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A framework to assess permafrost thaw
threat for land transportation
infrastructure in northern Canada
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Prediction of permafrost stability is associated with challenges, such as data scarcity and climate
uncertainties. Herewepresent a data-driven framework that predicts permafrost thaw threat basedon
present ground ice distributions andground surface temperatures predicted viamachine learning. The
framework uses long short-term memory models, which account for the sequential nature of climate
data, and predicts ground surface temperature based on several climate variables from reanalysis
products and regional climate models. Permafrost thaw threat is then assessed for three cases in
northern Canada: Hudson Bay Railway, Mackenzie Northern Railway, and Inuvik–Tuktoyaktuk
Highway. The models predict ground surface warming in all studied areas under both moderate and
extreme climate change scenarios. The results also suggest that all studied cases are already under
threat, with the northern sections of the Hudson Bay Railway and Inuvik–Tuktoyaktuk Highway facing
an increasing threat by the end of the century.

Despite having 0.1 percent of the world’s population, the Arctic region
currently generates about 0.7 percent of the global gross domestic product,
mainly fromoil production,mining, food, and tourism.Over the recent past
decades, the Arctic region has experienced socioeconomic development,
e.g., the region’s share in global gross domestic product increased by 60
percent between 2005 and 20181,2. The socioeconomic outlook of the Arctic
is projected tochangeover the next fewdecades.Thepopulation innorthern
Canada and Alaska is projected to increase by 10% by 20553. The loss of sea
icedue to globalwarminghas providedmarine transportationopportunities
in the Arctic and subarctic regions. It has been reported that the marine
traffic in northern Canada, including shipping through the Northern Pas-
sage, commercial fishing, andmarine tourism, has nearly tripled during the
past 30 years. The transit times across the Northern Sea Route have been
reduced, mainly attributed to global warming and the subsequent loss of
sea ice4,5.

On the other hand, the warming of the climate system is the major
forcing in destabilizing permafrost, threatening communities and infra-
structure in the Arctic and subarctic mainland and coastal areas. Per-
mafrost, defined as the layer below the ground surface that remains at or
below 0 °C for at least two consecutive years, covers more than 15% of the
northern hemisphere and 50%of the landmass in theArctic Circle. It also
extends to the subarctic latitudes and exists in mountainous areas, mostly

in the form of discontinuous or sporadic patches of permafrost6–9. Cur-
rently, the Arctic permafrost area hosts about 5 million inhabitants living
in more than 1100 settlements10. About 44,000 km of roads, 7000 km of
railway, 380 airports, and 9500 km of pipelines have been built on the
Arctic permafrost11.

Observationsof the recentpast climate reveal thewarming in theArctic
region is higher than theglobal averages12. Between2007and2016, themean
temperature of continuous and discontinuous permafrost at the depth of
zero annual amplitude—the depth beneath which there is no annual tem-
perature fluctuation—increased by 0.39 ± 0.15 °C and 0.20 ± 0.10 °C,
respectively13. The sensitivity of permafrost to global warming, i.e., the area
of permafrost thawedas a result of 1 °Cglobalmeanwarming, is estimated at
4.0 million km2 per °C14. The thawing of permafrost has potential adverse
effects on global climate, ecosystems, communities, and infrastructure.
From a geotechnical perspective, the warming of permafrost is associated
with the loss of soil strength and results in ground deformations, ranging
from slow-paced creep to rapid thaw settlements and landslides15,16. In ice-
richpermafrost, the thawing is associatedwith a loss of soil volume in a brief
period of time, resulting in thermokarsts17. In addition to the existing
infrastructure, permafrost degradation also affects the design and planning
of new infrastructure. For instance, in the case of land transportation
infrastructure, the occurrence of thermokarsts, thaw slumps, and landslides
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may change or limit accessibility and hence require longer travel paths to
avoid unstable areas18.

Several studies assessed the regional impacts of permafrost degradation
on communities and infrastructure. It is estimated that by 2050, permafrost
will degrade inmore than500 communities, affecting 3.3million residents10.
By the mid-century, the majority of infrastructure on the Arctic permafrost
will be subjected to permafrost thaw11, which highlights the need for
adaptation measures19. The development of regional ground ice and soil
type distributions have facilitated the definition of vulnerability indices for
permafrost20,21. Near-surface (ambient) air temperature is often used as a
threat indicator for the thermal stability of permafrost due to the correlation
between ground temperature and atmospheric conditions above the ground
surface. Ambient temperature is one of the essential climate variables that
are available in global and regional climate predictionmodels. However, the
ground thermal regime is in fact, governed by the surface energy budget,
thermal properties of the ground, and the presence of groundwater and
ground ice16. Numerical simulations have been used to calculate the ground
thermal regime. Nevertheless, the multi-physics simulation of the surface
energy budget is challenging due to the multitude of physics involved, such
as ambient temperature, solar radiation, convection through wind, and the
effects of snow coverage and vegetation22. Ground surface temperature,
another indicator for permafrost stability, is the resultant of the surface
energy budget and has been used as the surface boundary condition in
geotechnical and soil science numerical simulations to eliminate the
inclusion of surface energy budget inmodels23. Ground surface temperature
is not as readily available as ambient temperature since its measurement
requires ground-mounted sensors and therefore, is often estimated from
ambient temperature via conversion factors, known as n-factors24. The n-
factors, however, neither reflect the effects of other components of the
surface energy budget nor their dynamic correlation in regard to climate
change. Moreover, climate prediction models often do not provide ground
temperature projections due to limitations in land surface schemes and the
complexity of the surface energy budget. Therefore, the prediction of a
robust indicator of permafrost degradation for threat assessments at local or
regional scales remains a challenge.

With the amount of collected data increasing exponentially, the data-
driven approach, including machine learning (ML), is nowadays widely
used to detect correlations, patterns, and trends. Several studies have been
conducted to estimate or forecast short-term ground temperature via data-
driven techniques, including artificial neural networks (ANN)25, extreme
learningmachines (ELM), generalized regressionneural networks (GRNN),
backpropagation neural networks (BPNN), random forests (RF)26, and
autoregressive integrated moving average (ARIMA)27. However, these stu-
dies generally do not regard the sequential nature of the data, i.e., the
correlation between climate variables in regard to time or address long-term
climate change uncertainties. Recurrent neural networks (RNN), including
long short-term memory (LSTM) and gated recurrent unit (GRU) net-
works, have recently been used to address temporal dynamics in time series
data28,29. LSTM and GRU have been utilized in the short-term prediction of
climate variables such as ground temperature and moisture, sea surface
temperature, and solar irradiance30–32. It has been shown that past weather
station records and projections from regional climatemodels can be used to
forecast long-term ground surface temperature in theArctic zone and lower
latitudes33. However, the implementation of this approach in regional and
subregional scales requires the input data to be available across the entire
study area, which in the case of ground temperatures measured from
boreholes, cover a small fraction of the Arctic and subarctic regions34.

The spatiotemporal scarcity of climate measurements has been
addressed by data assimilation and reanalysis models35,36. The reanalysis
process can synthesize data for decades back in time,which candemonstrate
the past changes in the climate system35. Among numerous reanalysis
products, the Modern-Era Retrospective Analysis for Research and Appli-
cations (MERRA2) and the European Reanalysis (ERA) family have been
used in a wide range of applications37,38. Studies on the Arctic, North
America, and Europe have reported improved performance of ERA5 in

comparison to MERRA2 and other global reanalysis products39,40. ERA5-
Land, the land component of ERA5 for land surface applications, provides
land surface climate data from 1950 to the present at a spatial resolution of
0.1° x 0.1° (~9 km)41. The ERA5-Land estimates have been previously
evaluated in the circumpolar permafrost and the lower latitudes42–44. They
reported an overestimation of ground temperatures, i.e., warm bias, in
circumpolar permafrost in Alaska and Western Canada, and an under-
estimation in Qinghai–Tibetan Plateau’s mountain permafrost, resulting in
an average bias of –0.08 °C42. Reanalysis products have been used for
training machine learning models for short-term climate forecasting due to
their potential in addressing temporal and spatial scarcity of climate
variables45–47.

This study aims to address several challenges in permafrost thaw threat
assessments, including the spatiotemporal scarcity of ground temperature
data, themultivariate correlation between ground temperature and ambient
climate variables, and the infeasibility of high-resolution multi-physics
numerical simulations in regional scales. In this regard, a framework was
developed to assess permafrost thaw threat by predicting long-term ground
surface temperatures using reanalysis data (ERA5-Land) and regional cli-
mate projections (CanRCM). The framework calculates a thaw index, based
on the projections of ground surface temperature and the present dis-
tribution of ground ice, which provides a rapid assessment of permafrost
thaw threat at regional and subregional scale. Furthermore, theperformance
of the framework is evaluated, and thaw indices for permafrost degradation
are presented for threemajor land transportation infrastructure in northern
Canada: Hudson Bay Railway, Mackenzie Northern Railway, and the
Inuvik–Tuktoyaktuk Highway.

Study cases
Hudson Bay Railway
The Hudson Bay Railway, known by the reporting mark HBRY, is a
1300 km railway extending between Flin Flon on the Manitoba-
Saskatchewan border and the port of Churchill in northwest Manitoba
(Fig. 1). It was also the name of the historic railway betweenWinnipeg and
Churchill that was completed by the early 1930s. The railway brings freight
and passenger train access to several communities in northern Manitoba
and is the sole land link to Churchill. Churchill is a strategic port that
provides access to the Northwest Passage, also known as the polar bear
capital of the world, which is a major tourist attraction in the province.

Crossing the permafrost front, there is a northward transition from
sporadic permafrost near Thompson, to extensive discontinuous perma-
frost, and continuous permafrost fromM’Clintock to Churchill. During the
railway’s operation history, settlements had occurred along embankments
in many locations, which required backfilling with large amounts of gran-
ular fill. Settlements as much as 100–150mmdue to the thawing of ice-rich
permafrost have been reported48. Ground ice exists in the formof segregated
ice in the area, according to the ground ice map of Canada20. The section
between Gillam to Herchmer, which lies on extensive discontinuous per-
mafrost, has been reported to be the most problematic in terms of flooding
and thaw settlements49,50. In this study, the 400 km section between
Thompson and Churchill was chosen as a study area.

Mackenzie Northern Railway
TheMackenzie Northern Railway, identified by the reporting mark RLGN,
is a 969km long railway that runs fromGrimshaw inAlberta toHayRiver in
the Northwest Territories. Construction of the railway began in 1961 and
was completed in1964.TheMackenzieNorthernRailway is theonly railway
in Canada that intersects the 60th parallel. Hay River, which serves as a hub
for rail, river, and road transportation, marks the northernmost point of the
contiguous North American railway network. The railway plays a critical
role in the transportation of land freight to the Northwest Territories, with
around 50 percent of all freight being carried by it, making it an essential
lifeline for the communities and mining industry in the region.

The railway traverses the permafrost front, transitioning from sporadic
permafrost southward to discontinuous permafrost extending between
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High Level and the Alberta-Northwest Territories boundary. Ground ice
exists in the form of segregated ice. Although there are no reports of direct
damage to the railway due to permafrost thawing in the literature, the
railwayoperateswith a limited restriction of 220,000 lbs, which is lower than
the national standard of 286,000 lbs. For the purpose of this study, the
969 kmsection of the railway betweenGrimshawandHayRiverwas chosen
for calculating permafrost thaw indices.

Inuvik–Tuktoyaktuk Highway and Dempster Highway
The Inuvik–Tuktoyaktuk Highway, also known as Northwest Territories
Highway 10, is an all-weather road spanning 138 km between Inuvik and
Tuktoyaktuk inMackenzieDelta in theNorthwest Territories. The highway
opened to the public in 2017, following the start of construction in 2014.The
road is built on both discontinuous and continuous permafrost, with
abundant ground ice present in the form of segregated, relict (buried gla-
cier), andwedge ice. The area has experienced abrupt changes in permafrost

due to climatewarming, aswell as thawing caused by construction activities.
These changes have resulted in settlements, embankment instability, and
retrogressive thaw slumps51. This study assesses a 324 km section of the
highway, including the Inuvik–TuktoyaktukHighway and a 186 km section
of the Dempster Highway within the Northwest Territories, between Fort
McPherson and Inuvik.

Results
Validation and errors
A blind validation scheme is taken to validate the predictions and evaluate
the model performance by comparing the predicted ground surface tem-
peratures versus ERA5-Land counterparts over a test period excluded from
the training data. Here, the ERA5-Land data serves as the actual data since it
has been used for model training and validation. The predicted and actual
daily ground surface temperatures at selected points of interest and the
predicted and actual mean annual ground surface temperatures at all grid

Fig. 1 | Location of case studies. a Hudson Bay Railway. bMackenzie Northern Railway. c Inuvik–Tuktoyaktuk/Dempster Highway. Satellite imagery: Google, Landsat/
Copernicus, IBCAO. Map sources: Esri, HERE, Garmin, FAO, NOAA, USGS, ⓒOpenStreetMap contributors, and the GIS User Community.
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nodes are presented for a test period between 2017 and 2023 for each study
area, as shown in Fig. 2. The models’ ability to predict ground surface
temperature over the test period was evaluated using various statistical
metrics, including bias,mean absolute error (MAE), rootmean square error
(RMSE), andmaximumabsolute error (MaAE) at each node. The summary
of errors,which includes themean andmaximumspatial bias,MAE,MaAE,
and RMSE, is presented in Table 1. The errors at each grid node are pre-
sented in Supplementary Data 1.

It should be noted that the validation of the models was not con-
ducted on the projection dataset due to the lack of the dependent variable in
the projection dataset (CanRCM) and the fact that even in the presence of a
labeled projection set, treating climatemodels’predictions as “actual”would
not result in a meaningful evaluation, considering their inherent uncer-
tainties. Therefore, only the test dataset was used for the purpose of
validation.

The ground ice indices used in the forecasting frameworkwere derived
from the Ground Ice Map of Canada (GIMC), in which the ground ice
abundance has been evaluated and found to be consistent with observations
at several study sites, includingMackenzieDelta andHudson Bay lowlands.
For more information on the evaluation approach for ground ice content,
the reader is referred to the Ground Ice Map of Canada’s publication20.

Ground surface temperature and thaw index projections
The CanRCM projection datasets were used to model ground surface
temperatures under RCP 4.5 and RCP 8.5 scenarios until the year 2100.
Mean annual temperatures were then calculated and compared at two
specific instances:mid-century and end of the century.However, to account
for the interannual variability of the climate, the decadal averages of

Fig. 2 | Validation of model predictions. a–cComparison of daily predicted and actual (ERA5-Land) ground surface temperatures over the test period. d–fComparison of
predicted and actual MAGST at grid nodes and points of interest over the test period.

Table 1 | A summary of ground surface temperature prediction
errors, including the spatial mean and maximum for each
study region

MBE MAE MaAE RMSE

μ

[∘C]
max
[∘C]

μ

[∘C]
max
[∘C]

μ

[∘C]
max
[∘C]

μ

[∘C]
max
[∘C]

Hudson Bay Railway 0.38 1.40 0.44 1.40 0.72 1.96 0.28 2.05

Mackenzie Northern
Railway

0.23 1.05 0.34 1.05 0.65 1.58 0.19 1.20

Inuvik–Tuktoyaktuk
Highway

0.13 1.33 0.39 1.33 0.80 2.03 0.24 1.94

The errors are calculated as temporal averages over the test period. The temporal errors at each
node are presented in the Supplementary Data 1 in detail.
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1950–1960, 2010–2020, 2040–2050, and 2090–2100 were selected to
represent the past, present, mid-century and late-century milestones. The
plots ofmean annual ground surface temperature (MAGST) (Fig. 3) reveal a
notable variation in temperature across the examined regions and
demonstrate the warming of the ground surface with respect to climate
change.

Using these ground surface temperature projections, thedistributionof
the thaw index is calculated across the study areas for the present time,mid-
century, and by the year 2100 under both moderate and extreme climate
change scenarios (Fig. 4 and Supplementary Data 2–3). The plots indicate a
spatial variation in the thaw index within and between the studied regions
following ground surfacewarming and the existing ground ice. Notably, the
discontinuous spatial variation of the thaw index within study areas largely
follows ground ice content, as MAGST (as shown in Fig. 3) is relatively
uniform across the study regions.

For a quantitative presentation of ground surface warming due to
climate change and the subsequent threat to permafrost, MAGST
anomalies and the thaw indices are plotted versus time at the major
points of interest (Fig. 5 and Supplementary Data 4). The results reveal
that by the end of the century, MAGST at the major points of interest will
increase by 1.03–2.90 °C and 3.48–4.82 °C under RCP 4.5 and RCP
8.5 scenarios, respectively (Fig. 5a, b). The models also indicate higher
warming at the Mackenzie Delta (Inuvik–Tuktoyaktuk Highway and
Dempster Highway) site, which may be attributed to the Arctic ampli-
fication phenomenon52.

According to the thaw index distributions (Fig. 4), the thaw index
gradually increases northeastward in the Hudson Bay Railway study area,
which is generally aligned with the ice content distribution. A minor
increase in thaw index versus time has been observed at Churchill and
Herschmer stations (Fig. 5c, d). Also, by plotting the thaw index at points
of interest along the studied infrastructure (Fig. 6), it is possible to spec-
ulate that the abrupt rise in thaw index between the Herchmer and
M’Clintock could indicate the boundary between affected and unstable
permafrost. This supposition is based on two observations. Firstly, the
thaw index in the south ofHerchmer appears to be relatively unaffected by
time and climate change scenarios (Fig. 4), which could suggest that
thawing has already begun in this region. Additionally, previous reports
have indicated that the majority of settlements occurred between Gillam
and Herchmer49,50, which implies that the thaw front is shifting towards
the northeast.

In theMackenzie Northern Railway study site, the thaw index remains
unchanged despite the projected warming in the area due to climate change
(Fig. 4). South of Paddle Prairie, the thaw index is nil due to the absence of
excess ground ice and then increases northward, where the discontinuous
path of permafrost exists, before decreasing toward the Hay River. As
already speculated above, no changes in the thaw index between the present
time and the future at this site would imply that the thawing has already
begun, which can be supported by relatively higher ground surface tem-
peratures than the other study areas.

Of all the study regions, the Mackenzie Delta area, including the
Inuvik–Tuktoyaktuk Highway and Dempster Highway, exhibited the
highest levels of thaw indices (Fig. 4). Also, contrary to the other study
regions, the thaw indices will noticeably change over time and with respect
to climate change. For instance, inTuktoyaktuk, the thaw indexwill increase
from approximately 0.15 in 2010–2020 to 0.34 and 0.62 in 2090–2100,
underRCP4.5 andRCP8.5, respectively (Fig. 5c, d). It is noteworthy that the
thaw index was found to be nil at the exact location of the Fort McPherson
hamlet (Fig. 6) due to the absence of excess ground ice, according to the
Ground Ice Map of Canada. However, the distribution of the thaw index
(Fig. 4) indicates abrupt changes in the vicinity of FortMcPhersondue to the
abrupt changes in the ground ice content. It should also be noted that
the jaggedness of thedistributionmapalong theArctic coastline is due to the
difference between coastline boundaries in ERA5-Land and CanRCM,
which causes inconsistent model inputs and results in null predictions by
the model.

Discussion
It is important to note that the developed thaw indices present the risk in
comparison to the present conditions. In other words, the thaw index at a
given point in time (t) estimates the overall risk of instability thatmay occur
by (t), relative to present conditions. This approach might provide a better
correlation with risk assessment practices, as stakeholders often seek to
understand the threats posed to infrastructure during its design life.

Monitoring the thaw index changes over time and atmultiple instances
in the future can provide insights into the periods in which thawing threats
are more likely to occur. Also, it can help determine whether the infra-
structure is already at risk, or if the impacts are expected in the future. A
summary of possible cases for thaw index and their interpretation is pre-
sented in Table 2. The predictions of MAGST suggest warming of the
ground surface by the end of the century, with an average of 2.1 °C and
4.1 °C at studied sites under theRCP4.5 andRCP8.5 scenarios, respectively.
However, the thaw index depends on whether the present and projected
ground temperatures are above or below the freezing point. An above-zero
MAGST at present implies that permafrost, if present, is already subject to
thaw. Among the areas of study, theMackenzie Northern Railway area and
the southern section of the Hudson Bay Railway area are examples of this
condition. It should be noted that the abundance of ground ice also governs
the magnitude of the threat. The thaw index is nil, i.e., interpreted as no
significant risk, when no ground ice is present at the site. However, this
interpretation is only valid within the definition of ground ice indices and
should not be used to draw conclusions about any unaccounted type or
depth of ground ice, such as seasonal ground ice within the active layer. On
theotherhand, an increase in thaw indexversus time implies thatMAGST is
currently below or at freezing temperature but will warm up well above
freezing point, posing a further threat in the future. Yet, based on the
definition of the thaw index, the magnitude of the threat depends on the
ground ice abundance at the site. An example of this pattern was observed
across the Mackenzie Delta and the northeast part of the Hudson Bay
Railway area.

The range of errors in ground temperature predictions, with a mean
RMSE of less than 0.3 °C andMaAE of less than 2 °C, indicates an accuracy
that makes the results suitable for many applications. For studies at the
regional and subregional scales, the proposed thaw index provides a rapid
assessment of permafrost thaw threat by including both elements of climate
warming and the presence of ground ice, which are not currently addressed
by the traditional practice, such as the n-factors method. Scalability is
another advantage of the proposed approach. Once the machine learning
models are trained for a study area, various projection datasets, i.e., inde-
pendent variables from different climate models or under various climate
change scenarios, can be used to predict a range or ensemble of thaw threats
without needing the models to be re-trained.

The proposed approach also has potential in local or engineering-scale
threat assessments. The complexity of the surface energy budget in thermal
and thermo-hydro-mechanical simulations can be reduced by using the
framework’s long-term predictions of ground surface temperature as
boundary conditions, facilitating detailed simulation of permafrost stability
under the infrastructure subject to climate nonstationarity. The AI-based
long-term predictions of ground surface temperature address the short-
comings of the traditional n-factors method by the inclusion of climate
nonstationarity and themultivariate nature of the surface energy budget. In
this study, ambient temperature, solar radiation, wind speed, and snow
depth were used as model features. If available, additional independent
variables with high spatial variation, e.g., snow density and vegetation, can
be included as training features, to improve model predictions locally.
However, it is crucial to ensure such features are present in both the training
and projection datasets used in the framework. Moreover, the proposed
thaw index formulation can be refined to address local elements with high
spatial variation. Some examples of such data are subsurface conditions,
permafrost depth, drainage, and the presence of taliks. Furthermore, digital
elevationmodels and soil information datasets, e.g., SoilGrids53, can provide
additional information, including ground surface slope and thermal
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Fig. 3 | Distribution of past, present, and projected mean ground surface tem-
peratures. a–d Hudson Bay Railway. e–hMackenzie Northern Railway.
i–l Inuvik–Tuktoyaktuk/Dempster Highway. a, e, i ERA5-Land 1950–1960 mean.

b, f, j CanRCM 2010–2020 mean. c, g, k 2090–2100 predicted mean under RCP 4.5.
d, h, l 2090–2100 predicted mean under RCP 8.5. Background satellite imagery:
Google, Landsat/Copernicus, IBCAO.
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Fig. 4 | The present and projected distribution of permafrost thaw index.
a–d Hudson Bay Railway. e–hMackenzie Northern Railway.
i–l Inuvik–Tuktoyaktuk/Dempster Highway. a, e, i Present (2020) estimate.

b, f, j Prediction by 2050 prediction under RCP 4.5. c, g, k Prediction by 2100 under
RCP 4.5. d, h, l Prediction by 2100 under RCP 8.5. Background satellite imagery:
Google, Landsat/Copernicus, IBCAO.
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properties of soil, which can further improvemodel performance, especially
in local-scale threat assessments.

It should be noted that this paper aimed to demonstrate an
overview and potential of the proposed AI-based framework. Here,
equal weight factors were assumed for different types of ground ice.
However, different types of ice can pose varying degrees of hazards to
infrastructure in cold regions. For example, retrogressive thaw
slumps are more common in relict ice, while the thawing and for-
mation of segregated ice lenses are associated with frost heaving and
thaw settlement54,55. Hence, weight factors could be adjusted to define
thaw indices that represent specific threats to the infrastructure,
depending on the subject and scope of the threat assessments.

The data-driven approach implies that the performance of the fra-
mework in predicting the thaw index would be heavily dependent on the

training and projection data. In other words, the predictions inherit the
uncertainties in training and projection datasets, in this study, ERA5-Land,
CanRCM, and GIMC. These datasets were selected due to their spatial
continuity to obtain spatial distributions of the thaw index. In the presence
of training data with less uncertainty, such as directmeasurement of climate
variables from weather stations at points of interest, the framework could
predict the local thaw index with reduced uncertainty. Moreover, this study
used classic LSTM models to predict ground surface temperatures, which
resulted in prediction errors on par with uncertainties in the ERA5-Land
training data. Yet machine learning is an area of rapid evolution, and
therefore, the framework could benefit from more advanced machine
learning methods for sequential data, subject to further evaluation. Addi-
tionally, to address the uncertainties in projected independent variables, an
ensemble of climate projections could be used, which would result in an

Fig. 5 | Projections of mean annual ground surface temperature anomalies and
permafrost thaw index. a, bMean annual ground surface temperature anomalies
(2010–2020 baseline). c, d permafrost. The projections by 2100 under RCP 4.5 and

RCP 8.5 climate change scenarios are presented for points of interest. The projec-
tions have been aggregated and presented as biennial means to improve readability.
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ensemble of GST and ice content based on various climate models and
scenarios.

Conclusion
In conclusion, the developed threat assessment framework can address
several challenges in the assessment of permafrost thawing threats,
including the spatiotemporal scarcity of ground temperature data, com-
plexity of surface energy budget, and the lack of tools for rapid assessment of
permafrost thaw at the regional and subregional scales.

Using a data-driven approach assisted bymachine learning techniques
tailored for sequential data, the framework takes into considerationmultiple
elements of the surface energy budget as well as the dynamic nature of the
climate system. The evaluation of the machine learning models indicated a
consistency between the predictions and test data. The accuracy of pre-
dictions can be further enhanced in the presence of more robust training
data or with the addition of information layers due to themodular structure
of the framework.

The studied cases reveal the dynamic nature of thawing threats,
including temporal and spatial variety. All studied regions demonstrated
thawing threats. The northern section of the Hudson Bay Railway and the
majority of the Mackenzie Delta region will experience shifting thawing
fronts and an increased risk of thawing due to ongoing global warming in
the near future. Meanwhile, the other studied regions have already experi-
enced or are currently facing instabilities due to thawing.

Based on the results, the proposed thaw threat assessment framework
can be useful in a wide range of applications, including but not limited to
engineering design, infrastructure asset management, and environmental
stewardship. By providing a more comprehensive understanding of the
potential threats associated with permafrost thaw, stakeholders can better
assess, adapt to, and mitigate the impacts on infrastructure and commu-
nities. The framework can also inform decision-making processes, such as
the selection of optimal locations for infrastructure development and the
allocation of resources for maintenance and repairs. The authors hope this
study will stimulate further research into the development of more robust
threat assessment frameworks.

Method
Threat assessment framework
The threat to the infrastructure due to warming permafrost is related to the
extent of ground icemelted underneath. It is governed by the thermal regime
in the ground and how it is affected by the warming climate. The ground
thermal regime in the permafrost regions generally involves an active layer,
i.e., the top layer of soil above permafrost that thaws and freezes seasonally,
ranging from a fraction of a meter to a few meters in depth. The active layer
thickness (ALT) can be affected by changes in the surface energy budget due
to climate change or man-made alterations of the ground surface, such as
water ponding, embankment, or snow accumulation. In cases where the

Fig. 6 | Present and predicted permafrost thaw index along the studied infrastructure. aHudson Bay Railway. bMackenzie Northern Railway. c Inuvik–Tuktoyaktuk/
Dempster Highway. Note: the horizontal distances between the data points on the plot do not reflect the actual distance between the points of interest.

Table2 | Interpretationof thawthreat basedon thepresent and
predicted thaw index

It
t0 ½present� It

ti ½future� Threat Interpretation

Low Low If Is, Iw, Ir ≈ 0: No significant threat at t0 ≤ t ≤ ti, [no ground ice]

If Is, Iw, Ir ≥ 0: No significant threat at
t0 ≤ t ≤ ti, [fðMAGSTÞt0 ;ti≈ 0]

Low High Stable at t0, but will be under threat by ti,
[fðMAGSTÞt0≈0, fðMAGSTÞti>0]

High High Currently under thaw threat

https://doi.org/10.1038/s43247-024-01317-7 Article

Communications Earth & Environment |           (2024) 5:167 9



increase in Active Layer Thickness (ΔALT) extends to the permafrost
boundary, it initiates thawing since the affected zone is no longer subject to
sub-freezing temperatures. The thawing threat, i.e., the response of the frozen
ground to changes in ground temperature, however, depends on soil type and
the abundance, depth, and type of ground ice in the affected zone. Therefore,
the changes in the ground thermal regime and the ground ice content are two
key elements for threat assessment frameworks in regard to permafrost thaw.

The framework developed in this study (Fig. 7) uses an AI-based
scheme topredict ground surface temperatureby2100,which is an indicator
and a major driver affecting the ground thermal regime. It should be noted
that the direct inclusion of ΔALT in the thaw index, while theoretically
feasible, is often associated with greater uncertainties56. Therefore, and due
to the scale of this study, mean annual ground surface temperature
(MAGST) is used to represent the changes in the ground thermal regime. In
regard to thaw susceptibility, the framework incorporates indices for the
present abundance of various types of ground ice. The permafrost thaw
threat index (It) is defined as:

It ¼ f ðMAGSTÞ � βsIs þ βwIw þ βrIr
� � ð1Þ

where f is the thaw criteria function, the subscriptions w, r, and s stand for
segregated, wedge, and relict ground ice, respectively, and β and I are weight
factors and ground ice abundance indices, respectively. The thaw criteria
function represents the impact of MAGST on the ground thermal regime
and how changes in MAGST may result in thawing. At its simplest form,
0 °C is often defined as the border between frozen and unfrozen states, i.e.,
the function f is defined as a step function changing values from 0 to 1 at
0 °C. However, permafrost can exist where MAGST is above 0 °C due to
differences in thermal conductivity of the active layer when frozen or

thawed, which is known as the thermal offset57,58. Therefore, a non-linear
thaw criterion is defined as:

f ðMAGSTÞ ¼ 1
1þ e�MAGST

ð2Þ

Ground temperature prediction scheme
Theground thermal regime is governedby the surface energy budget, i.e., the
fluxes and processes that balance the energy between the ground and
atmosphere. Several elements of the surface energybudget, for instance, solar
radiation, wind, snow cover, and vegetation, are known to affect ground
surface temperature. Therefore, it can be regarded as a supervised machine
learning problem inwhich the ground surface temperature is the dependent
variable, and conditions above the ground surface, such as ambient tem-
perature, solar radiation, and snow depth, are independent variables.

The ground temperature forecasting scheme uses LSTM at its core.
Models are individually trained over a geospatial grid using historical
sequences of the dependent and independent climate variables fromERA5-
Land reanalysis. In this study, themodelswere trained byERA5-Landover a
0.1° x 0.1° spatial grid for each study site. The ambient temperature, short-
wave and long-wave downward radiation, north-south and east-west wind
speed, and snowdepthwere chosen as independent variables. For eachnode
on the grid, the dataset contained daily values between 1950 and 2022,
comprising more than 26,000 entries per node. The dataset was split into
training and test sets in a 75%-25% ratio. A k-fold analysis was conducted in
advance to monitor the model’s performance with respect to unseen data.
Once the models were trained, the independent variables from a regional

Fig. 7 | Schematics of the permafrost thaw threat assessment framework. The
machine learning models are trained bymulti-feature labeled data from ERA5-Land
to predict ground surface temperature using CanRCM projections. The predicted
ground surface temperatures and ground ice distributions are then used to calculate

the thaw index, representing the permafrost thaw threat. Additional data, such as
local subsurface properties and active layer depth, if available, can be integrated into
the model to enhance accuracy at the local scale.

https://doi.org/10.1038/s43247-024-01317-7 Article

Communications Earth & Environment |           (2024) 5:167 10



climate model, in this case, daily projections of CanRCM, were fed to the
models to predict daily ground surface temperatures over the grid. The
MAGST is then calculated for RCP 4.5 and RCP 8.5, representingmoderate
and extreme climate change scenarios.

LSTMtheory. LSTMs, as recurrent neural networks in general, are chains
of repeating units. Each unit consists of a cell, which remembers values
over time intervals, and gates that regulate the flow of information into
and out of the cell. A classic LSTM cell has three cells: forget gate, an
update (input) gate, and an output gate. The forget gate decides what
information has to be removed from the cell state, i.e., forgotten from the
memory. The input gate decides whether the cell state has to be updated,
and the output gate controls the information passed to the next hidden
state. During the forward pass in a classic LSTM, the forget gate first
inspects the input data, the output of the previous cell and decides
whether the information has to be kept or ignored:

f t ¼ σ Wf � ht�1; xt
� �þ bf

� �
ð3Þ

where ft is the forget gate activation vector, σ() is the sigmoid function, xt is
the input vector, ht−1 is the hidden state vector of the previous cell, andWf

and bf are theweightmatrices andbias vector of the forget layer, respectively,
whichare learntduring training.Theupdate gatedecideswhich information
needs to be added to the cell state:

it ¼ σ Wi � ht�1; xt
� �þ bi

� � ð4Þ

in which it is the input (update) gate activation vector, and Wi and bi are
weight matrices and the bias vector of the update gate, respectively. A cell
input candidate vector is then created as:

~ct ¼ tanh Wc � ht�1; xt
� �þ bc

� � ð5Þ

where ĉt is the vector of newcandidate values, tanh() is thehyperbolic tangent
function, andWc and bc are the weightmatrices and bias vector, respectively.
Having the forget and update activation vectors, ft and it, the updated can-
didates ctand theprevious cell’s state ct−1, the current cell state ct is updatedas:

ct ¼ f t � ct�1 þ it � ~ct ð6Þ
Finally, the cell output ht is calculated from the cell state ct and the

activation vector of the output gate ot, as follows:

ot ¼ σ Wo ht�1; xt
� �þ bo

� � ð7Þ

ht ¼ ot � tanh ct
� � ð8Þ

whereWo and bo are theweightmatrices andbias vectors of the output layer,
respectively, which are learned during the training.

Table 3 presents the parameters used for model training. The para-
meters, such as the sequence length and the number of hidden units, have
been selected based on sensitivity analyses in a previous study33.

Ground ice indices
The ground ice indices Is, Iw, Ir are based on theGround IceMap of Canada
(GIMC)20. The GIMC uses a paleogeographic approach to model and
present the abundance of ground ice in the top 5 m of permafrost across
Canada. It classifies ground ice into three categories as:
• Relic ice: Bodies of ice that are preserved under overburden, either in

the form of buried glacier ice or intrasedimental ice. In Canada, relict
ice is most abundant in continuous permafrost in the western Arctic,
which has remained preserved in glaciogenic sediments.

• Segregated ice: Ice layers that are formed by migration of pore water
toward the freezing front, which are widely distributed in fine-grained
deposits of glacial lakes and marine sediments.

• Wedge ice: Ice that is formed by infilling water in thermal cracks in the
ground and grown over time by repeated cracking, infilling, and
freezing. It is mostly present in the western Arctic.

For each type of ground ice, GIMCqualitatively reports the abundance
as high, medium, low, negligible and none. Here, in order to develop the
ground ice indices, the GIMC’s rasters for each type of ground ice type were
sampled over the ERA grid in the GIS software. The sampled data was then
transferred into the normalized quantitative form to obtain Is, Iw, Ir, each
ranging from 0 (no ground ice) to 1 (high abundance), as shown in Table 4.
It should benoted that the differences in thawing effects for different ground
ice types were not in the scope of work of this study. Therefore, the weight
factors were assumed as βs, βw, βr = 0.33, resulting in the thaw index It
ranging from 0 to 1.

Data availability
The ERA5-Land data products are available on the European Center for
Medium-RangeWeather Forecasts’s (ECMWF) Climate Data Store (CDS)
under the Creative Commons Attribution 4.0 International (CC BY 4.0)
license at https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.
e2161bac59. TheCanRCMprojections are accessible at the CanadianCenter
for Climate Modeling and Analysis data store under the owner’s unrest-
ricted license at https://climate-modeling.canada.ca/climatemodeldata/
canrcm/CanRCM460. The ground ice map of Canada is available on Nat-
ural Resources Canada’s GEOSCAN database under the Government of
Canada’s Open Government License at https://ostrnrcan-dostrncan.
canada.ca/entities/publication/8824ac4e-77b9-4cc8-86b5-4aea4ba7e91261.
The authors have publicly released model outputs and evaluation results
(Supplementary Data 1–4) at https://zenodo.org/records/10506941and the

Table 3 | Training/test set and LSTM parameters used to train models at each study area

Test set ratio Epochs Batch Size Input units Sequence length Layers Hidden units

25% 50 100 6 7 1 50

Optimum model parameters were chosen based on sensitivity analyses using a similar model configuration33.

Table 4 | Quantization of ground ice indices for segregated, wedge, and relic ice based on the presence of excess ground ice in
the top 5 meters of permafrost from Ground Ice Map of Canada20

None Negligible Low Medium High

% Is,w,r % Is,w,r % Is,w,r % Is,w,r % Is,w,r

Segregated ice 0 0 > 0− 2 0.25 > 2− 5 0.5 > 5− 10 0.75 > 10 1

Wedge ice 0 0 > 0− 2 0.25 > 2− 5 0.5 > 5− 10 0.75 > 10 1

Relict ice 0 0 > 0− 2 0.25 > 2− 5 0.5 > 5− 10 0.75 > 10 1
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source data for graphs at https://zenodo.org/records/10507395, both under
the Creative Commons Attribution 4.0 International (CC BY 4.0)
license62,63.

Code availability
The authors have publicly released the ground surface temperature fore-
casting framework source code under the GNU General Public License 3.0
(GPLv3) at https://github.com/siglab-team/janus64.
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