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Hydrological drought forecasts using
precipitation data depend on catchment
properties and human activities

Check for updates

Samuel Jonson Sutanto , Wahdan Achmad Syaehuddin & Inge de Graaf

Hydrological Drought Early Warning Systems play a crucial role in effective drought planning and
management, as the impacts of drought are more closely associated with hydrological droughts than
meteorological ones. However, current systems primarily focus on meteorological drought forecasts
due to the limited access to hydrological data. Here we assess the feasibility of forecasting drought in
streamflow and groundwater by solely using precipitation data. The results demonstrate that
meteorological drought forecasts derived from the Standardized Precipitation Index with 6-month
accumulation periods and various lag times hold the potential to predict streamflow and groundwater
droughts. This study also highlights the importance of catchment properties in hydrological drought
predictions. Our findings present an opportunity for developing hydrological drought early warning
system globally to reach the goal of the Sendai framework for disaster risk reduction by 2030 and
support the initiative of early warnings for all.

Hydrological droughts, characterized by their creeping onset andprolonged
duration, impose substantial human and economic losses, leading to a wide
range of impacts1–3. In response, many countries have established Drought
EarlyWarningSystems (DEWSs) to reduce the adverse impacts of droughts.
Yet, the current focus remains predominantly on meteorological drought
forecast with short lead time4,5. Many reported drought impacts, on the
other hand, are more closely associated with hydrological droughts rather
than meteorological ones, spanning critical areas such as public water
supply, water-borne transportation, low hydropower energy production,
and fisheries6–8. This calls for the development of hydrological DEWSs
capable of providing timely and accurate information on impending
hydrological drought events several months in advance, which is an indis-
pensable prerequisite for effective drought planning and management.

Despite the importance of hydrological drought forecasts, the devel-
opment of hydrological DEWShas been hindered by various obstacles. One
major challenge lies in the limited availability of hydrological data, both for
observations and forecasts, especially when compared to the readily acces-
siblemeteorological data (e.g., precipitation),which is available at a global or
country scale. Moreover, forecasting hydrological droughts require a state-
of-the-art hydrological model that simulates relevant hydrology and
atmospheric interactions5. Although hydrological models, such as LIS-
FLOOD, themesoscale hydrologicalmodel (mHM), the variable infiltration
capacity (VIC) model and the Xinanjiang hydrological model (GXAJ) have

been implemented formonitoring and forecasting hydrological droughts in
various regions5,9–12, not all countries have the capacity to develop and
operationally run the hydrological models. This limitation has resulted in
hydrological DEWSnot gaining important attention on political agendas in
some European countries, particularly in the global south, where emphasis
has been on the development of meteorological drought monitoring and
DEWS4. It is important to distinguish betweenmeteorological droughts and
hydrological droughts13–16. Meteorological drought may not always propa-
gate into hydrological droughts, which means that meteorological drought
cannot straightforwardly be used to predict drought in groundwater or river
flow. On the contrary, hydrological droughts are consistently preceded by
meteorological drought in the absence of anthropogenic influences17.

To bridge the gap in developing hydrological DEWS in regions with
limited hydrological data and provide valuable insight into predicting
hydrological droughts, we present a pioneering study in drought forecasting
by utilizing seasonal precipitation forecasts. The aim was to assess the
relation between meteorological and hydrological droughts, and under
which assumptions meteorological droughts can be used to predict
streamflow and groundwater droughts. Our study focuses on the identifi-
cation of hydrometeorological droughts using the Standardized Precipita-
tion Index (SPI)18 for meteorological drought, and the Standardized
Streamflow Index (SSI-1)19 and the Standardized Groundwater Index
(SGI-1)20 for drought in streamflow and groundwater, respectively. We
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focused our study in Europe, mainly motivated by the availability of high-
resolution data that was used for themethod and to evaluate the results. The
streamflow and groundwater droughts were derived from the streamflow
and groundwater data simulated using the LISFLOOD model. The LIS-
FLOODmodel simulates the full water cycle and is driven by observed and
forecasted weather data to obtain the proxy observed data and forecasts,
respectively21,22. To assess the relationship between meteorological and
hydrological droughts, a Pearson’s correlation analysis and a time-lagged
cross correlation were conducted, respectively23,24. Lastly, we evaluated the
performance of drought forecasts using the Brier Score (BS)25 (Methods).
Our results demonstrate that the SPI-6with 1month lag timeemergedas the
most effective predictor for forecasting hydrological droughts in numerous
regions across Europe. The SPI-6 forecast performance remains comparable
when evaluating hydrological droughts based on SSI-1 and SGI-1 forecasts.

Results
Correlation between meteorological and hydrological droughts
The standardized drought indices, such as SPI, SSI, and SGI quantify how
the hydrometeorological data deviates from the long-term mean (see
“Methods” section). To investigate the relation betweenmeteorological and
hydrological droughts in Europe, we calculated the SPI-x with different
accumulation periods (x = 1, 3, 6, and 12) based on observed data from1991
to 2022. These SPI valueswere then correlated with proxy observed of SSI-1
and SGI-1 (Fig. 1). The results are visualized in boxplots showing the dis-
tribution of correlation values, including the 25th percentile, median, and
75th percentile, for all grid cells in Europe. The Pearson correlation values
exhibit spatial variability and vary across different accumulation periods,
ranging from −0.1 to 1. Among different accumulation periods, SPI-6
generates the highest correlation with SSI-1, with a median correlation of
0.39. SPI-12, however, yields a slightly lower correlation value of 0.35
compared to SPI-6 although the difference is not substantial. As expected,
the shortest accumulation period, SPI-1, generates the lowest median cor-
relation of 0.02, which is also the case for correlation with SGI-1. The
correlation between SPI-1 and SGI-1 has amedian correlation value of 0.23,
which is the lowest compared to all accumulation periods. Notably, the
correlation between SPI-x and SGI-1 is highest for SPI-6 (0.56), though the
result is similar to SPI-12 (0.54).

Further analysis reveals that the correlation between SPI-x and the
drought indices vary across different regions of Europe (Supplementary
Fig. 1). In general, SPI-1 shows weak correlation with SSI-1 inmost parts of

Europe, except for specific regions such as the Pyrenees, south of England,
north of Sweden, and Turkiye (Supplementary Fig. 1a). Similarly, SPI-6,
despite displaying the highest correlation overall, exhibits lower correlations
inmountainous areas like thePyrenees, northof Sweden,Norway,Alps, and
north of Italy (Supplementary Fig. 1b), associated with the coarse model
resolution in these regions26. Rivers located in Portugal, France, Germany,
south of England, and east Europe showa strong correlationwith SPI-6. The
correlation between SPI-1 and SGI-1 is higher compared to SSI-1 in many
regions of Europe (Supplementary Fig. 1a, c). Nonetheless, the correlation
increases when longer accumulation periods are used e.g., SPI-6 (Supple-
mentary Fig. 1d). Notably, several regions in Europe demonstrate higher
correlation values between SPI-6 and SGI-1 rather than with SSI-1.

To summarize the correlation patterns, we present the correlation
values for each SPI-x and European regions in Table 1. The correlations
between SPI-x and SSI-1 as well as SGI-1 are found to be significant
(p < 0.05) for all indices except for SPI-1 (Supplementary Tables 1 and 2).
Overall, the highest correlation between SPI-x and SSI-1 is observed in
western Europe, followed by central, eastern, southern, and northern Eur-
ope. SPI-3 is best correlated with SSI-1 in western Europe (0.54) and
southern Europe (0.37), while SPI-6 shows a good correlation in central
(0.46), eastern (0.40), and northern Europe (0.33). However, the correlation
between SPI-3 andSSI-1 inwestern and southernEurope is similar to that of
SPI-6, with amaximumdifference of 0.01. Regarding groundwater drought,
the highest correlations between SPI-x and SGI-1 are found for SPI-6 in
western (0.68), northern (0.52), and southern Europe (0.53). For SPI-12,
high correlations are observed with SGI-1 in central (0.58) and eastern
Europe (0.57). The difference in correlation between SPI-6 and SPI-12 in
indicating groundwater drought is relatively small. Lower correlation values
between SPI-x and SSI-1 than between SPI-x and SGI-1 may be caused by
the management of river discharge, especially in the north and south of
Europe.

Given these findings, namely highest correlation and small difference
with SPI-12, we simply select SPI-6 as the most suitable drought index for
representing streamflow and groundwater droughts in Europe. Conse-
quently, we focus on utilizing SPI-6 as our primary drought index for
forecasting hydrological droughts, as it demonstrates the highest and most
consistent correlationswith thehydrological indices across various regionsof
Europe. For regional/small-scale studies, we recommend using the appro-
priate accumulation period that yields the highest correlation for that region.
For instance, SPI-3 is better applied in south Europe to represent SSI-1.

Fig. 1 | Correlation between meteorological and
hydrological droughts. Variability of correlation
value between SPI-x and SSI-1 (blue color) and SPI-
x and SGI-1 (yellow color). The lower box shows the
25 percentile, themiddle line showsmedian, and the
upper box shows the 75 percentile. The whiskers
show the maximum and minimum correlations.
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Meteorological drought propagation
A time-lagged cross correlation approach was employed to investigate the
drought propagation process (lag time) between meteorological and
hydrological droughts (Method)24. The correlation analysis reveals both
negative andpositive lag times in the relationship between these two types of
droughts (Fig. 2). Negative lag times indicate the time required for
meteorological drought topropagate andmanifest ashydrological droughts.
On the other hand, positive lag times imply that hydrological droughts
precedemeteorological drought events,which is not a commoncase. Several
factors can contribute to positive lag times. For instance, multiple hydro-
logical drought eventsmay take place after short periods of rain, followed by
subsequent meteorological drought events. Additionally, in the case of
correlations between SPI-12 and SGI-1,multi-year drought eventsmay also
contribute to positive lag times. For this study, we did not apply the pooling
approach to minimize minor drought events14,27. Thus, we focused on the
negative lag times, which provide a clear signal of meteorological drought
propagating tohydrological droughts. Consequently, positive lag timeswere

neglected in our methodology, and only negative lag times were considered
for analysis.

In general, the correlation analysis between SPI-6 and SSI-1 shows a
predominant negative lag time of 1month inmost European river branches
(light blue color, Fig. 2a). However, a few river branches exhibit positive lag
times of 1 till 5 months (yellow to reddish colors). For the correlation
between SPI-12 and SSI-1, positive lag times of up to 5months are observed
in certain rivers located in the UK, northern Italy, and from Slovenia to
Greece (Fig. 2b). Similarly, negative correlations between SPI-6 and SGI-1
are also found in many regions, particularly in western and central Europe
(Fig. 2c). Correlations of SPI-12 and SGI-1 yield positive lead times in
numerous European regions, notably in Spain, Albania, Macedonia, and
Greece (Fig. 2d). On average, the lag time between the SPI-6 and the
occurrenceof hydrological drought is close to0 and2months, dependingon
the region of interest and drought indices. SPI-6 with a lag time of 1 month
generally exhibits a stronger correlation with SSI, while SPI-6 with lag times
of 0–2 months can effectively represent groundwater drought. Unlike the

Table 1 | The mean correlation values of SPI-x and SSI-1, and SPI-x and SGI-1 for each European region

Region in Europe SSI-1 SGI-1

SPI-1 SPI-3 SPI-6 SPI-12 SPI-1 SPI-3 SPI-6 SPI-12

WE 0.007 0.539 0.531 0.434 0.354 0.600 0.678 0.631

CE -0.002 0.441 0.462 0.398 0.235 0.449 0.553 0.579

EE -0.016 0.321 0.401 0.397 0.186 0.428 0.555 0.565

NE 0.027 0.281 0.329 0.321 0.266 0.446 0.521 0.482

SE 0.028 0.372 0.371 0.326 0.277 0.470 0.531 0.489

Values in bold indicate the highest correlation for each region.
WEWest Europe, CE Central Europe, EE East Europe, NE North Europe, SE South Europe.

Fig. 2 | The lag time between meteorological and hydrological droughts for the Pan-European regions. a Lag time between SPI-6 and SSI-1. b Lag time between SPI-12
and SSI-1. c Lag time between SPI-6 and SGI-1. d Lag time between SPI-12 and SGI-1.
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SPI-6 that was chosen to represent the whole of Europe, we applied various
negative lag times as depicted in Fig. 2a, c to the forecasted SPI-6 and
evaluated the forecast performance compared to SSI-1 and SGI-1
accordingly.

Performance of meteorological drought to predict hydrological
droughts
To assess the potential of meteorological drought (SPI-6) in forecasting
hydrological droughts (SSI-1 from 1991 to 2022 and SGI-1 from 2002 to
2016 as benchmarks), we evaluate the performance of median SPI-6 fore-
casts (out of 25 and 51 ensemble members, see “Methods” section) across
Europe (Fig. 3). Different lag times (Fig. 2) were applied to SPI-6 forecasts
that were clipped by river grid cells to match with the SSI-1. In western
European regions, such as the southwestern ofUK, France, theNetherlands,
and Germany, the forecast performance for streamflow drought with a lead
timeof 1month (LT = 1) is thehighest (averageBS = 0.195)whenusingSPI-
6 forecasts with different lag times (Fig. 3a). Conversely, forecast perfor-
mance is lower in the north of Europe (average BS = 0.252) and in the south
of Europe (average BS = 0.250), with the exception for Portugal. Regions
characterizedbymountainous terrain, such as theAlps andPyrenees, aswell
as areas influenced by snow and glacier (Scandinavia and Iceland) yield the
lowest forecast performance.

Figure 3b depicts the performance of SPI-6 with various lag times to
forecast groundwater drought (SGI-1). Similar to the results for SSI-1, the
highest forecast performance for groundwater drought is observed in the
southwest of theUK, theNetherlands, France, Germany, and Portugal, with
average BS < 0.2. The presence of aquifers in the southwest of the UK and
France may explain the high forecast performance due to the influence of
groundwater on streamflow15,28. SPI-6 forecasts show low performance in
central, northern, and southern Europe. In the northern regions, particu-
larly in Scandinavia, forecast performance may be influenced by the mis-
match in snowmelt and accumulation timing, associated with biases in
temperature prediction29. Additionally, this area is predominantly char-
acterized by glaciers rather than groundwater as it is situated in locally non-
aquiferous rock formations30. In eastern Europe, where the forecast per-
formance for streamflow drought is relatively low (BS = 0.2–0.3), SPI-6
yieldshigher forecast performance for groundwater drought (BS < 0.2).This
region is characterized by moderately to highly productive porous
aquifers30,31, which implies relatively fast groundwater recharge. In addition,
the rivers in this region are not strongly contributed by groundwater but by
precipitation, resulting in a low to moderate baseflow index (BFI28).

Figure 4 presents the summary of SPI-6 drought forecast performance
in predicting hydrological droughts at the scale of Europe, considering
different seasons, lead times, and regions. The results show that SPI-6
performs best in autumn (BS = 0.229 and 0.210) andwinter (BS = 0.247 and
0.212) for both SSI-1 and SGI-1 (Fig. 4a, d, respectively), which may be

attributed tomore accurateprecipitationpredictions for these seasonsby the
SEAS5, particularly in response to the North Atlantic Oscillation
(NAO)16,32,33. Regions, such as the south of the United Kingdom, the
Netherlands, Belgium, Germany, and north of France show high hydro-
logical drought prediction performance in these seasons, with BS < 0.2
(SupplementaryFigs. 3 and4).The lowest performance is observed in spring
for SSI-1 (BS = 0.258) and in summer for SGI-1 (BS = 0.227), which can be
explained by the discrepancies in the predictions of intense summer pre-
cipitation events, evapotranspiration, and snowmelt in spring29,34,35. In
Spring, streamflowdroughtpredictions aremore accurate in specific regions
in western Europe, such as south of the United Kingdom, the Netherlands,
Belgium, Portugal, and west France, but performance improves in summer
for Germany, Poland, and north of France (Supplementary Fig. 3b, c).
During the summer season, the SGI-1 displays the lowest performance in
Spain, south of France, and in some southeastern European countries
(Supplementary Fig. 4c). As expected, the forecast performance decreases as
the lead times become longer (Fig. 4b, e). Regarding the regional variations
in forecast performance, streamflowdroughtpredictionusingSPI-6 exhibits
thehighest performance inwesternEurope (BS = 0.195), followedby central
Europe (BS = 0.220), eastern Europe (BS = 0.228), south Europe (BS =
0.250), and northern Europe (BS = 0.252) (Fig. 4c). Similarly, SPI-6
demonstrates the highest performance in predicting groundwater drought
in western Europe (BS = 0.184) and the lowest performance in southern
Europe (BS = 0.224, Fig. 4).

Comparison with hydrological drought forecasts
In previous section, we evaluated the performance of SPI-6 to predict
droughts in streamflow and groundwater derived fromobserved SSI-1 (SSI-
1SPI−6) and SGI-1 (SGI-1SPI−6), respectively (Method). Here, we compare
the performance of SPI-6 in predicting hydrological droughts (SSI-1SPI−6

for streamflowandSGI-1SPI−6 for groundwater) against the forecastedSSI-1
and SGI-1 derived from the forecasted streamflow and groundwater,
respectively. The results indicate that, for most seasons and lead times, SSI-
1SPI−6 predicts lower performance than SSI-1, with the exception of winter
forLT = 1 (Fig. 5a).Overall, the annual averageof SSI-1 yields slightlyhigher
performance (BS = 0.250, LT=1) in predicting streamflow drought com-
pared to SSI-1SPI−6 (BS = 0.257, LT = 1), although the difference is relatively
small. This outcome is expected since precipitation is not the sole variable
influencing river discharge. As the lead times increase, the difference in
forecast performance between SSI-1SPI−6 and SSI-1 becomes larger with a
maximum difference of 0.037 observed in summer (LT = 4).

The comparison between SGI-1SPI−6 and SGI-1 indicates that the
forecast performance of groundwater drought identified using both indi-
cators is higher than the streamflow drought forecasts, with amaximumBS
of 0.241 for LT = 1 (Fig. 5b vs 5a). When SPI-6 is used to identify
groundwater drought (SGI-1SPI−6), the forecast performance is slightly

Fig. 3 | The performance of SPI-6 to identify hydrological droughts. a The per-
formance of median SPI-6 to identify streamflow drought (SSI-1) with a lead time of
1-month. b The performance of median SPI-6 to identify groundwater drought

(SGI-1) with a lead time of 1-month. Bluish colors indicate high forecast perfor-
mance and vice versa for reddish colors.
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lower than using SGI-1 (Fig. 5b). The difference in performance between
SGI-1SPI−6 and SGI-1, however, remains relatively constant up to LT = 3
and starts to deviate at LT = 4. The annual average of SGI-1 yields BS of
0.227 for LT = 1, which is slightly higher than SGI-1SPI−6 (BS = 0.229).
Unlike SSI-1, where there is a slightly larger performance gap between SSI-1
and SSI-1SPI−6 in almost all seasons and lead times, SGI-1SPI−6 exhibits
smaller gaps in the forecast performance compared to SGI-1. The lowest
SGI-1SPI−6 performance is observedonly in summerwith BS values of 0.241
for LT = 1 and 0.285 for LT = 4.

Regionally, the forecasting of streamflow drought using SPI-6
(SSI-1SPI−6) demonstrates added value in CE and SE, exhibiting
slightly higher forecast performance compared to SSI-1 (Fig. 5c,
detail in Supplementary Table 3). SSI-1SPI−6 yields BS scores of 0.237
and 0.255, while SSI-1 generates BS scores of 0.255 and 0.266 in CE
and SE, respectively. On the other hand, SGI-1SPI−6 shows higher
performance in WE and CE, with BS values of 0.221 and 0.235,
respectively, compared to SGI-1 (BS = 0.228 for WE and 0.261 for
CE) (Fig. 5d). Many areas in WE and CE are classified as having fast-
declining groundwater level, which strongly influences the perfor-
mance of streamflow and groundwater drought forecasts28. In addi-
tion, the lower performance of the LISFLOOD models in simulating
streamflow in SE may contribute to reduced performance of SSI-136.
In other regions, SSI-1 and SGI-1 consistently outperform drought
forecasts using SPI-6, with generally small differences, up to ΔBS =
~0.01, except in NE for both streamflow and groundwater droughts.
Overall, the forecasts based on SSI-1 and SGI-1 demonstrate better
forecasting performance than using SPI-6.

Discussion
The correlation analysis between SPI with different accumulation periods
andhydrological droughts (SSI-1 and SGI-1) across Europe reveals spatial
variability in the relationships (Supplementary Figs. 1 and 2 and Table 1).
This indicates that there is nouniversal SPI-x that can effectively represent
the hydrological droughts for the entire region. Instead, the correlation

patterns are influenced by catchment properties in different areas. For
example, in England and Wales, SPI with shorter accumulation periods
correlates well with SGI-1 in the north, while SPI with longer accumu-
lation periods correlates better in the south (Supplementary Fig. 1c, d),
where major aquifers are located. This means that this region is char-
acterized by groundwater-fed rivers on permeable aquifer15. The influence
of catchment properties is further demonstrated in southern Spain, where
SPI-6 shows a high correlation with hydrological drought possibly due to
the presence of limestone headwaters37, while in the Pyrenees, SPI-1
exhibits strong correlation with SSI-1 likely because of its fast response
catchment38. Previous research in Europe has also suggested that SPI has
an increased correlation with SGI-1 until 6- and 12-month accumulation
periods (SPI-6 and SPI-12), depending on the depth of the groundwater
level39,40. Kumar et al.39 and Haas and Birk40 studies concluded that SGI is
highly correlated with SPI-6 and SPI-12 in shallow and deep wells,
respectively. In this study, the LISFLOOD groundwater data is obtained
from the top layer or shallow groundwater systems, which correspond
better with SPI-6. These findings emphasize that catchment specific
properties are driving the number of accumulation months required to
indicate hydrological droughts.

In addition to catchment properties, anthropogenic activities can
strongly influence the relationship between SPI-x and hydrological
droughts. Our results reveal that the correlation between SPI-x and SSI-1 is
lower compared to the correlation between SPI-x and SGI-1, particularly in
the NE and SE regions (Fig. 1 and Table 1). The development of water
infrastructures, such as reservoirs and dams, is conjectured as the main
reason for the lower correlation. This impact is pronounced in northern and
southern Europe, where river regimes have been altered substantially with
the development of infrastructure, mainly for hydropower, water supply,
and irrigation37,41. For example, the Guadiana catchment in Spain alone
hosts 39 reservoirs42. Furthermore, the management of river discharge
across Europe, especially in the northeast and southeast, exerts a substantial
influence on the performance of streamflow forecasts43,44 and thus translates
into lower performance of streamflow drought forecast28.

Fig. 4 | Box plot showing the performance of SPI-6 to identify hydrological
droughts. a The performance of SPI-6 to identify streamflow drought (SSI-1SPI−6)
for each season. b The performance of SPI-6 to identify streamflow drought (SSI-
1SPI−6) for different lead times. c The performance of SPI-6 to identify streamflow
drought (SSI-1SPI−6) for each European region. d The performance of SPI-6 to

identify groundwater drought (SGI-1SPI−6) for each season. e The performance
of SPI-6 to identify groundwater drought (SGI-1SPI−6) for different lead times.
f The performance of SPI-6 to identify groundwater drought (SGI-1SPI−6) for each
European region. WE West Europe, CE Central Europe, EE East Europe, NE
North Europe, SE South Europe.
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The longer accumulation periods for SPI to represent SSI-1 and SGI-1
are expected since SPI-x with x>1 month is suggested to capture both
agricultural and hydrological droughts2,45. Specifically, SPI-3 is considered
more suitable to detect agricultural drought, while SPI-6 and SPI-12 are
deemed better suited to represent hydrological droughts. A prior study in
Germany also indicated a relationship between drought indicators with
different accumulation period and their corresponding impacts46. A
3-month accumulation period was identified as the optimal predictor for
agricultural impacts, while longer accumulation periods were preferred as
predictors for hydrological impacts such as those affecting energy and
industry. The use of SSI or SGIwith longer accumulationperiods (e.g., 3 and
6months)may better represent long hydrological droughts (e.g., multi-year
drought). The applicability, however, remains a subject of debate, given that
streamflow and groundwater already comprise the accumulation and delay
of themeteorological signal due to catchment properties20,47,48. In this study,
therefore, we opted to exclusively applied SSI and SGI with 1-month
accumulation period.

Similar to SPI drought aggregation, the lag time required for meteor-
ological drought to transform into hydrological droughts varies in each
region, especially for SGI-1. InmanyEuropean regions, the lag timebetween
SPI-6 and SGI-1 ranges from 0 to 1 month, while in some areas, longer lag
times of >2months are observed. This variation in lag time underscores the
influence of catchment properties in drought propagation, where hydro-
logical droughtwill formquickly in the fast-responding catchment, and vice
versa for slow-responding catchment17,49. A study in 14 sites across UK also

shows that chalk (fractured) aquifers have longer lag times of 1 to 2months
compared to limestone (fractured) aquifers, which has no lag time20.
Moreover, applying appropriate lag time to SPI-6 forecasts improves fore-
cast performance from BS = 0.267 to BS = 0.257 for SSI-1SPI−6 and from
BS = 0.230 to BS = 0.229 for SGI-1SPI−6 (Supplementary Tables 4 and 5,
respectively). As a result, the SPI-6 forecasts could better mimic the SSI-1
and SGI-1 performance when different lag times were applied.

Our results clearly highlight the importance of catchment response in
hydrological drought predictions. We found that the performance of
drought forecasts using both SGI-1SPI−6 and SGI-1 is higher compared to
SSI-1SPI−6 and SSI-128. Groundwater as the slowest responding variable to
precipitation, depending on the aquifer properties, exhibits higher pre-
dictability than streamflow. This finding is consistent with previous studies
on seasonal streamflow forecasting, which also conclude that streamflow
can be better forecasted for rivers located in slower-responding catchments
e.g., higher baseflow index (BFI) and high groundwater storage28,43,44,50. It is
important to note that despite SPI-6 produces lower performance than
individual drought indices, i.e., SSI-1 and SGI-1, the discrepancy in forecast
performance between SPI-6 and the specific hydrological drought indices is
relatively small.Despite the lower performance, SPI-6with applied lag times
still provides valuable information and reasonable forecast accuracy for
hydrological droughts.

An alternative method for forecasting hydrological drought involves
the use of Ensemble Streamflow Prediction (ESP), derived from long-term
observational data. However, some previous studies have indicated that

Fig. 5 | Comparison of Brier Score values among diverse drought forecasts.
a Comparison of Brier Score (BS) values between SSI-1 forecasted using SPI-6
(SSI-1SPI−6) and SSI-1 forecast for different seasons. b Comparison of BS values
between SGI-1 forecasted using SPI-6 (SGI-1SPI−6) and SGI-1 forecast for

different seasons. c Comparison of BS values between SSI-1 forecasted using SPI-6
(SSI-1SPI−6) and SSI-1 forecast for each region. d Comparison of BS values
between SGI-1 forecasted using SPI-6 (SGI-1SPI−6) and SGI-1 forecast for each
region.
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drought forecasts derived from the ECMWF dynamical forecasts, as
employed in this study, exhibit considerably higher skill than ESP for
meteorological drought and slightly better skill for hydrological
drought16,33,51. Thus, the ESP can be another potential source of hydrological
forecasts if dynamical precipitation forecast is not available, which is not the
case across Europe.

In our study, we utilized the ERA5 and SEAS5 datasets to identify
historical and forecasted meteorological droughts (SPI), respectively, and
the LISFLOOD model driven by these datasets for simulating the stream-
flow and groundwater. The simulated (proxy observed) and forecasted
hydrological variables were then translated into droughts in streamflow and
groundwater using the standardized drought indices, SSI and SGI. Both
ERA5 and SEAS5 employ similar ECMWF Integrated Forecasting System
(IFS) Cy41r2 and Cy43r1 to generate the proxy observed and forecast data,
respectively52,53. Using similar systems/models is expected to result in lower
bias compared to using other datasets54. The use of ground observations and
remote sensing data, such as satellite altimetry and the Global Runoff Data
Centre (GRDC) for streamflow55,56 as well as Gravity Recovery and Climate
Experiment (GRACE)57 may offer alternatives to proxy observed data for
hydrological drought monitoring. For hydrological drought forecasting,
however, a hydrological model forced with meteorological forecast data is a
prerequisite. Thus,we suggest bias-correcting the forecast data andusing the
same forcing data (e.g., remote sensing) to initialize the hydrological model
if alternative observational datasets are preferred.

This study represents a pioneering effort in forecasting hydrological
droughts by leveragingmeteorological drought forecasts with consideration
of different accumulation periods and lag times. The successful application
of meteorological drought forecasts for predicting hydrological droughts
with comparable performance to direct hydrological drought predictions
underscores the potential of this approach as a valuable alternative when
hydrological forecast data is unavailable. This is often the case in many
countries, particularly emerging ones. However, it should be noted that this
approach is best applied in the area that is less influenced by anthropogenic
activities. Anthropogenic factors, such as themanagement of riverdischarge
and aquifers, can reduce the performance of hydrological forecasts, subse-
quently impacting hydrological drought predictions. Given the widespread
availability of precipitation forecasts through meteorological agencies, the
methods employed in this study hold broad applicability on a global scale.
The findings, therefore, have important theoretical implications, particu-
larly in developing hydrological DEWS. This progress aligns with the
objective of the Sendai framework for disaster risk reduction and provides
valuable support to the United Nations’ Early Warnings for All initiative.

Methods
Data
Two types of datasets were used for both meteorological and hydrological
data. For meteorological data, the first dataset comprised precipitation
observations obtained from the European Centre Medium-range Weather
Forecast (ECMWF) reanalysis product version 5 (ERA5)53. Although ERA5
is not a ground observation product, ERA5 sometimes is treated as a proxy
observed dataset due to the assimilation of a vast amount of observation
data, totaling around 94.6 billion observations58,59. ERA5 data was down-
loaded from January 1991 to December 2022. The second dataset consisted
of the ECMWF seasonal forecast version 5 (SEAS5) with a lead time of
7 months)60. The precipitation reforecast data from 1993 to 2016 with 25
ensemble members and forecast data from 2017–2022 with 51 ensemble
memberswere used. BothERA5andSEAS5datasetswere downscaledusing
the bilinear interpolation method from their original grid sizes to 5 × 5 km
to match the LISFLOOD model outputs. Observational datasets, such as
groundobservations and remote sensing,were not used in this study. In fact,
ERA5 consists of these observations andmodeled data to fill in the data gap.
Moreover, combining datasets other than ERA5 with SEAS5 would intro-
duce high uncertainties due to differences in the nature of models and
forcingdata for the forecasts. Theuse of ERA5asproxyobserved andSEAS5
as seasonal forecasts aims tominimize these uncertainties. Both SEAS5 and

ERA5 rely on the ECMWF Integrated Forecasting System (IFS) with dif-
ferent configurations.

The hydrological data employed in the study were obtained from the
European Flood Awareness System (EFAS)61,62. EFAS utilizes the LIS-
FLOOD hydrological model to simulate hydrological variables across
Europe at a spatial resolution of 5 × 5 km. Please see Van der Knijff et al.22

and Burek et al.63 for themodel description. The observed hydrological data
was derived from the LISFLOOD model run with gridded meteorological
data (>5000 ground observations)61, known as simulation forced with
observed (SFO) or proxy observed data. The (re)forecasts, on the other
hand, were obtained from the LISFLOOD model forced with the SEAS5
meteorological data. The seasonal forecasts are available as daily data for
eachmonth from day 1 to day 215, aggregated intomonthly data (7-month
lead time). In this study, EFAS-observed hydrological data from 1991 to
2022 was used. Reforecast hydrological data from 1991 to 2020 and forecast
data from 2021 to 2022 with 51 ensemble members were utilized. Please
note, that only LISFLOODobserved groundwater data at the top layer from
1991 to 2018 and reforecast groundwater from 2002 to 2016 were used due
to data availability constraints, which limits our study. These data are not
available in the Copernicus Data Store (CDS) and were collected for the
ANYWHERE project5. Despite these limitations, we believe that adding
more datawill not alter our conclusion that SGI can be better predicted than
SSI. The LISFLOOD model incorporates water abstraction modules e.g.,
abstraction for irrigation, the livestock, energy production and cooling, and
manufacturing industry, as well as 1454 reservoirs across Europe36. The
LISFLOODmodel is commonly used for drought simulations implemented
in the European DEWS5,64. The use of proxy observed data is commonly
accepted in forecast evaluation studies33,51,54,65. Aprevious study analyzed the
useof LISFLOODproxyobserveddata compared to gaugingdata and found
that the drought forecast performance is lower when gauging data is used as
a benchmark66. This study, however, did not bias-correct the forecast data,
even though they used the gauging data to recalculate drought parameter
distributions and threshold levels.

Model performance
The LISFLOOD model used in this study underwent calibration using a
comprehensive set of observed streamflow time series from over 700 cali-
bration stations across Europe36. The performance evaluation based on the
Kling-Gupta Efficiency (KGE) revealed that 42% of all calibration stations
score a KGE higher than 0.75, 33% of all stations score a KGE between 0.5
and 0.75, and 25% of all stations score a KGE below 0.5, which indicates the
good model’s performance. The LISFLOOD model has also been used in
various drought studies5,28,67–69. Their studies show that the model performs
rather well for drought identification, forecasting, and projection.

Standardized drought indices
Meteorological and hydrological droughts based on precipitation,
streamflow, and groundwater data were identified using the Standardized
Precipitation Index (SPI-x)18 with different accumulation periods of x = 1,
3, 6, 12, the Standardized Streamflow Index (SSI-1)19, and the Standar-
dized Groundwater Index (SGI-1)20, respectively. We only employed
1-month accumulation period for SSI and SGI because these indices
already encompassed the accumulation and delay of the meteorological
signal caused by e.g., groundwater flow and catchment. Therefore,
hydrological drought indices, such as SSI and SGI are commonly calcu-
lated using only 1 month accumulation period20,47,70. The standardized
drought indices provide ameasure of dryness by quantifying the deviation
from the long-termmean, i.e. number of standard deviations. Thedrought
indices were calculated by fitting a probabilistic distribution on monthly
hydrometeorological data. To compute the standardized indices, the
monthly hydrometeorological data was transformed into 12 distributions,
corresponding to each index, accumulation period, andmonth of the year.
Previous studies indicated that one single distribution does not fit all
streamflow regimes in Europe and the distribution may vary each
month48,70. Therefore, there is no universal distribution for the whole
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Europe that can be applied. For simplicity, we employed gamma dis-
tribution for all drought indices. Moreover, the gamma distribution has
quite a flexible shape parameter, which is suitable for a wide range of
drought application in EU69,71. This distribution is described by two
parameters: α (the shape parameter) and β (the inverse scale parameter).
These distribution parameters then were used to calculate observed and
(re)forecast drought events (for further details, refer to Sutanto et al.5).We
define a drought event when the drought index values fall below -0.5,
otherwise no drought51,66.

Correlation and lag time analysis
The objective of the correlation analysis between SPI-x and SSI-1, as well as
SGI-1, is to determine the most suitable accumulation time for SPI-x that
can be used to forecast hydrological droughts. In this study, Pearson’s
correlation coefficient was employed to assess the relationship between
meteorological and hydrological droughts2,23. The correlation coefficient
ranges from −1 to 1, with −1 representing a perfect linear negative corre-
lation, 0 representing no correlation, and 1 representing a perfect linear
positive correlation. A positive correlation suggests that as one variable
increases, so does the other, whereas a negative correlation indicates that as
one variable increases, the other decreases. The strength of the correlation is
determined by how close the correlation coefficient is to 1 or−1.

The lag timewasdeterminedbasedon the correlationvaluesofdrought
indices from 1991 to 2022. We applied the time-lagged cross correlation
approach24. This method maintains the time series of dependent variable
(i.e., SSI and SGI) and generates both lags and leads of the second variable
(SPI) throughout the time period. The time-lagged cross correlation
approach results in a time series illustrating the relationship between time
lags and correlation coefficients. We selected the lag time based on the
highest correlation coefficient. A positive lag time indicates that hydro-
logical drought occurs before meteorological drought, which was neglected
in our study. A negative lag time indicates that hydrological drought occurs
after meteorological drought.

Forecasting performance
The Brier Score (BS) is used in this study to evaluate the performance of the
drought forecasts25. This method involves comparing the predicted prob-
ability of a drought event (p) to the observed outcome (o). A lower BS
indicates a more accurate forecast, with BS = 0 indicates perfect prediction.
BS < 0.25 indicates forecasts that have higher performance than climato-
logical forecast with p = 0.572. BS of the forecast is then calculated by
summing the squared difference between the predicted probability of an
event (p; range from 0 to 1) and the observed (o), divided by the total length
of the data (N). It is important to distinguish that the BS describes forecast
performance, and it should not be confused with the Brier Skill Score (BSS),
which quantifies the skill of the forecast.

Data availability
The historical and seasonal (re)forecasts from EFAS are accessible
through the Copernicus Data Store (CDS), which are freely available
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/efas-seasonal-
reforecast?tab=form and https://cds.climate.copernicus.eu/cdsapp#
!/dataset/efas-seasonal?tab=overview). ERA5 and SEAS5 data are also
accessible through the Copernicus Data Store (CDS) (https://cds.
climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?
tab=overview and https://cds.climate.copernicus.eu/cdsapp#!/dataset/
seasonal-original-single-levelstab=form). Other data generated and/or
analyzed during this study are available online in the 4TU Centre for
Research Data using the link https://doi.org/10.4121/302cd0fd-59da-
46e8-ac82-f98fad865751(Sutanto and Syaehuddin, 2024).

Code availability
All codes used to conduct the analysis presented in this paper are available
online via https://doi.org/10.4121/302cd0fd-59da-46e8-ac82-f98fad865751.
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