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Sulfuryl fluoride (SO2F2) is a synthetic pesticide and a potent greenhouse gas that is accumulating in
the global atmosphere. Rising emissions are a concern since SO2F2 has a relatively long atmospheric
lifetime and a high global warming potential. The U.S. is thought to contribute substantially to global
SO2F2 emissions, but there is a paucity of information on how emissions of SO2F2 are distributed
across theU.S., and there is currently no inventory of SO2F2 emissions for theU.S. or individual states.
Here we provide an atmospheric measurement-based estimate of U.S. SO2F2 emissions using high-
precisionSO2F2measurements from theNOAAGlobalGreenhouseGasReferenceNetwork (GGGRN)
and a geostatistical inverse model. We find that California has the largest SO2F2 emissions among all
U.S. states, with the highest emissions from southern coastal California (Los Angeles, Orange, and
San Diego counties). Outside of California, only very small and infrequent SO2F2 emissions are
detected by our analysis of GGGRN data. We find that California emits 60-85% of U.S. SO2F2
emissions, at a rate of 0.26 ( ± 0.10) Gg yr−1. We estimate that emissions of SO2F2 from California are
equal to 5.5–12% of global SO2F2 emissions.

Following the Montreal Protocol on Substances that Deplete the Ozone
Layer1, the use of methyl bromide (CH3Br) as a fumigant was largely
phased out by 2005, with some exemptions for critical and quarantine/
pre-shipment (QPS) uses. As a result, the atmospheric abundance of
CH3Br has declined, and the stratospheric ozone layer is showing signs of
recovery in recent years due to the phase-out of CH3Br and other ozone-
depleting substances (ODSs)2–4. However, an unintended consequence
of the CH3Br phase-out is that global use of sulfuryl fluoride (SO2F2), a
non-ODS fumigant alternative to CH3Br, has dramatically increased5,6.
Like CH3Br, SO2F2 is a broad spectrum pesticide used to exterminate
structural, commodity, and stored product pests such as drywood ter-
mites, subterranean termites, cockroaches, wood-boring beetles, moths,
bed bugs, and rodents7–9. While SO2F2 is not an ODS, it is a potent
greenhouse gas (GHG) that is accumulating in the global atmosphere,
with an ambient airmole fraction thathas risen from~0.3parts per trillion
(ppt) in 1978 to nearly 3.0 ppt in 20235,10.

Recentmeasurements and globalmodeling from theAdvancedGlobal
Atmospheric Gases Experiment (AGAGE) indicate that global emissions of
SO2F2 have reached a historic high of nearly 3.0 Gg yr−1, and global mean
atmospheric mole fractions of SO2F2 have continued to increase at a rate of
nearly 0.1 ppt yr−1 (4% yr−1) from 2015 to 20234,5,11. At present, the effective
radiative forcing of SO2F2 is small at ~0.5 mWm−2, but increasing as global
mole fractions of SO2F2 continue to rise

12. Rising emissions of SO2F2 are a
concern because SO2F2 exhibits strong infrared absorption properties, has a
relatively long atmospheric lifetime, and therefore has a high global
warming potential (GWP)10,12–16.

When SO2F2 was first approved for use as a fumigant/pesticide by
regulators in 1959, its atmospheric lifetimewas thought to be negligible, and
thus the study of its environmental fate was largely neglected17,18. However,
seminal studies published in 2008-2009 on the atmospheric chemistry of
SO2F2 demonstrated that removal of SO2F2 from the atmosphere is pre-
dominantly mediated by ocean uptake and hydrolysis, resulting in a
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relatively long effective atmospheric lifetime of 36 ( ± 11) years10,13–15.
Consequentially, the GWP of SO2F2 was revised to be much larger than
initially thought, recently estimated at 7510 for a 20-year time horizon, or
4630 for a 100-year time horizon4,12. (See Supplementary Note 1 for addi-
tional background on SO2F2 in the atmosphere). The Intergovernmental
Panel onClimateChange (IPCC)characterized SO2F2 as awell-mixedGHG
with a high GWP in its 2013 Fifth Assessment Report16. Yet, SO2F2 was not
included in the 2015 Paris Climate Agreement, nor subsequent interna-
tional legislation on climate change and GHG emissions under the United
Nations Framework Convention on Climate Change (UNFCCC)19,20.

Despite recent advances in scientific knowledge of atmospheric SO2F2,
no top-down, atmospheric measurement-based estimate of SO2F2 emis-
sions exists for theU.S. There is also nonational inventory of SO2F2 use, and
SO2F2 is not included in the EPA Greenhouse Gas Reporting Program
(GHGRP) or National Greenhouse Gas Inventory (GHGI)21,22. Further-
more, California is the only state that keeps a public record of statewide
SO2F2 use

23. The lack of inventory data on SO2F2 use complicates attempts
to constrain U.S.-wide emissions of SO2F2

24. To address this challenge, we
utilize inverse modeling to infer SO2F2 emissions directly from high-

precision measurements of atmospheric SO2F2 collected across North
America throughout 2015–2019. We analyze these measurements using a
geostatistical inverse model (GIM) to estimate surface emissions of SO2F2
over the continental U.S., and we compare our top-down inverse model
estimates with available state records of SO2F2 use23 and recent global
emissions rate estimates from AGAGE5. Overall, we find that the largest
SO2F2 emissions are fromCalifornia, with zero to low emissions acrossmost
of the rest of the U.S.

Results and discussion
Atmospheric measurements of SO2F2 reveal an unusual pattern
We use measurements of SO2F2 from the NOAA Global Monitoring
Laboratory (NOAA/GML) Global Greenhouse Gas Reference Network
(GGGRN) collected throughout 2015–2019 at sites shown in Fig. 1 as the
principal data constraint in our analysis11. Most GGGRN measurements
(>90%) show SO2F2 mole fractions <5 ppt and are clustered around the
global background mole fraction of 2.0–2.5 ppt (Fig. 2a). However,
numerous enhancements (10–450 ppt) are also observed throughout the
studyperiod (Fig. 2b), 98%of themat sites inCalifornia.Thevastmajorityof

Fig. 1 | Map of the mean footprint (sensitivity) of
NOAAGGGRN observations to SO2F2 emissions.
The mean footprint in each grid box is colored by
quintile in shades of blue (2015-2019,
Nobs = 15,385). Quintiles are defined relative to the
maximum of the daily mean footprint. Red markers
show GGGRN tower/surface sites, yellow markers
represent locations of regular NOAA/GML vertical-
profiling aircraft sites, and small orange markers
indicate locations of individual samples collected
during intensive aircraft campaigns.

Fig. 2 | Frequency of observed SO2F2 mole frac-
tions in NOAA GGGRN measurements, colored
by site. Panel (a) shows a frequency histogram of
GGGRN observations <5.0 ppt (bin size = 0.25 ppt).
Panel (b) shows a frequency histogram of GGGRN
observations >10.0 ppt (bin size = 10.0 ppt). The
vertical dotted and dashed lines indicate the mean
and median observed values, respectively.
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enhancements (85%) are observed at either the Los Angeles Megacity
Carbon Project (LAC) observation sites25,26 or the Mt. Wilson Observatory
(MWO) in Los Angeles, California27. Notably, measurements at the LAC
sites are only available between June 2015 and October 2017 (Ndays = 852),
butmeasurements atMWOare ongoing11.Numerous SO2F2 enhancements
are also observed at two other sites in central California (Sutro tower (STR)
andWalnutGrove tower (WGC),N= 117), while none are observed during
aircraft flights at TrinidadHead (THD). For additional details on how these
SO2F2 enhancements are defined relative to the global background SO2F2
mole fraction, see Supplementary Note 3 (Supplementary Figs. 4–7).

Outside of California, SO2F2 enhancements occur very infrequently
(N=16, <1 yr−1) at only a few sites. In addition, nomonitoring site outside of
California records the frequent (sub-weekly) and large (>10 × ) SO2F2
enhancements that are characteristic of the LAC and MWO sites in Los
Angeles. However, it is important to note that SO2F2 enhancements do not
translate linearly to SO2F2 emissions, since other factors such as wind
direction, wind speed, atmospheric boundary layer height, and the distance
between the emissions and the observation site can influence the measured
enhancements. While Fig. 2 indicates that the likelihood of large emissions
fromCalifornia is higher than elsewhere, an inversemodel is needed to infer
the emissions fluxes (and corresponding uncertainties) from the measured
enhancements.

Wecorrelate thesemeasured atmosphericmole fractions of SO2F2with
estimated surface emissions using an atmospheric transport model. We
specifically calculate daily, gridded footprints, which quantitatively describe
the potential of upwind locations to influence SO2F2 mole fractions at
downwind observation sites. These footprints have units of atmospheric
SO2F2 mole fraction (ppt) per unit emission, and they are a measure of the
effective geographic coverage of the observation network. A map of the
mean footprint across all GGGRN measurements is shown in Fig. 1 to
illustrate thebroad spatial coverageof emissionsmonitoringprovidedby the
GGGRN. The footprint map indicates that if SO2F2 emissions occurred
within most of the highly-populated regions of the U.S., SO2F2 enhance-
ments would be detected by at least one of the GGGRN sites nearby.

Largest U.S. SO2F2 emissions are from California
We use a geostatistical inverse model (GIM) to infer surface emissions
of SO2F2 from the GGGRN atmospheric measurements28–30. The GIM
leverages atmospheric observations, coupled with an atmospheric trans-
port model, to interpolate grid-scale SO2F2 emissions across the

continental U.S. GIMs have been used widely in the atmospheric science
community to estimate trace gas emissions given a set of atmospheric
mole fractionmeasurements e.g.,31–36. Importantly, the GIM also provides
a statistical methodology for calculating uncertainties in the estimated
emissions28,30.

Our inverse modeling results exhibit a dichotomy between the state of
California and the rest of the U.S., shown in Fig. 3. Emissions from Cali-
fornia are both large in magnitude and persistent throughout the study
period, especially from coastal southern California (Los Angeles, Orange,
and San Diego counties). Specifically, we estimate the annual mean SO2F2
emissions rate from California at 0.26 ( ± 0.10) Gg yr−1. Uncertainties are
reported as 2-σ errors (equivalent to 95% confidence intervals), with errors
calculated from the posterior covariance matrix from the GIM29. Posterior
uncertainties from the GIM include the aggregate effects of measurement,
model, atmospheric transport, representation, and spatial/temporal aggre-
gation errors. For more details on the GIM, see the Methods section and
Supplementary Note 4 (and references therein).

We estimate the annual mean emissions rate for the entire continental
U.S. at 0.30 ( ± 0.18) Gg yr−1, with the bulk of those emissions (60–85%)
coming from California. Outside of California, emissions are small and
sparse (Fig. 3), with an annual mean emissions rate of 0.05 (±0.16) Gg yr−1

for all other continental U.S. states combined. Formany states with a colder
climate, this result may be expected, as the threat from wood-destroying
termites and thus the need for structural fumigation with SO2F2 is lower
outside of the warm coastal regions. However, this result of low emissions
for other warm coastal regions, such as the Gulf Coast and the Atlantic
Coast, may appear surprising.

While the magnitude of emissions from California is substantially
larger than the rest of theU.S., the corresponding uncertainties are smaller
for California than for the rest of the U.S., largely due to twomain factors.
First, emissions totals are summed over a much larger area outside of
California, resulting in a larger uncertainty. Second, there is a higher
spatial density of observations in California than for most other parts of
the U.S., resulting in smaller uncertainties for California and larger
uncertainties for regions that are not as densely sampled spatially. The
sparsity of the observation network, combined with the ephemeral nature
of SO2F2 fumigation events, makes SO2F2 emissions especially uncertain
outside of California. For additional information on the inverse
model best estimate of U.S. SO2F2 emissions, see Supplementary Note 5
(Supplementary Figs. 11–14).

Fig. 3 | GIM estimate of SO2F2 emissions across
the continental U.S. The largest emissions, shown
in red, are from California. Across most of the rest
of the U.S., emissions are low to zero and sparse,
shown in white.
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An important caveat of our results is that the GGGRN is not highly
sensitive to emissions from Florida (Fig. 1), a state that is at high-risk for
termite infestations37, potentially resulting in SO2F2 use and emissions38,39.
In Supplementary Note 7 (Supplementary Figs. 20–22), we conduct a
sensitivity test and find that if daily emissions from Florida were com-
parable inmagnitude to SO2F2 emissions fromCalifornia, those emissions
would be regularly detected at the closest tower site in South Carolina
(SCT). However, the actual GGGRNmeasurements at SCT, as well as the
ECO flights, show no evidence of SO2F2 emissions in all but one sample.
While our present work does not rule out sparse and/or infrequent SO2F2
emissions from Florida, we find that the annual emissions of SO2F2 from
California, relative to the southeast U.S., are substantially larger. At the
very least, our study underscores the potential utility of adding a long-
term GGGRN site in Florida, which would help constrain emissions of
GHGs and other natural and anthropogenic trace gases in this otherwise
data sparse region of the U.S.

Majority of emissions likely from structural fumigation
State records from the California Department of Pesticide Regulation
(CDPR) indicate that ~85% of SO2F2 use (by mass) in California is for
structural fumigation, while ~15% is for agricultural and commodity
fumigation23. We see a similar end use disparity in our inversion
results (Fig. 4).

To help estimate the contribution of these different SO2F2 sources,
the GIM allows the inclusion of spatially explicit predictor variables30,32.
We find that two variables, both defined from CDPR data, are optimal
predictor variables: (1) county-level SO2F2 use for structural fumigation in
California (Fig. 4c) and (2) county-level SO2F2 use for agricultural
and commodity fumigation in California (Fig. 4d)23. The CDPR data on
SO2F2 usage is described in further detail in Supplementary Note 2
(Supplementary Figs. 1-3).

The GIM also includes a stochastic component (Fig. 4b), which is an
estimate of spatial and temporal emissions patterns that are not already

Fig. 4 | Emissions maps showing the relative contribution of the predictor
variables and the stochastic variable to the GIM best estimate of emissions in
California. Panel (a) shows the GIM best estimate of SO2F2 emissions. Panel (b)
shows the mean contribution of the stochastic variable. Panel (c) shows the

contribution of the structural fumigation predictor variable only, and Panel (d)
shows the contribution of the agricultural/commodity fumigation predictor variable
only. The emissions pattern in Panel (a) is a linear combination of the emissions
patterns in Panels (b), (c), and (d).
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described by the predictor variables. By construction, the stochastic variable
follows amultivariate normal distributionwith amean of zero30. The overall
modeled emissions (Fig. 4a) are a linear combination of the predictor
variables and the stochastic variable. The stochastic variable and the relative
weights on thepredictor variables are optimized as parameters in the inverse
model to best match the atmospheric observations and are not known a
priori.

Figure 4 shows the relative contribution of the predictor variables and
the stochastic term to the total emissions inFig. 3.Consistentwith theCDPR
inventory, the largest contribution to the emissions totals arises from the
predictor variabledefinedby theCDPRdataset of county-level SO2F2use for
structural fumigation. Together, our inversion results and the CDPR
inventory imply that structural fumigation (specifically in California) is the
predominant source of SO2F2 emissions across the U.S.

Note that we examine several other candidate predictor variables,
including those with information outside of California, but none of these
variables (or any linear combination of them) improve the model-data
errors relative to the inversion setup with the optimal variables. For addi-
tional details on model selection of predictor variables, see Supplementary
Note 4 (Supplementary Figs. 9, 10)40. In Supplementary Note 6 (Supple-
mentary Table 3, Supplementary Figs. 15–19), we show additional inverse
modeling results using alternative predictor variables to demonstrate that
our results are robust across different choices of predictors in theGIM, such
as land cover classifications from the National Land Cover Database
(NLCD) (agreement within 7% for both U.S. and California emissions)41.
Furthermore, we find that our results are consistent in magnitude and
spatial distribution (agreementwithin5% forU.S. emissions andwithin20%
for California emissions) even when we use a spatially uniform prior in the
GIM, adding confidence to the spatial pattern in our results.

Reconciling top-down emissions with California state data
Our inverse model results indicate that the largest U.S. SO2F2 emissions
occur in southern coastal California. This result is consistentwithCalifornia
state records of county-level SO2F2 use from the CDPR, which indicate that
Los Angeles, Orange, and San Diego counties alone account for >50% of
statewide SO2F2use,withLosAngelesCounty being the largest use county

23.
According toCDPRrecords23, SO2F2use inCaliforniahasbeen steadily

increasing from0.976Gg in 2007 to 1.367Gg in 2018,withamean statewide
use of 1.435Gg SO2F2 yr

−1 from2015-2017.However, our inversemodeling
results indicate an annual mean SO2F2 emissions rate of only 0.16–0.36 Gg
yr−1, equivalent to only 11–25% of the total reported SO2F2 use in
2015–2017 (assuming accurate SO2F2 usage data reporting to CDPR). This
emitted fraction is notably smaller than the previous estimate of ~2/3, which
was derived from a comparison between global box model emissions esti-
mates using AGAGE data and an estimate of global industrial SO2F2
production10.

The emitted fraction is important for two main reasons. First, for
structural fumigation, the fractionof SO2F2 that is not absorbedordestroyed
on surfaces during fumigation likely escapes to the atmosphere, con-
tributing to the greenhouse effect10. Second, for agricultural and commodity
fumigation, the absorbed fraction of SO2F2 could have implications on the
amount of fluoride, sulfate, and other residues that humans and animals are
exposed to in their diets42,43.

Comparison with global emissions estimates from AGAGE
Recent work by Gressent et al.5 provides an atmospheric measurement-
based estimate of global mean SO2F2 emissions: ~2.89 Gg yr−1 over
2015–20175. This global emissions rate is likely accurate, as it is based on the
increase of global baseline atmospheric measurements of SO2F2 assimilated
into the AGAGE 12-box model10,44. Neglecting any issues with compar-
ability between AGAGE and NOAA measurements (e.g., calibration stan-
dards), our estimate of 0.16–0.36 Gg yr−1 for California accounts for
5.5–12% of global SO2F2 emissions.

However, in contrast to our study, regional atmosphericmeasurements
were not used in Gressent et al.5. This resulted in an estimate of large down-

scaled SO2F2 emissions throughout the central and eastern U.S., a scenario
not observed in the regional GGGRN measurements or our inverse model
estimates. Gressent et al.5 used a proxy-based estimate to define the spatial
pattern of SO2F2 emissions, constructed as the sum of (1) a structural
fumigation component, which scaleswith populationdensity (multiplied by
a binary mask indicating whether or not a region has termites), and (2) a
post-harvest treatment component, which scales with cropland fraction. In
our work, however, we find that neither crop cover fraction nor population
density are skilled predictor variables of regional atmospheric measure-
ments outside of California. The use of these variables by Gressent et al.5 to
define the spatial pattern of U.S. SO2F2 emissions likely overestimates
emissions formost agricultural regions and densely populated areas outside
of California. It is also likely that these variables do not predict SO2F2 use in
colder regions of the U.S. with lower termite risk.

California faces challenges with drywood termites
While subterranean termites are pervasive across most of the U.S., Cali-
fornia is home to a challenging termite species that helps explain the
abundance of SO2F2 fumigation in the state: the western drywood termite,
Incisitermes minor (Hagen) (I. minor)8,9. Drywood termites are particularly
difficult to treat because they establish colonies without having contact with
the soil9. Effective fumigant-free methods that utilize bait are available for
treating subterranean termites45,46, but these methods are ineffective against
drywood termites, which do not forage for their food. Furthermore, I.minor
(and other drywood termites, such as the West Indian drywood termite
Cryptotermes brevis (Walker)) form aerial colonies in high, inaccessible
parts of wooden structures, leading to situations where fumigation is the
most effective eradication method9.

Notably, SO2F2 fumigation does not provide residual protection
against future infestations, prompting reoccurring treatments of structures
situated in regions with pervasive termites9. Alternatively, several non-
fumigation treatment methods exist, including localized treatments such as
wood replacement, wood injection with pesticides, hot (>50∘C) and cold
(liquid nitrogen) temperature treatments, electrocution, and microwave
radiation8,9. However, these alternative methods generally do not provide
whole-structure eradication of termites. The pervasive threat of termite
infestations in warm-climate regions highlights the need for the develop-
ment and practice of sustainable, entomology-guided techniques for con-
trolling urban pest populations without the release of harmful atmospheric
pollutants or climate-warming gases8,9,45.

Significance and policy relevance
California’s SO2F2 emissions provide a case study on how greenhouse gas
emissions that are unaccounted for in emissions inventories can potentially
offset progress made towards emissions reductions. In 2006, California
passed AB-32, the Global Warming Solutions Act47, which charged the
California Air Resources Board (CARB) with monitoring and regulating
statewide emissions sources of GHGs, and set a target of reducing statewide
GHGemissions to 1990 levels by 2020.However, since the long atmospheric
lifetime of SO2F2 was not discovered until 2009, SO2F2 was not included in
AB-32. California renewed its commitment to emissions reductions in 2016
by passing SB-32, which expanded upon AB-32 and set a statewide GHG
emissions reduction target of 40% below 1990 levels by 203048. Although
CARB classified SO2F2 as a short-lived climate pollutant (SLCP) in 2016, it
has yet to add the gas to the state’s annual GHG emissions inventory or its
latest Climate Change Scoping Plan49,50.

From 2007-2019, California reports an average of 4.8 Tg CO2

equivalents (CO2e) yr
−1 in statewide GHG emissions reductions under AB-

3249. (1 Tg = 1 million metric tons (MMT)). Notably, these emissions
reductions slowed and plateaued to an average of 2.25 Tg CO2e yr

−1 from
2010-2015. Our inverse model results imply an annual mean SO2F2 emis-
sions rate of 0.7–1.7 Tg CO2e yr

−1 (100-yr GWP) or 1.2–2.7 Tg CO2e yr
−1

(20-yr GWP) for 2015-201723. Thus, the short-term warming effect of
California’s annual SO2F2 emissions, which are unaccounted for under
California’s current GHG accounting protocol, are smaller yet comparable
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in scale to the annual statewide CO2e reductions achieved under AB-32. In
other words, California could accelerate its future GHG emissions reduc-
tions by including SO2F2 inGHGemissions inventories andphasing out the
use of SO2F2 in the state, and/or mandating abatement of SO2F2 emissions.

SO2F2 is also regulated in the U.S. by the Environmental Protection
Agency (EPA) as a restricted-use pesticide (RUP) due to its inhalation
toxicity17,18,43,51–54, and is currently undergoing re-registration review by the
EPA55. SO2F2 is the only fumigant approved by the EPA for structural
fumigation, and it is one of several options available for agricultural and
commodity fumigation.

Apart from the climate-warming effect, there are public health and
safety concerns surrounding the use of SO2F2 for fumigation.Most notably,
there have been several documented cases of inadvertent human deaths
caused by acute exposure to SO2F2, and numerous human health and safety
concerns have been reported42,43,51–57. The EPA has set a human exposure
limit of 1 part per million (ppm) SO2F2, which is the clearance level for
reoccupation of a fumigated structure55. As indoor SO2F2 levels during
fumigation typically exceed 1,000 ppm, ambient air levels around fumiga-
tion sites could potentially exceed the 1 ppm exposure limit. Aeration of
fumigated structureshas beendemonstrated to occur rapidly,with over 90%
of indoor SO2F2 lost to the atmosphere within the first 2 hours of
ventilation58,59. Recent aerial thermal-IR spectral imaging surveys over the
Los Angeles Basin have identified SO2F2 emissions plumes emanating from
fumigation sites in residential neighborhoods60,61.Under theCleanAirAct62,
the EPA is required to regulate emissions of hazardous air pollutants
(HAPs), but SO2F2 has not been included in the list of HAPs to date.

Potential solutions
There are potentially steps that fumigators and fumigation regulators can
investigate tominimize the amount of SO2F2 that escapes to the atmosphere
during structural fumigation procedures. For example, strong basic solu-
tions and bio-based organic solvents have been shown to effectively absorb
and destroy SO2F2

63–66. These SO2F2 chemical absorptionmethods could be
utilized at the exhaust vents of fumigated structures to capture SO2F2 and
prevent its escape to the atmosphere. Implementing an SO2F2 capture step
in the post-fumigation venting process could result in GHG emissions
reductions on the order of 1-3 Tg CO2e, while also minimizing the risk of
SO2F2 exposure to nearby residents and fumigation workers.

A fumigant re-capture step may increase the upfront cost of fumiga-
tion, but doing so would also provide the global climate and environmental
benefits of reducing SO2F2 emissions. However, further work is required to
reduce the cost and technical barriers to these solutions. Nevertheless, the
process of emitting SO2F2 directly to the atmosphere after fumigation, as is
standard practice under the California Aeration Plan59, leads to a previously
under-emphasized climate warming effect, and could potentially be
reconsidered as an option for achieving future GHG emissions reductions.

Methods
Atmospheric measurements of SO2F2
We use atmospheric measurements of SO2F2 from the NOAA Global
Monitoring Laboratory (NOAA/GML) Global Greenhouse Gas Reference
Network (GGGRN)11. NOAA/GML beganmeasuring SO2F2 in air samples
collected at sites shown in Fig. 1 in 2015. Air samples were collected via
programmable flask packages (PFPs) at surface and tower sites, from
vertical-profiling NOAA/GML aircraft flights, and during the Atmospheric
Carbon andTransport -America (ACT) and the East CoastOutflow (ECO)
aircraft campaigns67–71. High-precision measurements of the SO2F2 mole
fraction in each PFP collected from these measurement platforms were
made by NOAA/GML on the PERSEUS-1 gas chromatography/mass
spectrometry (GC-MS) instrument. These measurements are quite accu-
rate, with a mean measurement error of <0.05 ppt (within 2% of the ~ 2.5
ppt background). In total, we includeN = 15, 385measurements of SO2F2 in
our analysis (10,157 from towers and surface observatories, 5,228 from
aircraft). For additional details on the NOAA/GML measurements of

SO2F2, see Supplementary Note 3 (Supplementary Figs. 4-8 and Supple-
mentary Tables 1 and 2).

Atmospheric transport model (STILT)
Weuse an atmospheric transportmodel to correlatemeasured atmospheric
mole fractions of SO2F2 (z) with daily grid-scale surface emissions (s).
Specifically, we employ the Stochastic Time-Inverted Lagrangian Transport
(STILT) model with atmospheric wind fields defined by the North Amer-
icanMesoscale Forecast System12-km resolutionmeteorology data (NAM-
12)72–76. We use NAM-STILT to quantitatively model SO2F2 mole fractions
in the atmosphere given a map of estimated SO2F2 emissions. Using this
transport model and the GIM, we optimize the emissions maps such that
our modeled SO2F2 mole fractions match observations.

We use STILT to simulate the transport of an ensemble of theoretical
particles released at the time and location of a givenmeasurement backward
in time in order to quantify the sensitivity of that measurement to upwind
surface emissions. Particle ensembles are initialized at the time, latitude,
longitude, and altitude of eachmeasurement, and transported backwards in
time at hourly time steps, with transport probabilities inferred from the
NAM-12 meteorology fields.

We run STILT once for each of the 15,385 SO2F2 observations used in
this study, and each simulation is run 10 days back in time to ensure that the
trajectories reach the edge of the regional modeling domain. We then
integrate these back-trajectories over time and volume to calculate surface
influence footprints (units: ppt SO2F2 per unit emission flux), which
quantify the influence of grid-scale surface fluxes on each SO2F2
measurement.

Each footprint defines the sensitivity of an individual measurement to
emissions at different locations (throughout the modeling domain) and
times (up to 10 days prior to themeasurement). Footprints have units of ppt
SO2F2 per pmolm−2 s−1 (mole fraction SO2F2 per unit surface flux), gridded
at 0.25∘ × 0.25∘ latitude-longitude resolution. We estimate SO2F2 emissions
at a daily time scale in this study, so we calculate footprints at a daily time
resolution (yielding 10daily footprints for each SO2F2measurement). These
daily footprints are then used as an input in the GIM.

Geostatistical Inverse Model
We utilize a geostatistical inverse model (GIM) to infer surface fluxes of
SO2F2 (s) from atmospheric measurements (z)28,30,36. For additional exam-
ples of studies that use GIMs to estimate trace gas emissions, see the fol-
lowing references30–32,34,36,77–79.

The NOAA GGGRN measurements of SO2F2 are the principal data
constraint in our model. These observations z (dimensions n × 1) are
modeled as:

z ¼ Hsþ ε ð1Þ

In our notation here, we use bold fonts to denote matrices, and bold itali-
cized font to denote vectors. In Eq. (1),H (dimensions n ×m) is a sensitivity
matrix describing correlations betweenmeasured SO2F2mole fractions and
modeled surface emissions (i.e. Hi,j = ∂zi/∂sj), defined by the STILT foot-
prints (discussed above and in the main text). s (dimensionsm × 1) are the
unknown surface emissions for eachmodel grid box on each day of the time
series (m =Ndays ⋅Nlat ⋅Nlon). Thevariable ε (dimensionsn × 1) is a vectorof
the model-data residuals, which include the aggregate effects of measure-
ment error, transport error, representation error, and aggregation error. By
construction, ε is distributed as a multivariate normal distibution N ð0;RÞ
with a mean of zero and covariances defined by the matrix R.

The covariance matrix R (dimensions n × n) describes the expected
magnitude of model-data errors due to measurement, transport, repre-
sentation, and aggregation.

R ¼ E ε½ � ¼ E z �Hsð Þ z �Hsð ÞT� � ð2Þ
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Here, E[] indicates the expected value of a variable and T indicates the
matrix transpose. In general, R can be thought of as a control on
how preciselyHsmust match the atmospheric measurements z. Notably,
there are tradeoffs associated with different configurations of R. For
instance, using a value for σR that is too small runs the risk of overfitting
the data, while using a value for σR that is too large can lead to model
estimates that do not adequately reproduce the measurements. In this
study, we construct R as a diagonal matrix, with diagonal elements σ2R.
The off-diagonal elements ofR describe spatial and temporal covariances
in the emissions, which we assume to be zero in this study since SO2F2
emissions are transient and arise rapidly from non-stationary point
sources58,61.

We run case studies using both a uniform value for the diagonal
elements ofR and a non-uniform setup where the diagonal elements vary
by measurement site, proportional to the observed variance in
the enhancements at each site80. The results of this sensitivity study
are shown in Supplementary Note 6 (Supplementary Table 3 and Sup-
plementary Figs. 15–19), and demonstrate that the resulting emissions
pattern is not very sensitive to whether R is constructed as a scalar matrix
defined by a single parameter or as a diagonal matrix with elements that
vary by measurement site. Using an R matrix with covariances that vary
by measurement site often results in a more realistic quantification
of uncertainties associated with different measurement sites, but the tra-
deoff is that doing so risks over-parameterizing theGIM.We include these
case studies to show that our inverse modeling results are not highly
dependent on the definition ofR used in the inversion results presented in
this study.

The unknown surface emissions s are modeled as the sum of a deter-
ministic term (Xβ) and a stochastic term ξ (dimensionsm × 1)36,81:

s ¼ Xβþ ξ ð3Þ

The deterministic term is defined by the matrix X (dimensions m × p),
which includes ppredictor variables, or covariate datasets, that help describe
spatial patterns in the estimated fluxes, along with unknown corresponding
weights β (dimensions p × 1). The deterministic term can be thought of as a
weighted linear combination of different spatial datasets that define our
inversion prior. The stochastic term ξ, by contrast, describes grid-scale
patterns in the modeled fluxes that are not adequately described by the
explanatory variables inX. By construction, ξ is distributed as amultivariate
normal distributionN ð0;QÞ with a mean of zero and covariance matrixQ
(dimensionsm ×m). Both ξ and β, and therefore s, are not known a priori
and optimized in the inversion.

Similarly toR, the flux deviationmatrixQ characterizes howmuch the
estimated emissions s deviate from the deterministic model:

Q ¼ E ξ½ � ¼ E s� Xβ
� �

s� Xβ
� �Th i

ð4Þ

We assume that deviations of s from the deterministic model are uncor-
related, and so Q can be constructed as a diagonal matrix with diagonal
elements σ2Q. The off-diagonal elements ofQ represent spatial covariances
in the emissions, which we assume to be zero in this study since SO2F2
emissions events typically occur rapidly from non-stationary point
sources58,61.

The geostatistical approach to solving the inverse problem requires a
formulation of the maximum-likelihood posterior emissions distribution.
Following Bayes’ Theorem on conditional probabilities, the posterior
probability distribution of the unknown surface emissions conditional on
the atmospheric measurements p s; βjz� �

can be written as

p s; βjz� � / p zjs; β� �
p sjβ� �

p β
� � ð5Þ

The symbol∝ here means “is proportional to.”The first term in Eq. (5), the
probability distribution of the atmospheric measurements conditional on

the surface emissions ðp zjs; β� �Þ, can be derived from Eqs. (1) and (2):

p zjs; β� � / exp � 1
2
z �Hsð ÞTR�1 z �Hsð Þ

� �
ð6Þ

The second term in Eq. (5), the probability distribution of the surface
emissions conditional on the coefficients ðp sjβ� �Þ, can be derived from
Eqs. (3) and (4):

p sjβ� � / exp � 1
2

s� Xβ
� �T

Q�1 s� Xβ
� �� �

ð7Þ

As inpreviousGIMstudies,we assume the probability distribution ofβ
is uniform across all values:

p β
� � / 1 ð8Þ

Thus, Eq. (5) can be rewritten as

p s; βjz� � / exp � 1
2
z �Hsð ÞTR�1 z �Hsð Þ � 1

2
s� Xβ
� �T

Q�1 s� Xβ
� �� �

ð9Þ

The best estimate of the unknown emissions ŝ can be obtained by
maximizing the posterior probability distribution p s; βjz� �

in Eq. (9).
Equivalently, one can minimize the negative logarithm of p s; βjz� �

, which
yields the cost function Ls,β

30,36:

Ls;β ¼
1
2
ðz �HsÞTR�1ðz �HsÞ þ 1

2
ðs� XβÞTQ�1ðs� XβÞ ð10Þ

The best estimate of the modeled fluxes ŝ and corresponding regression
coefficients bβ are obtained by minimizing Eq. (10). We minimize the cost
function Ls,β by taking its derivative with respect to s and β and setting each
derivative equal to zero. Numerous methods have been utilized for
obtaining ŝ computationally, but in this studywe follow the direct approach
described byMiller et al. (2020) and precedingwork30,36,82. Instead of solving
the linear equations for ŝ and β̂ directly, we can simplify these equations by
introducing an unknown vector of weights ζ (dimensions n × 1):

ŝ ¼ XβþQHTζ ð11Þ

The unknown vector ζ and the unknown regression coefficients β can then
be obtained simultaneously by solving the following linear system of
equations:

HQHT þ R HX

HXð ÞT 0

� 	
ζ

β

� 	
¼ z

0

� 	
ð12Þ

After solving for β and ζ, one can compute ŝ directly by substituting these
terms into Eq. (11).

Computing model errors
We follow the methodology described in Kitanidis et al. (1996) for calcu-
lating posterior uncertainties (Vŝ) corresponding to the best estimate
solution to the geostatistical inverse problem (̂s)29,83.

Vŝ ¼ Q� ðHQÞTPðHQÞ � XBXT � XAT ðHQÞ �HQTAXT ð13Þ

The unknown matrices P, A, and B are all computed by inverting the
following matrix, as described in Kitanidis et al. (1996)29:

HQHT þ R HX

HXð ÞT 0

� 	�1

¼ P A

AT B

� 	
ð14Þ
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After solving for P, A, and B, the posterior uncertainties Vŝ can be
computed directly using Eq. (13). As the daily grid-scale errors can be quite
large, we report emissions and corresponding uncertainties summed over a
multi-year time interval and over large geographic regions. Previous work
has shown that uncertainties decrease exponentially when aggregated over
time and space34,35. Thus, in this workwe report emissions and uncertainties
for three large regions of theU.S.: (1)California only, (2)All continentalU.S.
states except California, and (3) All continental U.S. states. With respect to
time, we report emissions and uncertainties as multi-year averages
(2015–2017 for inversions including LAC tower data, and 2015–2019 for
inversions including MWO data).

Data availability
Data for the NOAA/GML measurements of SO2F2 are available at the data
repositorymaintained byNOAAGlobalMonitoring Laboratory: https://doi.
org/10.15138/dph1-f551 (specifically, at: https://gml.noaa.gov/aftp/data/
trace_gases/so2f2/pfp/)11. California State data on SO2F2 use is available via
the California Pesticide Information Portal (CalPIP) https://calpip.cdpr.ca.
gov (specifically, at: https://files.cdpr.ca.gov/pub/outgoing/pur_archives/)23.
NAM-12 meteorology data is available via the NOAA National Centers
for Environmental Information at https://www.ncei.noaa.gov/metadata/
geoportal/rest/metadata/item/gov.noaa.ncdc:C00630/html (specifically, at:
https://www.ncei.noaa.gov/data/north-american-mesoscale-model/)73.

Code availability
The geostatistical inverse modeling code used in this study is available on
Github at https://github.com/greenhousegaslab/geostatistical_inverse_
modeling (https://doi.org/10.5281/zenodo.3241524) courtesy of Miller
and Saibaba (2020)36. The source code for the STILT model is available on
Github at https://uataq.github.io/stilt/72,75.

Received: 8 September 2023; Accepted: 28 February 2024;

References
1. United Nations Environment Programme. Montreal Protocol on

Substances that Deplete the Ozone Layer. https://ozone.unep.org/
treaties/montreal-protocol (1987).

2. Yagi, K., Williams, J., Wang, N. Y. & Cicerone, R. J. Atmospheric
methyl bromide (CH3Br) from agricultural soil fumigations. Science
267, 1979–1981 (1995).

3. Montzka, S. A., Butler, J. H., Hall, B. D.,Mondeel, D. J. & Elkins, J.W. A
decline in tropospheric organic bromine. Geophys. Res. Lett.
30 (2003).

4. World Meteorological Organization. Executive Summary. Scientific
Assessment of Ozone Depletion: 2022, GAWReport No. 278. https://
www.unep.org/resources/publication/scientific-assessment-ozone-
layer-depletion-2022 (2022).

5. Gressent, A. et al. Growing atmospheric emissions of sulfuryl fluoride.
J. Geophys. Res.: Atmos. 126, e2020JD034327 (2021).

6. Yu, D. et al. Atmospheric mixing ratios and emissions of sulfuryl
fluoride (SO2F2) in China. SSRN Electron. J. : https://www.
sciencedirect.com/science/article/pii/S0169809522002083 (2022).

7. Derrick, M. R., Burgess, H. D., Baker, M. T. & Binnie, N. E. Sulfuryl
fluoride (Vikane): a review of its use as a fumigant. J. Am. Inst.
Conservation 29, 77–90 (1990).

8. Lewis, V. R. & Haverty, M. I. Evaluation of six techniques for control of
the Western Drywood termite (Isoptera: Kalotermitidae) in structures.
J. Econom. Entomol. 89, 922–934 (1996).

9. Lewis, V. R. & Forschler, B.Management of Drywood Termites: Past
Practices, Present Situation and Future Prospects https://doi.org/10.
1079/9781780642758.0130 (2014).

10. Mühle, J. et al. Sulfuryl fluoride in the global atmosphere. J. Geophys.
Res. 114, D05306 (2009).

11. Vimont, I. et al. Atmospheric dry air mole fractions of SO2F2 from the
NOAA GML surface and aircraft vertical profile network. [Data Set].
https://doi.org/10.15138/dph1-f551 (2023).

12. Masson-Delmotte, V. et al. Climate Change 2021: The Physical
Science Basis. Working Group I contribution to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change. IPCC
https://www.ipcc.ch/report/sixth-assessment-report-working-
group-i/ (2021).

13. Papadimitriou, V. C. et al. Experimental and theoretical study of the
atmospheric chemistry and global warming potential of SO2F2. J.
Phys. Chem. A 112, 12657–12666 (2008).

14. Dillon, T. J., Horowitz, A. & Crowley, J. N. The atmospheric chemistry
of sulphuryl fluoride, SO2F2. Atmos. Chem. Phys. 8,
1547–1557 (2008).

15. Andersen, M. P. S., Blake, D. R., Rowland, F. S., Hurley, M. D. &
Wallington, T. J. Atmospheric chemistry of sulfuryl fluoride: reaction
withOH radicals, Cl atoms andO3, atmospheric lifetime, IR spectrum,
and global warming potential. Environ. Sci. Technol. 43,
1067–1070 (2009).

16. Myhre, G. et al. Climate Change 2013: The Physical Science Basis.
Contribution ofWorkingGroup I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. IPCC (2013).

17. United States Environmental Protection Agency. Reregistration
Eligibility Decision (RED) Facts Sulfuryl Fluoride. https://www3.epa.
gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-
078003_1-Sep-93.pdf (1993).

18. United States Environmental Protection Agency. Acute Exposure
Guideline Levels (AEGLs) for Sulfuryl Fluoride 2699-79-8 Interim.
https://www.epa.gov/aegl/sulfuryl-fluoride-results-aegl-
program (2008).

19. UnitedNations Framework Convention onClimateChange. The Paris
Agreement. https://unfccc.int/documents/184656 (2016).

20. United Nations General Assembly. United Nations Framework
Convention on Climate Change. https://digitallibrary.un.org/record/
180257 (1994).

21. United States Environmental Protection Agency Office of
Atmospheric Protection. Greenhouse Gas Reporting Program
(GHGRP) https://www.epa.gov/ghgreporting (2021).

22. United States Environmental Protection Agency. EPA (2022)
Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2020
https://www.epa.gov/ghgemissions/draft-inventory-us-greenhouse-
gas-emissions-and-sinks-1990-2020 (2022).

23. California Department of Pesticide Regulation. California Pesticide
Information Portal (CalPIP) https://calpip.cdpr.ca.gov/ (2022).

24. Gallagher, G. et al. High-global warming potential F-gas emissions in
California: comparison of ambient-based versus inventory-based
emission estimates, and implications of refined estimates. Environ.
Sci. Technol. 48, 1084–1093 (2014).

25. Verhulst, K. R. et al. Carbondioxide andmethanemeasurements from
the Los Angeles Megacity Carbon Project—Part 1: calibration, urban
enhancements, and uncertainty estimates. Atmos. Chem. Phys. 17,
8313–8341 (2017).

26. Miller, J.B. et al. Largeandseasonally varyingbiosphericCO2 fluxes in
the Los Angeles megacity revealed by atmospheric radiocarbon.
Proc. Natl Acad. Sci. 117, 26681–26687 (2020).

27. Feng, S. et al. Los Angeles megacity: a high-resolution land-
atmosphere modelling system for urban CO2 emissions. Atmos.
Chem. Phys. 16, 9019–9045 (2016).

28. Kitanidis, P. K. & Vomvoris, E. G. A geostatistical approach to the
inverse problem in groundwater modeling (steady state) and one-
dimensional simulations.Water Resour. Res. 19, 677–690 (1983).

29. Kitanidis, P. K. Analytical expressions of conditional mean,
covariance, and sample functions in geostatistics. Stochastic Hydrol.
Hydraulics 10, 279–294 (1996).

https://doi.org/10.1038/s43247-024-01294-x Article

Communications Earth & Environment |           (2024) 5:161 8

https://doi.org/10.15138/dph1-f551
https://doi.org/10.15138/dph1-f551
https://gml.noaa.gov/aftp/data/trace_gases/so2f2/pfp/
https://gml.noaa.gov/aftp/data/trace_gases/so2f2/pfp/
https://calpip.cdpr.ca.gov
https://calpip.cdpr.ca.gov
https://files.cdpr.ca.gov/pub/outgoing/pur_archives/
https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00630/html
https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00630/html
https://www.ncei.noaa.gov/data/north-american-mesoscale-model/
https://github.com/greenhousegaslab/geostatistical_inverse_modeling
https://github.com/greenhousegaslab/geostatistical_inverse_modeling
https://doi.org/10.5281/zenodo.3241524
https://uataq.github.io/stilt/
https://ozone.unep.org/treaties/montreal-protocol
https://ozone.unep.org/treaties/montreal-protocol
https://ozone.unep.org/treaties/montreal-protocol
https://www.unep.org/resources/publication/scientific-assessment-ozone-layer-depletion-2022
https://www.unep.org/resources/publication/scientific-assessment-ozone-layer-depletion-2022
https://www.unep.org/resources/publication/scientific-assessment-ozone-layer-depletion-2022
https://www.unep.org/resources/publication/scientific-assessment-ozone-layer-depletion-2022
https://www.sciencedirect.com/science/article/pii/S0169809522002083
https://www.sciencedirect.com/science/article/pii/S0169809522002083
https://www.sciencedirect.com/science/article/pii/S0169809522002083
https://doi.org/10.1079/9781780642758.0130
https://doi.org/10.1079/9781780642758.0130
https://doi.org/10.1079/9781780642758.0130
https://doi.org/10.15138/dph1-f551
https://doi.org/10.15138/dph1-f551
https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-078003_1-Sep-93.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-078003_1-Sep-93.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-078003_1-Sep-93.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-078003_1-Sep-93.pdf
https://www.epa.gov/aegl/sulfuryl-fluoride-results-aegl-program
https://www.epa.gov/aegl/sulfuryl-fluoride-results-aegl-program
https://www.epa.gov/aegl/sulfuryl-fluoride-results-aegl-program
https://unfccc.int/documents/184656
https://unfccc.int/documents/184656
https://digitallibrary.un.org/record/180257
https://digitallibrary.un.org/record/180257
https://digitallibrary.un.org/record/180257
https://www.epa.gov/ghgreporting
https://www.epa.gov/ghgreporting
https://www.epa.gov/ghgemissions/draft-inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020
https://www.epa.gov/ghgemissions/draft-inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020
https://www.epa.gov/ghgemissions/draft-inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020
https://calpip.cdpr.ca.gov/
https://calpip.cdpr.ca.gov/


30. Michalak, A.M. A geostatistical approach to surface flux estimation of
atmospheric trace gases. J. Geophys. Res. 109, D14109 (2004).

31. Mueller, K. L., Gourdji, S. M. & Michalak, A. M. Global monthly
averaged CO2 fluxes recovered using a geostatistical inverse
modeling approach: 1. Results using atmospheric measurements. J.
Geophys. Res. 113, D21114 (2008).

32. Gourdji, S. M., Mueller, K. L., Schaefer, K. & Michalak, A. M. Global
monthly averagedCO2 fluxes recovered using a geostatistical inverse
modeling approach: 2. Results including auxiliary environmental data.
J. Geophys. Res. 113, D21115 (2008).

33. Gourdji, S. M. et al. North American CO2 exchange: inter-comparison
of modeled estimates with results from a fine-scale atmospheric
inversion. Biogeosciences 9, 457–475 (2012).

34. Miller, S. M. et al. Anthropogenic emissions of methane in the United
States. Proc. Natl Acad. Sci. 110, 20018–20022 (2013).

35. Miller, S. M. et al. China’s coal mine methane regulations have not
curbed growing emissions. Nat. Commun. 10, 303 (2019).

36. Miller, S. M., Saibaba, A. K., Trudeau, M. E., Mountain, M. E. &
Andrews, A. E. Geostatistical inverse modeling with very large
datasets: an example from the Orbiting Carbon Observatory 2 (OCO-
2) satellite. Geosci. Model Dev. 13, 1771–1785 (2020).

37. Chouvenc, T., Scheffrahn, R. H. & Buss, L. Termite Species
Distribution in Florida andUFTermite IdentificationServices.UF/IFAS
EDIS https://doi.org/10.32473/edis-in1360-2022 (2022).

38. Chouvenc, T., Thoms, E., Brantley, S. & Kern, W. H. 2021 Florida
fumigation manual. https://flrec.ifas.ufl.edu/florida-fumigation-
manual/ (2021).

39. Scheffrahn, R. H., Mangold, J. R. & Su, N.-Y. A survey of structure-
infesting termites of Peninsular Florida. Florida Entomologist 71,
615 (1988).

40. Schwarz, G. Estimating the dimension of a model. Ann. Statistics 6,
461–464 (1978).

41. Dewitz, J. National Land Cover Database (NLCD) 2016 Land Cover
Science Product. https://doi.org/10.5066/P96HHBIE (2019).

42. Scheffrahn, R. H., Hsu, R. C., Osbrink,W. L. A. &Su,N. Y. Fluoride and
sulfate residues in foods fumigated with sulfuryl fluoride. J. Agric.
Food Chem. 37, 203–206 (1989).

43. Tsai, W.-T. Environmental and health risks of sulfuryl fluoride, a
fumigant replacement formethyl bromide. J. Environ.Sci. HealthC28,
125–145 (2010).

44. Rigby, M. et al. Recent and future trends in synthetic greenhouse gas
radiative forcing. Geophys. Res. Lett. 41, 2623–2630 (2014).

45. Su, N.-Y. Development of baits for population management of
subterranean termites. Annu. Rev. Entomol. 64, 115–130 (2019).

46. Peterson, C., Wagner, T. L., Mulrooney, J. E. & Shelton, T. G.
Subterranean Termites—Their Prevention and Control in Buildings.
https://www.srs.fs.usda.gov/pubs/misc/misc_hg064.pdf (2006).

47. Pavley, F. & Nunez, F. AB-32California GlobalWarming Solutions Act
of 2006 (2006).

48. Pavley, F. &Garcia, E. SB-32CaliforniaGlobalWarming SolutionsAct
of 2016: emissions limit (2016).

49. CaliforniaAirResourcesBoard.CaliforniaGreenhouseGasEmissions
for 2000 to 2020: Trends of Emissions and Other Indicators. https://
ww2.arb.ca.gov/sites/default/files/classic/cc/inventory/2000-2020_
ghg_inventory_trends.pdf (2022).

50. California Air Resources Board. California Air Resources Board 2022
Scoping Plan for Achieving Carbon Neutrality. https://ww2.arb.ca.
gov/our-work/programs/ab-32-climate-change-scoping-plan/2022-
scoping-plan-documents (2022).

51. Calvert, G.M. et al. Health effects associatedwith sulfuryl fluoride and
methyl bromide exposure among structural fumigation workers. Am.
J. Public Health 88, 1774–1780 (1998).

52. Schneir, A., Clark, R. F., Kene, M. & Betten, D. Systemic fluoride
poisoning and death from inhalational exposure to sulfuryl fluoride.
Clin. Toxicol. 46, 850–854 (2008).

53. Harris, J., Kim, J., Lin, C., Stafford, D. & Weber, S. Report No. 17-P-
0053 Additional Measures Can Be Taken to Prevent Deaths and
Serious Injuries From Residential Fumigations. U.S. Environmental
ProtectionAgency,Officeof InspectorGeneral.https://www.epa.gov/
sites/default/files/2016-12/documents/_epaoig_20161212-17-p-
0053.pdf (2016).

54. Barreau, T., Hoshiko, S., Kreutzer, R., Smorodinsky, S. & Talarico, J.
Sulfuryl fluoride poisonings in structural fumigation, a highly regulated
industry—potential causes and solutions. Int. J. Environ. Res. Public
Health 16, 2026 (2019).

55. Appleyard, M. Sulfuryl Fluoride Draft Interim Re-Entry Mitigation
Measures (Docket ID: EPA-HQ-OPP-2009-0163). https://www.
regulations.gov/document/EPA-HQ-OPP-2009-0136-0105 (2021).

56. Scheffrahn, R. H., Osbrink, W. L. A., Hsu, R. C. & Su, N. Y. Desorption
of residual sulfuryl fluoride from structural and household
commodities by headspace analysis using gas chromatography.Bull.
Environ. Contamination. Toxicol. 39, 769–775 (1987).

57. Scheffrahn, R. H., Bloomcamp, C. L. & Su, N.-Y. Indoor airborne
residues of methyl bromide and sulfuryl fluoride following aeration of
fumigated houses. Indoor Air 2, 78–83 (1992).

58. Tao, J. Estimating sulfuryl fluoride emissions during structural
fumigation of residential houses.Water Air Soil Pollut. 230, 96 (2019).

59. California Air Resources Board. California Aeration Plan (CAP) for
Structural Fumigations (2019).

60. Tratt, D. M., Buckland, K. N., Keim, E. R. & Hall, J. L. Identification and
source attribution of halocarbon emitters with longwave-infrared
spectral imaging. Remote Sensing Environ. 258, 112398 (2021).

61. Buckland, K. N. et al. Tracking andquantification of gaseous chemical
plumes from anthropogenic emission sources within the Los Angeles
Basin. Remote Sensing Environ. 201, 275–296 (2017).

62. United States Code. Clean Air Act, 42 U.S.C. §7401 et seq (1970).
63. Nie, Y. et al. Mass transfer and reaction kinetics of sulfuryl fluoride

absorption with aqueous sodium hydroxide solutions. J. Zhejiang
Univ. Sci. A 15, 540–546 (2014).

64. Nie, Y. et al. Harmless treatment of sulfuryl fluoride by chemical
absorption. Environ. Eng. Sci. 32, 789–795 (2015).

65. Liang, X. et al. Solubility and thermodynamic properties of sulfuryl
fluoride in water. J. Chem. Thermodyn. 95, 190–194 (2016).

66. Liang, X. et al. Sulfuryl fluoride absorption from fumigation exhaust
gas by biobased solvents: thermodynamic and quantum chemical
analysis. Indust. Eng. Chem. Res. 58, 5018–5029 (2019).

67. Andrews,A. E. et al. CO2,CO, andCH4measurements from tall towers
in theNOAAEarth SystemResearchLaboratory’sGlobalGreenhouse
Gas Reference Network: instrumentation, uncertainty analysis, and
recommendations for future high-accuracy greenhouse gas
monitoring efforts. Atmos. Meas. Tech. 7, 647–687 (2014).

68. Sweeney, C. et al. Seasonal climatology of CO2 acrossNorth America
from aircraft measurements in the NOAA/ESRL Global Greenhouse
Gas Reference Network. J. Geophys. Res.: Atmos. 120,
5155–5190 (2015).

69. Baier, B. C. et al. Multispecies assessment of factors influencing
regional CO2 and CH4 enhancements during the winter 2017 ACT
America campaign. J. Geophys. Res.: Atmos. 125,
e2019JD031339 (2020).

70. Davis, K. J. et al. The Atmospheric Carbon and Transport (ACT)—
AmericaMission. Bull. Am. Meteorol. Soc. 102, E1714–E1734 (2021).

71. Plant, G. et al. Large fugitive methane emissions from urban centers
along the U.S. East Coast.Geophys. Res. Lett. 46, 8500–8507 (2019).

72. Lin, J.C. et al. A near-field tool for simulating the upstream influenceof
atmospheric observations: The Stochastic Time-Inverted Lagrangian
Transport (STILT) model. J. Geophys. Res. 108 (2003).

73. National Oceanic andAtmospheric Administration &National Centers
for Environmental Information. North American Mesoscale Forecast
System (NAM) [12 km]. https://www.ncei.noaa.gov/metadata/
geoportal/rest/metadata/item/gov.noaa.ncdc:C00630/html (2004).

https://doi.org/10.1038/s43247-024-01294-x Article

Communications Earth & Environment |           (2024) 5:161 9

https://doi.org/10.32473/edis-in1360-2022
https://doi.org/10.32473/edis-in1360-2022
https://flrec.ifas.ufl.edu/florida-fumigation-manual/
https://flrec.ifas.ufl.edu/florida-fumigation-manual/
https://flrec.ifas.ufl.edu/florida-fumigation-manual/
https://doi.org/10.5066/P96HHBIE
https://doi.org/10.5066/P96HHBIE
https://www.srs.fs.usda.gov/pubs/misc/misc_hg064.pdf
https://www.srs.fs.usda.gov/pubs/misc/misc_hg064.pdf
https://ww2.arb.ca.gov/sites/default/files/classic/cc/inventory/2000-2020_ghg_inventory_trends.pdf
https://ww2.arb.ca.gov/sites/default/files/classic/cc/inventory/2000-2020_ghg_inventory_trends.pdf
https://ww2.arb.ca.gov/sites/default/files/classic/cc/inventory/2000-2020_ghg_inventory_trends.pdf
https://ww2.arb.ca.gov/sites/default/files/classic/cc/inventory/2000-2020_ghg_inventory_trends.pdf
https://ww2.arb.ca.gov/our-work/programs/ab-32-climate-change-scoping-plan/2022-scoping-plan-documents
https://ww2.arb.ca.gov/our-work/programs/ab-32-climate-change-scoping-plan/2022-scoping-plan-documents
https://ww2.arb.ca.gov/our-work/programs/ab-32-climate-change-scoping-plan/2022-scoping-plan-documents
https://ww2.arb.ca.gov/our-work/programs/ab-32-climate-change-scoping-plan/2022-scoping-plan-documents
https://www.epa.gov/sites/default/files/2016-12/documents/_epaoig_20161212-17-p-0053.pdf
https://www.epa.gov/sites/default/files/2016-12/documents/_epaoig_20161212-17-p-0053.pdf
https://www.epa.gov/sites/default/files/2016-12/documents/_epaoig_20161212-17-p-0053.pdf
https://www.epa.gov/sites/default/files/2016-12/documents/_epaoig_20161212-17-p-0053.pdf
https://www.regulations.gov/document/EPA-HQ-OPP-2009-0136-0105
https://www.regulations.gov/document/EPA-HQ-OPP-2009-0136-0105
https://www.regulations.gov/document/EPA-HQ-OPP-2009-0136-0105
https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00630/html
https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00630/html
https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00630/html


74. Nehrkorn, T. et al. Coupled weather research and forecasting-
stochastic time-inverted lagrangian transport (WRF-STILT) model.
Meteorol. Atmos. Phys. 107, 51–64 (2010).

75. Fasoli, B., Lin, J. C., Bowling, D. R., Mitchell, L. & Mendoza, D.
Simulating atmospheric tracer concentrations for spatially distributed
receptors: updates to the Stochastic Time-Inverted Lagrangian
Transportmodel’sR interface (STILT-Rversion2).Geosci.ModelDev.
11, 2813–2824 (2018).

76. Karion, A. et al. Intercomparison of atmospheric trace gas dispersion
models: Barnett Shale case study. Atmos. Chem. Phys. 19,
2561–2576 (2019).

77. Gourdji, S. M. et al. Regional-scale geostatistical inverse modeling of
North American CO2 fluxes: a synthetic data study. Atmos. Chem.
Phys. 10, 6151–6167 (2010).

78. Miller, S. M., Michalak, A. M. & Levi, P. J. Atmospheric inverse
modeling with known physical bounds: an example from trace gas
emissions. Geosci. Model Dev. 7, 303–315 (2014).

79. Feng, L. et al. Inter-annual variability in atmospheric transport
complicates estimation of US methane emissions trends.
Geophysical Research Letters 50, e2022GL100366 (2023).

80. Michalak, A. M. et al. Maximum likelihood estimation of covariance
parameters for Bayesian atmospheric trace gas surface flux
inversions. J. Geophys. Res. 110, D24107 (2005).

81. Fang, Y. & Michalak, A. M. Atmospheric observations inform CO2 flux
responses to enviroclimatic drivers. Glob. Biogeochem. Cycles 29,
555–566 (2015).

82. Saibaba,A.K. &Kitanidis, P. K. Efficientmethods for large-scale linear
inversion using a geostatistical approach.Water Resour. Res.
48 (2012).

83. Saibaba, A. K. & Kitanidis, P. K. Fast computation of uncertainty
quantification measures in the geostatistical approach to solve
inverse problems. Adv. Water Resour. 82, 124–138 (2015).

Acknowledgements
Theauthors thankArlynAndrews,ColmSweeney,PhilHandley, JackHiggs,
JonKofler, ThomasMedford, EricMoglia, TimNewberger, andSonjaWolter
for their contributions to the NOAA GGGRN tower and aircraft flask
programs, and we thank the LA Megacity program for facilitating collection
of LAC air samples. We thank Chris Peterson, Thomas (Guy) Shelton,
Vernard Lewis, Alan Stone, and Jared Leadbetter for insightful discussions
on termite activity in the U.S. Funding for this work was provided by the
National Science Foundation Environmental Engineering program grants
#2121641 to Johns Hopkins University and #2121739 to the Scripps
Institution of Oceanography at the University of California San Diego. This
work was also supported by the National Oceanic and Atmospheric
Administration Cooperative Agreement with the Cooperative Institute for
Research in Environmental Sciences grant #NA17OAR4320101 and the
National Oceanic and Atmospheric Administration Climate Program
Office AC4 and COM program grants #NA21OAR4310233 and
#NA21OAR4310234. Funding for theECOaircraft campaignmeasurements

was provided by the National Oceanic and Atmospheric Administration
Climate Program Office AC4 program grants #NA14OAR0110139 and
#NA14OAR0110140. B.C.B. and ACT measurements were supported by
National Aeronautics and Space Administration grant #NNX15AJ06G to the
University of Colorado.

Author contributions
D.C.G. and S.M.M. designed research. D.C.G. performed research and
created figures. D.C.G, J.M., L.H. and S.M.M. analyzed data. I.J.V., M.C.,
J.B.M., K.M., B.C.B. and B.R.M. collected and facilitated atmospheric
measurements. M.Z. and J.B. providedmodeling support. D.C.G., J.M. and
S.M.M. wrote the paper with input from I.J.V., L.H., J.B.M., K.M., B.C.B.
and M.Z.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43247-024-01294-x.

Correspondence and requests for materials should be addressed to
Dylan C. Gaeta or Scot M. Miller.

Peer review information Communications Earth & Environment thanks
Rudolf Scheffrahn and the other, anonymous, reviewer(s) for their
contribution to the peer reviewof thiswork. Primary Handling Editors: Pallav
Purohit and Clare Davis. A peer review file is available

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s43247-024-01294-x Article

Communications Earth & Environment |           (2024) 5:161 10

https://doi.org/10.1038/s43247-024-01294-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	California dominates U.S. emissions of the pesticide and potent greenhouse gas sulfuryl fluoride
	Results and discussion
	Atmospheric measurements of SO2F2 reveal an unusual pattern
	Largest U.S. SO2F2 emissions are from California
	Majority of emissions likely from structural fumigation
	Reconciling top-down emissions with California state�data
	Comparison with global emissions estimates from�AGAGE
	California faces challenges with drywood termites
	Significance and policy relevance
	Potential solutions

	Methods
	Atmospheric measurements of SO2F2
	Atmospheric transport model (STILT)
	Geostatistical Inverse�Model
	Computing model�errors

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




