM-1-2-HAM). Although HadGEM3
has an aerosol ERF close to the CMIP6mean22, this model shows a stronger
trend in ERFaero compared to CESM2 and NorESM2 (Fig. 2a), which both
have more negative aerosol ERF. Thus, the selection of models is not
expected to have amajor impact on ourmain conclusion of a strengthening
of the EEI trend due to aerosol reductions.

Global and regional trends in radiative fluxes
Figure 3 shows the 2001–2019 trend in EEI for clear-sky (SWclear and
LWclear) and cloud radiative effect (SWcloud and LWcloud) (all fluxes are

positive downwards). While an attribution of the all-sky trends (shown
in Figs. 1–2) to individual processes requires more rigorous analysis
(e.g., radiative kernel approach), there are indications of model under-
estimation of the global mean trend in SWclear, while the modelled trend
in global mean SWcloud agrees very well with CERES (Fig. 3a).

Regional trend analysis shows that the weak trend in SWclear is largely
due to all models having the incorrect sign of the trend south of 30°S
(Fig. 3d), and more specifically outside the Antarctica (Fig. 4c; Supple-
mentary Fig. 8), presumably related to surface albedo changes. Thus, the
global SWclear trend is tooweak in themodels due to amissing component in
the Southern Ocean, possibly a decrease in sea-ice, an issue that was also
raised earlier7 and which should be revisited by initiatives such as
CERESMIP11.

The positive LWclear trend in CERES results from a combination of
increased greenhouse effect acting to increase the trend and increasing
global mean temperature acting to reduce the trend. This trend is non-
existing in themodelmean (Fig. 3a), due to both too negative trend north of
30°N and too weak positive trend in the tropics (Fig. 3b, c and Fig. 4d). The
negative trend in LWcloud is also notwell reproduced by themodels, and this
applies to all latitude regions (Fig. 3). Part of the negative trend in LWcloud

from CERES has recently been attributed to cloud feedback, i.e., how the
clouds are responding to warming, and the overestimation of cloud feed-
back in climatemodels is a likelymain cause of themodels’underestimation
of the negative LWcloud trend

23.
Overall, the 10-40% underestimation in the EEI trend in the models

compared to CERES can be attributed to a lack of SW trend south of 30°S
and an underestimated SW trend in the tropics (Fig. 3). This is partly
compensated by a too strong SW trend north of 30°N and lack of negative
LW trend south of 30°N.While part of the underestimation in the SW trend
may be attributed to a missing component in the Southern Ocean, as
explained above, it should be noted that land ice has been kept fixed in the
models and that the lack of melting of land ice in the models may also
contribute slightly to the underestimated trend.

Regional trends in AOD and cloud properties
Due to the role of aerosol changes in the EEI trend, it is useful to analyse the
regional distribution of the trend in AOD. The GCMs are able to reproduce
the AOD trend over regions dominated by anthropogenic aerosol emis-
sions, notably AOD increases over India and reductions in the eastern US,
Europe and China (Fig. 4e). ICON-HAM and HadGEM3 show stronger
AOD trends than the other models (Supplementary Fig. 8), in alignment
with their stronger contribution of ERFaero to the trend in EEI (Fig. 2a).
Positive trends in SWclear are consistent north of 30°N, where aerosol
emissions and AOD are reduced (Fig. 3b and Fig. 4c, e).

The positive AOD trend in MODIS over Canada and Siberia, and the
negative trend over theAmazon, are not reproduced by themodels (Fig. 4e).
This could be related to biomass burning emissions, which are based on
climatology from 2015 onwards in the models (see Methods) and recently
called into question24. The positive AOD trend over the ocean in the
southern hemisphere in MODIS is also not reproduced by the models, but
various satellite products are inconsistent for this region13.

Over regions with the strongest modelled AOD trends (eastern US,
India and eastern China), the model mean trend in total cloud fraction has
the same sign as the trend in AOD, but the relationship is weak and the
MODIS data often shows opposite trends between AOD and cloud fraction
(Fig. 4e, f). It is reassuring, however, that the modelled trends in cloud
fraction over the ocean are crudely in agreement with MODIS. Trends in
cloud liquid water path, which is a measure of the cloud thickness, are less
similar between MODIS and the models (Fig. 4g).

We find good agreement between GCMs and CERES in terms of
changes in outgoing SW fluxes and net downward fluxes over the
stratocumulus-dominated eastern Pacific region (Fig. 4a; Supplementary
Fig. 8), similar to Loeb, et al.10. Part of the large reduction in outgoing SW
fluxoff thewest coast ofNorthAmerica has been linked to reductions in low
cloud cover following surface warming after 201410,23, and themodels in our
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study do indeed show reduced total cloud fraction in this region, consistent
with MODIS.

Amainfinding fromourmodel results is that the forcingdue to aerosol
emission reductions has led to an approximate doubling of the trend in EEI
over the 2001–2019 period (Fig. 1a, b).We find that the large positive trend
in all-sky net downward SW flux, which drives the positive EEI trend, is due
to approximately equal contributions from ERFaero and total radiative
feedback. Our result showing a negligible impact on EEI of using an
emission inventory that better accounts for the decline in Chinese aerosol
emissions, illustrates that further research is needed to fully understand the
impact of aerosols on EEI.While aerosol emission reductions are needed to
improve air quality, they have added considerably to the amount of global
warmingwe can expectwithout any further changes in forcing. This is likely
partly responsible for the unprecedented rate of human-induced warming
in the last decade2.Most future scenarios showrapid reductions of emissions
of aerosols and their precursors25, and it is therefore likely that suchemission
reductions will continue to strengthen the Earth’s energy imbalance, on top
of the greenhouse gas contribution. Consequently, we may expect an
accelerated surface temperature warming in this decade.

Methods
CERES satellite observations
TOA radiative flux observations are from the CERES Energy Balance and
Filled (EBAF) Edition 4.218 and consist of monthly mean SW, LW and net
fluxes at a 1° × 1° spatial grid. This edition combines data from the Terra
(03/2000-06/2002), Terra and Aqua (07/2002-03/2022), and the NOAA-20
(04/2022 onwards) satellites, and we use data from January 2001 to
December 2022. While satellite observations cannot quantify absolute
values of EEI, which is a small residual of only about 0.15% of the total
incoming and outgoing radiation at TOA18, the trend in EEI can be esti-
mated because of the stability of the CERES instruments26,27. In this study,
we assume a 0.20Wm-2 decade-1 uncertainty in the observed SW, LW and
net radiative flux trends as in Raghuraman et al.7, but converted from a 95%
confidence range to a value of 0.168Wm-2 decade-1 representing the 90

(5–95)% confidence range by assuming normal distribution. The trend
uncertainty is estimated based on the two contributing factors: variability in
the data and radiometric stability of the instruments used to produce the
data record. Loeb et al.28 compared the longest twoCERES records, from the
two platforms Terra and Aqua, and found trend differences <0.1Wm-2

decade-1. Also, the trend in CERES EEI is consistent with the in situ value of
<0.1Wm-2 decade-1 ref. 6. Therefore, for an approximately 20-year record, a
total trend uncertainty (variability and stability) of 0.2Wm-2 decade-1 (95%
confidence range) is reasonable.Analysis of clear-sky radiativefluxes utilises
the radiativefluxes of clear-sky for the total region rather than for cloud-free
areas of the region (e.g., variable “toa_sw_clr_t_mon” rather than
“toa_sw_clr_c_mon”), for consistency with how clear-sky radiative fluxes
are calculated in the models.

MODIS satellite observations
Aerosol and cloud properties observations are fromMODIS19,20 and consist
of the level-3 monthly mean dataset (D08_M3 Collection 6.1) at a 1° × 1°
spatial grid from the Terra platform (starting 2002) averaged with the
equivalent dataset from the Aqua platform. AOD at 550 nm is derived from
the Dark Target and Deep Blue Combined Aerosol Product. It should be
noted that a satellite-derived liquid water path is an in-cloud property and
differs with the climate models’ definition, which is averaged over the
grid box.

Ocean heat uptake observations
Annual in situ estimates of the observed ocean heat uptake over 0-2,000m
for 2005-2019 from the Pacific Marine Environmental Laboratory6 have
been used for comparison to the satellite observations and model data.

Global climate models and simulations
Simulations using four state-of-the-art global climate models and multiple
ensemble members have been carried out for this study, and simulations
with GFDL AM4 from Raghuraman, et al.7 have been included for com-
parison (Table 1). The individual ensemble members for each model use

Fig. 3 | Decomposition of Earth’s energy imbalance (EEI) trend. Comparison of
the deseasonalized monthly 2001–2019 trend in top-of-atmosphere net, shortwave
(SW) and longwave (LW) downward radiative flux between CERES and global
climate models averaged over a the globe, b 30–90°N, c 30°S–30°N and d 90–30°S.

SWand LW trends are shown separately for all-sky, clear-sky and the cloud radiative
effect. Boxes represent the 90% and 66% confidence intervals and white dots show
themean for eachmodel, based on the trends of individual ensemblemembers. Grey
shading shows the 5–95% confidence interval for CERES.
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identical input data except that their initial fields differ, i.e., by being initi-
alised from a (slightly) different atmospheric state. All four models and
simulations use prescribed monthly sea-surface temperature and sea-ice

concentration fields for 2000–201929. It has been shown that the input data
used here (also known as AMIP II SST) gave a better correlation between
modelled (CAM5.3) and observed (CERES) TOA radiative fluxes than
when themodel was forcedwith an alternative (HadISST) SSTdataset30, but
there is likely still a structural uncertainty related to the choice of dataset
used to force the models31.

Three model simulations have been carried out for each of the four
models: BASE, AERO2000 and ALL2000. In BASE, anthropogenic aerosol
(precursor) emissions are from the Community Emissions Data System
(CEDS) version of April 2021, which goes until 2019 and builds upon the
CEDS system described in McDuffie, et al.32. Notably, global emissions of
black carbon, organic carbon and sulfur dioxide (SO2) in recent years are
lower in this newer emission inventory than in the CEDS version used in
CMIP633. Biomass burning emissions, well-mixed greenhouse gases and
ozone concentrations, and solar insolation follow the CMIP6 historical

Fig. 4 | Regional trends in radiative fluxes and cloud properties. Comparison of
the 2001−2019 trends between the multi-model mean (MMM) and CERES a SW
all-sky, b LW all-sky, c SW clear-sky and d LW clear-sky, and MODIS e aerosol
optical depth, f total cloud fraction and g liquid water path. Individual model results

and net radiation fluxes are shown in Supplementary Fig. 8. Note that trends in
radiative fluxes (a–d) show upward radiation, and therefore have positive values
when more radiation is sent back to space.

Table 1 | Models, atmospheric resolution and number of
ensemble members

Model Resolution (lon x lat x lev) Members

CESM2-CAM640 144 ×96 x 32 20

ICON-HAM41 R2B4 triangular grid (mesh size
~160 km) x 47

4

HadGEM3-GC3.1-LL42 192 × 144 × 85 3

NorESM243 144 × 96 × 32 6

GFDL AM47,44 144 × 90 × 33 20

https://doi.org/10.1038/s43247-024-01324-8 Article

Communications Earth & Environment |           (2024) 5:166 6



setup until 2014 and assume SSP2-4.5 thereafter. HadGEM3 uses the
CMIP6 version of CEDS (and SSP2-4.5 from 2015) also for anthropogenic
aerosol emissions.

The AERO2000 simulation is set up in the same way as BASE, except
that anthropogenic aerosol emissions were representative of the year 2000
(2014 inHadGEM3) throughout the simulation. It should be noted that the
radiative response caused by the aerosol forcing is not kept constant in the
AERO2000 simulation as the SST and sea-icefields are the same as in BASE.
InNorESM2, biomass burning aerosol emissions were also kept constant in
AERO2000, but sensitivity simulations with CESM2 indicate that the
contribution from biomass burning aerosol emission changes to the EEI
trend is negligible (Supplementary Fig. 9).

In theALL2000 experiment, all anthropogenic and natural forcings are
representative of the year 2000 (1850 in HadGEM3) throughout the
simulation, and only the prescribed SST and sea-ice fields are transient.
Additional NorESM2 sensitivity simulations with only anthropogenic for-
cings constant (ANTHRO2000) show that the trend in natural forcing
(mainly solar and volcanic) is small and with the opposite sign compared to
the trend in anthropogenic forcing (Supplementary Fig. 10).

Simulations fromtheGFDLmodel aredescribed inRaghuraman, et al.7

and we have analysed their “AM4 PSST ERF” (equivalent to BASE) simu-
lation, where forcing agents are based on CMIP6 historical emissions until
2014 and SSP2-4.5 thereafter, and “AM4 PSST” (equivalent to ALL2000)
simulation, where forcing agents are fixed at 2014 levels. An experiment
with fixed anthropogenic aerosols (equivalent to AERO2000) is not avail-
able from that study, and themulti-modelmeans in Figs. 1–3 are, therefore,
based on the average of the CESM2, ICON-HAM, NorESM2 and Had-
GEM3models. However, analysis of GFDL RFMIP simulations, which use
pre-industrial SST and sea-ice fields, are shown in Fig. 2 and Supplemen-
tary Fig. 7.

Trend analysis
Deseasonalized monthly mean anomalies are calculated by taking the dif-
ference between the monthly mean value and the multi-year (2001–2019)
average of the samemonth. Linear trends are calculated by least squares34 on
deseasonalized monthly mean time-series except for the map plots which
are based on annual means and use the Mann-Kendall and Theil-Sen
methods to calculate the trends35–37. Unless otherwise mentioned, all figures
show increased downward radiation as positive trends, and vice versa.
Trends in cloud radiative effects are calculated as all-sky fluxesminus clear-
sky fluxes for the total region (not only cloud-free areas of the region) for
both CERES and the models. The bars showing differences between
experiments (e.g., theERFbars inFig. 2) include all possible combinationsof
ensemble members for each model.

Additional 60-year simulations with CESM2 using prescribed year
2000 climatology SST and sea-ice fields cycled for every year, and anthro-
pogenic aerosol emissions representative of both 2001 and 2019, have been
carried out to evaluate themethodof derivingERFaero from transient BASE-
AERO2000 simulations. These simulations show that ERFaero, based on the
2019-2001 difference, is fairly similar between the transient simulations and
the constant (year 2000 SSTs) simulations (Supplementary Fig. 11).

Data availability
CERES EBAF-TOA Edition4.2 and CERES EBAF Edition4.2 data were
obtained from the NASA Langley Research Centre CERES ordering tool at
https://ceres.larc.nasa.gov/data/ (downloaded 21 January 2024), and are
available at https://doi.org/10.5067/TERRA-AQUA-NOAA20/CERES/
EBAF-TOA_L3B004.2 and https://doi.org/10.5067/TERRA-AQUA-
NOAA20/CERES/EBAF_L3B004.2, respectively. The MODIS AOD and
cloud product Collection 6.1 were obtained from theNASAGoddard Earth
Science Data and Information Services Centre (GES DISC) Distributed
Active Archive Centre (DISC) web application available at https://giovanni.
gsfc.nasa.gov/giovanni/. The ocean heat content anomaly data were
obtained from the NOAA Pacific Marine Environmental Laboratory web-
site at https://oceans.pmel.noaa.gov/upper-ocean-heat-content-data

(downloaded 16 February 2024). The GCM data from CESM2, ICON-
HAM, NorESM2 and HadGEM3, produced for this publication, have been
made available38 in the form of NetCDF files with https://doi.org/10.11582/
2024.00024 in the NIRD research data archive: https://archive.sigma2.no/
pages/public/datasetDetail.jsf?id=10.11582/2024.00024. GFDL model data
from Raghuraman, et al.7,39 are available at https://doi.org/10.5281/zenodo.
4784726.
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