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Three-dimensional space and time
mapping reveals soil organic matter
decreases across anthropogenic
landscapes in the Netherlands

Check for updates

Anatol Helfenstein 1,2 , Vera L. Mulder1, Gerard B. M. Heuvelink 1,3 & Mirjam J. D. Hack-ten Broeke2

For restoring soil health and mitigating climate change, information of soil organic matter is needed
across space, depth and time.Herewedevelopedastatisticalmodellingplatform in three-dimensional
space and time as a new paradigm for soil organic matter monitoring. Based on 869 094 soil organic
matter observations from 339,231 point locations and the novel use of environmental covariates
variable in three-dimensional space and time, we predicted soil organic matter and its uncertainty
annually at 25m resolution between 0–2m depth from 1953–2022 in the Netherlands. We predicted
soil organic matter decreases of more than 25% in peatlands and 0.1–0.3% in cropland mineral soils,
but increases between 10–25%on reclaimed land due to land subsidence. Our analysis quantifies the
substantial variations of soil organic matter in space, depth, and time, highlighting the inadequacy of
evaluating soil organic matter dynamics at point scale or static mapping at a single depth for
policymaking.

Soil organic matter (SOM) plays a crucial role in achieving multiple
SustainableDevelopmentGoals (SDGs)1–5, in particular SDG target 2.4 on
sustainable food production and resilient agricultural practices and target
15.3 on land degradation neutrality by 2030. Furthermore, SOM is linked
to six of the eight mission objectives of the Soil Deal for Europe6, which
aims to fulfill European and international commitments to the SDGs. In
2023, the European Commission underscored its commitments through
the Directive on Soil Monitoring and Resilience7, a legislative proposal
where soil health is defined as “the continued capacity of soils to support
ecosystem services”6.

Besides being essential for soil health, SOM offers an opportunity for
climate change mitigation through carbon sequestration8,9. Studies have
shown that SOM increase is feasible under best management practices, and
consequentially, the “4 per mille Soils for Food Security and Climate” was
launched with the aspiration to increase global SOM stocks by 4 per 1000
(or 0.4%) per year10. Coordinated efforts are underway to develop best
practices for measuring, reporting, and verifying SOM changes11, while
simultaneously adapting agricultural systems to facilitate carbon farming as
a means of mitigating greenhouse gas emissions12.

However, while it is perhaps too early to determine the effectiveness of
international commitments, SOM continues to decrease in European
croplands13 and peatlands14. It is therefore no surprise that the increase of
SOM and conservation of peat soils remains the main challenge related to
soil health15.

With its intensive agriculture, degraded peatlands, and highly
anthropogenic landscapes, the Netherlands is an ideal case for examining
SOMchanges to address the priority soil health challenge, “4 per mille”, the
Soil Deal and SDG targets. Situated in Europe’s largest delta, the Rhine-
Meuse-Scheldt delta, agriculture in theNetherlands iswidely regarded as the
most intensive in Europe16. Before the start of agriculture in the low lying
regions less than 2000 years ago, more than 50% of what is now the
Netherlands was covered in peat17,18. Through drainage, excavation and/or
agricultural use of peatlands, this has now been reduced to 15% (Fig. 1d, e;
SI 1). The Netherlands is largely composed of anthropogenic landscapes:
historic land reclamation (17% (Percentages of present day surface area);
Fig. 1c), conversion to urban areas (15%; Fig. 1a, b) and re-landscaping of
new nature and recreational areas have had a tremendous impact on
the soils.

1Soil Geography and Landscape group,WageningenUniversity, POBox 47, 6700 AAWageningen, the Netherlands. 2Soil, Water and LandUse team,Wageningen
Environmental Research, POBox 47, 6700 AAWageningen, the Netherlands. 3ISRIC -World Soil Information, POBox 353, 6700 AJWageningen, the Netherlands.

e-mail: anatol.helfenstein@wur.nl

Communications Earth & Environment |           (2024) 5:130 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-024-01293-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-024-01293-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-024-01293-y&domain=pdf
http://orcid.org/0000-0003-2432-2672
http://orcid.org/0000-0003-2432-2672
http://orcid.org/0000-0003-2432-2672
http://orcid.org/0000-0003-2432-2672
http://orcid.org/0000-0003-2432-2672
http://orcid.org/0000-0003-0959-9358
http://orcid.org/0000-0003-0959-9358
http://orcid.org/0000-0003-0959-9358
http://orcid.org/0000-0003-0959-9358
http://orcid.org/0000-0003-0959-9358
mailto:anatol.helfenstein@wur.nl


The challenge of increasing SOM for restoring soil health and fulfilling
international commitments requires high resolution, spatio-temporally
explicit SOM assessment to facilitate management practices and land use
decisions tailored to local soil conditions. To address this challenge, we
developed a modeling platform in 3D space and time (3D+T) as a new
paradigm for SOMmonitoring andmapping. It provides annual predictions

of SOM and its uncertainty in the Netherlands, at 25 m resolution at point
support between 0m and 2m depth from 1953 (first measurements; Fig. 2)
to 2022. We used machine learning, 869 094 SOM observations from
339,231 point locations (~10 locations per km2; Fig. 2 and Table 1) and
spatially explicit environmental covariates. Using quantile regression
forest19, themedianof thepredictedprobability distributionwas takenas the

Fig. 1 |Maps of land use, physical geographic regions and peat occurrence. a Land
use map of the Netherlands in 1953. b Land use map of the Netherlands in 2022.
cMain physical geographic regions. d Peat occurrence in 1987 at 5–15 cm depth.

e Peat occurrence in 1987 at 60-100 cm depth. See Methods for how maps of
dynamic covariates were derived for all years between 1953 and 2022 and SI 1 for
information on plaggen soils shown in (c).

Fig. 2 | Soil organicmatter (SOM) observations. aMap showing the 339 231 locationswith SOMobservations.bTemporal distribution of SOMobservations (note log-scale
of y-axis). Laboratory measurements are shown in orange and field estimates are shown green.
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predicted SOM value while the 90th prediction interval (PI90) indicates
prediction uncertainty (Methods). The covariates were either static (2D),
variable in time (2D+T)20,21 or variable in 3D+T, and serve as proxies for
soil-forming factors. While climate, relief, and parent material were con-
sidered static, landuse (Fig. 1a, b) and theoccurrenceof peat (Fig. 1d, e)were
considered dynamic due to their greater propensity to anthropogenic
influence over 70 years compared to the other soil-forming factors22. Besides
prediction uncertainty, we used statistical validation to assess mapping
accuracy. Space-timemapping of soil properties remains amajor challenge,
with relatively fewstudies havingmapped temporal changes on a regional to
global scale20,21,23–30. To the best of our knowledge, our approach is thefirst to
use a 3D+T dynamic covariate (Fig. 1d, e). Furthermore, these are the first
SOMmaps in3D+Tonanational scale.As a conventionof this paper, SOM
and absolute changes in SOM between 2 years (ΔSOM) are expressed as
mass percentages.

Results and discussion
SOM decrease in peatlands
Our findings indicate that between 1953 and 2022 there was a decrease of
more than 1% in SOM on 14% of the land surface area of the Netherlands,
which is equivalent to 4750 km2. Furthermore, there was a decrease of over
10% in SOMon 4.5% of the land surface area, which amounts to 1520 km2,
predominantly occurring in peatlands. In former peat layers now classified
as mineral soil layers, average SOM decreases at 0–30 cm depth ranged
between 9–21% (Table 2). For soils still classified as peat, average SOM
decreasesweremostly>2%.Regardless of peat oxidizedornot, average SOM
decreases in croplands were substantially higher compared to grasslands
and forests. A recent study conducted in the Netherlands found that there
were no substantial changes in SOM in organic soils at 0–30 cm depth31.
However, at 30–100 cm depth, the study showed a decline of 7–9.5%
between 1998 and 2018, which is consistent with our research findings in
organic and former organic soils across all depths. The predictionmaps also
align with the spatial patterns of SOM in other studies31,32.

3D spatial predictions of SOM changes (Fig. 3) were different for bog
and brook-valley peatlands, located mainly in the Northeast of the country,
and fen peatlands, located mainly in the low-lying West and Northwest of
the country (Fig. 1c). In bogs and brook-valleys, peat layers were often

thinner than 1 m (Fig. 3a, b, e, Supplementary videos 1–6) and SOM
decreased by >10% or even >25% between 1953 and 2022 (Fig. 3c, d, f).
Time-lapsemaps spanning the entire 70-year period provide a visualization
of these gradual changes over time at different depth layers (Supplementary
videos 1–6). SOM decreases exceeding 25% were primarily predicted at
depths below 20 cm (Fig. 3f). This can be attributed to the fact that in
peatlands, SOM predictions were mainly confined to a range of 5–20%
within the uppermost 20 cm, while deeper depths had predictions sur-
passing 25% (Fig. 4a, b, e, Supplementary videos 1–6). Figure 4c shows a
typical brook-valley region on a 1:25,000 map (left), where SOM decreased
by 10–25% at 5–15 cm depth due to peat oxidation. The center of this map
depicts a location under intensive grassland visited as part of the ΔSOM
validation dataset (Methods). Here, yearly SOM predictions between 1953
and 2022 (lines) and measurements in 1965 and 2022 (points) from
9–18 cm to 23–30 cm depth also underline this trend of decreasing SOM
over time (Fig. 4c). Overall, our findings corroborate previous surveys in the
northeastern province ofDrenthe, which indicated that peat layers less than
40 cm thick are found in roughly 47% of the area previously classified as
having thick peat soils, while mineral soils cover ~55% of the area that was
initially identified as shallow peat soils33–35.

In fens, peat layers exceeding 1m within the predicted 0–2m depth
range were found to be less susceptible to SOM decrease compared to
thinner layers (Fig. 3).Upon comparingFig. 3e, f, a noticeable trend emerges
between 110,000 and 130,000 Easting: a decrease in SOM is predicted in the
thinner peat layers that are located adjacent to the thicker ones. Typical for
these fen meadow regions, Fig. 4d shows little to no SOM changes between
1953 and 2022 at 30–60 cm depth. Here, yearly SOM predictions between
1953 and2022 andmeasurements in 1971 and2022 at 23–50 cmdepthwere
above 40% and did not change. SOMmeasurements increased from 40% to
49% in the upper 6 cm, perhaps because the area was turned into a nature
conservation area in the 1980s.

Although our predictions indicate limited SOM changes in peat layers
exceeding 1m, it is important to note that such areas may still experience a
decline in carbon stocks or net CO2 emissions. As our modeling was
restricted to the top 2m, SOMchanges beyond this depthwere not captured
in our analysis. Therefore, it is crucial to exercise caution when interpreting
our findings with respect to carbon loss or gain in soils with peat layers
thicker than 2m. In fact, previous studies reported carbon losses up to 1 g/
kg/year36 and peat oxidation rates up to 1 cm/year in the fen meadow
regions of the Netherlands37,38.

SOM changes in reclaimed lands due to land subsidence
Model predictions reveal SOM increases of more than 10% in large areas of
reclaimed land (Fig. 1c) below 80 cm depth between 145,000 and 170,000
Easting (Fig. 3d, f). Time-lapse maps spanning 70 years visualize these
gradual changes at 100–200 cm depth (Supplementary video 6). Land
subsidence due to clay ripening, peat oxidation and soil compaction caused
peat layers below 80 cm depth to shift upwards in terms of relative
depth37,39–41 (Fig. 5), leading to SOM increase. As a result of land subsidence,
SOMalso decreasedby 10–25%directly below thinner peat layers of ~50 cm
(Fig. 3f between 155,000 and 170,000Easting). Even at 0–30 cmdepth, some

Table 1 | Number of SOM laboratory measurements and field
estimates used for model tuning and calibration separated by
depth layer

Depth [cm] SOM lab measurement SOM field estimate

0–5 1049 18,873

5–15 5538 230,710

15–30 2500 117,800

30–60 5329 209,918

60–100 6170 138,122

100–200 2249 130,836

Table 2 | Predicted average changes in SOM [%] for 0–30 cm depth between 1953 (left) and 2022 (top) for combinations of soil
type (peat vs. mineral) and land use (grass = grassland, crop = cropland, forest)

2022

Peat, grass Peat, crop Peat, forest Mineral, grass Mineral, crop Mineral, forest

1953 Peat, grass −0.6 −2.1 −0.5 −10.0 −13.6 −10.9

Peat, crop −2.1 −3.5 −2.2 −15.1 −21.4 −17.2

Peat, forest −2.3 −2.8 −1.1 −9.4 −12.3 −10.1

Mineral, grass 5.2 11.7 10.6 0.0 −0.3 −0.1

Mineral, crop 16.2 23.3 18.3 0.3 −0.1 0.2

Mineral, forest 6.5 22.3 9.1 0.1 −0.2 0.0
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soil layers changed frommineral topeat as a result of land subsidence,which
explains predicted increases of 5–23%SOM(Table 2). If peat layers closer to
the surface rise above groundwater levels, oxidation and carbon emissions
will increase in the next decades. Carbon emissions as a result of land
subsidence have been confirmed not only in the Netherlands18,42, but also
other coastal plains and deltas worldwide43,44.

Little SOM change in mineral soils
The model showed no substantial changes in SOM in the top 30 cm of
mineral soils in grasslands or forests between 1953 and 2022 (Table 2).
However, an average decrease of 0.1% was predicted in croplands. When
grasslands or forestswere converted into croplands,wepredictedan average
decrease of 0.1–0.3% in SOM, while the reverse scenario resulted in an

Fig. 3 | Predicted soil organic matter (SOM) in 2022 and SOM changes (ΔSOM)
between 1953-2022 at different depths. a SOM [%] predictions for 2022 at 5–15 cm
depth. b SOM [%] predictions for 2022 at 60–100 cm depth and dashed line showing
location of depth transect (plot e). c ΔSOM [%] (1953-2022) at 5–15 cm and crosses
showing the ΔSOM validation locations (Methods). d ΔSOM [%] (1953-2022) at

60–100 cm depth and dashed line showing location of depth transect (plot f). e SOM
[%] predictions for 2022. fΔSOM [%] predictions for 1953-2022. Predictions shown
in (e, f) were made from 0–200 cm depth with 5 cm depth increments along the
transect shown in (b, d).
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Fig. 4 | Accuracy plots and metrics, zoom-in maps and time series of soil organic
matter changes (ΔSOM). aAccuracy plot and accuracymetrics using 10-fold cross-
validation of SOM [%] laboratory measurements between 1953–2011. b Accuracy
plot and accuracy metrics of SOM [%] temporal changes (ΔSOM) at 63 locations
shown in Fig. 3c (Methods). c–eZoom-inmaps [1:25 000] of threeΔSOMvalidation

locations (left) and time series plots from these locations sampled at two or three
depths (right). Time series plots depict SOM [%] laboratory measurements (points),
model predictions [%] (line) and prediction uncertainty [%] (PI90, background
shading) between 1953–2022 colored by depth. Time series of soil samples in (c–e)
are also indicated in (b).
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increase of a similar amount. The model’s predictions for 2022 indicated
that SOM levels in mineral soils in the top 30 cm were between 2.5–5%
(Fig. 4a, e). Below 30 cm, temporal changes in SOM were almost non-
existent in mineral soils (Fig. 3d & f, Supplementary videos 4–6). This
outcome was expected because land use, which was considered a dynamic
2D+T covariate in the model (Fig. 1a, b, Methods), had little effect on the
subsoil. Below30 cmdepth, themodel’s predictions ranged from1–2.5% for
clay and loamy soils along the rivers, delta, and loess regions and less than
1% in the Pleistocene sandy areas (Fig. 4b, e, Supplementary videos 4–6).
These findings are reasonable because subsoils typically have lower SOM
than topsoils.

Despite its overall effectiveness, the model occasionally did not detect
subtle temporal changes in SOM, as demonstrated in Fig. 4e (right). In this
case, measurements indicated a 1% decrease in SOM between 1968 and
2022 in a sandy soil currently used for maize cultivation. However, the
model’s predictions remained relatively constant. Analysis of a 1:25,000
map of the surrounding area revealed few predicted changes in SOM above
1%at adepthof 5–15 cm,with the exceptionof anearbybrookvalley located
southeast of the measurement site (Fig. 4e; left). Small changes in SOM as a
consequence of land use changes can also be assumed based on the model’s
variable importance, where dynamic land use covariates were among the
least important (Fig. S3).

While the general trends we found inmineral soil across different land
uses are consistent with other findings for the Netherlands and Europe, the
average rate of SOM changes were lower than in previous research. When
converted to SOMchanges (Methods), Reijneveld et al.36 found increases of
0.40% for grasslands (0–5 cm) and 0.32% for croplands (0–25 cm) in
mineral soils in the Netherlands between 1984 and 2004. Chardon et al.45

confirmed constant or slight increases inDutch agricultural soils with SOM
less than 14%. However, Conijn and Lesschen 201546 found an overall
increase in SOM for permanent grassland but an overall decrease in SOM in
croplands using a dynamic soil-crop model47,48. More recently, Knotters
et al.31 found a decrease in SOM of 0.38% and 0.86% in Dutch croplands in
mineral soils between 1998 and 2018 at 0–30 cm and 30–100 cm depth,
respectively. However, for Dutch grasslands, the same study found a
decrease of 0.48% SOM for 30–100 cm, while no substantial change was
found for 0–30 cm depth. Between 2009 and 2015, converted SOMchanges

(Methods) on a European scale were approximately−0.09% on croplands,
0.24% on grasslands and −0.51% for grasslands converted to cropland13.

To summarize, our study andmost recent research conducted in the
Netherlands and Europe indicate that there is a decrease in SOM in
croplands, particularly when converted fromgrassland, and an increase in
SOM in grasslands. When accounting for the differences in time periods
across the compared studies, the predicted changes in SOMwe foundwere
about 10-fold lower compared to actual measurement analyses at point or
field-scale in other studies. Future studies should investigate this further,
but one reason for this difference might be that random forest and other
regression models smoothen predictions49, possibly leading to smaller
predicted SOM changes. In addition, our model included both mineral
and peat soils with SOM values up to 100%, potentially decreasing the
model’s sensitivity to detect changes of smallermagnitude inmineral soils.
To improve the accuracy of 3D+Tmapping specifically for mineral soils,
we suggest mapping them separately from organic soils or choosing a
hierarchical approach50, investing in repeated measurements at the same
locations for model calibration, and deriving covariates related to agri-
cultural management practices. Future studies should investigate whether
performance of our 3D+T modeling approach improves when mon-
itoring data (more repeated measurements) are used during model
calibration.

Model accuracy assessment
Model accuracywas assessedusing a 10-fold cross-validationwithdata from
1953-2011 (MEC = 0.64; Fig. 4a) and design-based inference from 1993-
2000 (MEC = 0.50) and 2018 (Table 3; Methods). The relatively high pro-
portion of peat samples with SOMvalues up to 100%may explain relatively
high RMSE values around 10%. The predicted SOM content at 0-30 cm
depth was underestimated (ME > 1 for all methods; Table 3), which prob-
ably also relates to smaller predicted SOM changes in mineral topsoils
compared to other studies (see above). Inaccuracies in the 30-100 cm layer
in 2018may be due to positional errors, differences in sampling support, or
changes in laboratory methods between the calibration and validation
data31. Furthermore, the use of the same data for model calibration and the
national soil map generation, from which dynamic peat covariates were
derived (Fig. 5), may have biased our predictions. The overall spatial

Fig. 5 | Original and updated map of peat classes. aMap of sub-classes of soils
containing peat in the original national soil map of the Netherlands (1:50,000)85.
bMap of sub-classes of soils containing peat in the updated national soil map of the
Netherlands. Following the Dutch soil classification79–81, soils containing peat can be
classified according to the starting depth and thickness of the peat horizon. These

maps were used to derive eight fuzzy subsets of peat classes (one for each class) as
2D+T dynamic covariates and one fuzzy subset of peat occurrence as a 3D+T
dynamic covariate. Note that the national soilmaps exclude urban areas (white). The
national soil map of the Netherlands can be downloaded and viewed at broloket.nl
and bodemdata.nl.
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patterns of predicted SOMalignwith previous SOMmapping studies in the
Netherlands31,32.

Our estimates of prediction uncertainty (PI90) in 3D space (SI 2) and
time (Fig. 4c–e) were reliable based on the evaluation of prediction interval
coverage probability (PICP; SI 2; Methods). However, when divided by
depth, design-based inference from 1993–2000 and 2018 revealed that
prediction uncertainty was overly-optimistic at 0–30 cm depth and slightly
pessimistic below 30 cm depth (Table 3). Areas with high SOM values
(peatlands) and urban areas had the highest prediction uncertainty, which
was overall greater at lower depths (SI 2). Figure 4c confirms that uncer-
tainty decreased as predictions decreased over time.Mineral soils had lower
uncertainty (SI 2 and Fig. 4e).

An important limitation of our modeling approach is that it does not
quantify the uncertainty of differences in SOM (ΔSOM) and of spatial
aggregates (e.g., Table 2). These uncertainties can only be obtained if cross-
and spatial correlation in prediction errors are quantified. For instance, the
prediction error variance of ΔSOM at some location and depth is given by
the sum of the variances of the SOM prediction errors at the two points in
time for that locationanddepth,minus twice their covariance.Computation
of the covariance requires the correlation between the two prediction errors.
In case of spatial aggregation one must first quantify the spatial correlation
of the SOM prediction errors, for instance by semivariograms, after which
the uncertainty of the spatial aggregate can be computed using a block
kriging of the residuals.Wadoux andHeuvelink51 did this in 2D space, but it
is unclear how this should be efficiently done in 3D space and time (four
dimensions). Semivariogramfitting in 3D+T is extremely challenging given
that space-time and lateral-vertical anisotropieswould have to be accounted
for, while also the conventional geostatistical assumptions on multivariate
normality and second-order stationaritywouldhave tobequestioned.There
are also considerable computational challenges when conducting block
kriging in a 3D+T context at high spatial resolution. We know of only one
study that estimated 3D+T semivariograms and applied 3D+T kriging52,
but this study assumed normality and used a simplified metric space-time
semivariogram, which might not be appropriate for SOM in the Nether-
lands. Uncertainty quantification of SOMchanges and spatial aggregates in
3D+T at scales relevant to management and policy is a critical task to
investigate in future research, since the uncertainty related to soil mon-
itoring has prompted widespread doubts about the feasibility of measuring
and verifying SOM and soil organic carbon changes53,54. Thus, we advocate
that future research should investigate the uncertainty quantification of
SOM changes and SOM spatial aggregates, but given the challenges and
complexity of such analysis this was beyond the scope of this research.

Temporal SOM changes (ΔSOM) were difficult to predict (Fig. 4b).
The model sometimes failed to detect ΔSOM (Fig. 4b–e). However, pre-
diction errors at point support tend to average out when increasing spatial
and temporal support51,55,56, e.g., by averaging over larger areas, depth layers

and years, making the 3D+T maps useful for many applications. For
instance, predictions of samples c1 and c2 (lines in Fig. 4c) showed an
unrealistic decrease of >10% SOM between 1972 and 1973, but when
averaged over several years, the trend of decreasing SOMwas confirmed by
measurements in 1965 and 2022 (points in Fig. 4c). In general, temporal
SOM variation was often lower than 3D spatial variation. However, the
limited ΔSOM validation data (127 measurements from 63 locations;
Fig. 3c) highlight the need for long-term soil monitoring using consistent
methodologies in the field and laboratory11. For additional validation of
ΔSOM predictions beyond the dataset used here, future studies could
compare our predicted SOM changes with measured changes at individual
locations of long-term field experiments57 for different soils and land uses.
This would allow evaluation of the model’s ability to predict temporal
changes,while currently the accuracy assessmentwasbasedonchangesboth
in space and time.

3D+T mapping: a new paradigm for SOMmonitoring
Our study demonstrated that SOM is highly variable over depth and time,
which is insufficiently captured by non-spatially explicit13,31,58 or 2D map-
pingmethods20,59 that are currently used for reporting SOMchanges for soil
health and climate mitigation commitments. In the Netherlands, approa-
ches to assess SOM changes encompass long-term field experiments con-
ducted at specific locations, summarized by Kooistra and Kuikman57, some
of which served as the basis for process-basedmodels45–48. Reijneveld et al.36

assessed changes of agricultural parcels using farm data. Knotters et al.31

assessed changes on the scale of four selected domains of interest, cate-
gorized by mineral soil, organic soils, grasslands and croplands. Unlike our
research, none of the above studies explicitly account for spatial variation
when modeling SOM dynamics. Furthermore, process-based models are
often constrained by soil type (e.g., mineral) or land use60. In contrast, our
3D+Tmodel accounts for SOM variation in space, depth and time and can
predict for mineral and organic soils under any land use. In addition, the
3D+T model does not require repeated measurements from the same
location, although prediction accuracy is likely to increase with better
monitoring data. This is a major advantage because most areas in the world
do not have monitoring data beyond individual field trials.

Previous digital soil mapping studies used spline depth functions61,
geostatistical methods62–64, parametric depth functions65 or depth as a
covariate59,66 tomap a soil property at different depths.Gasch et al.52 used 3D
covariates (soil parameters) and a 2D+Tcovariate (crop type) to predict soil
water, temperature and electrical conductivity in 3D+T on a field scale (37
ha). However, to our knowledge this is the first study to use a 3D+T
covariate. Machine learning has proven advantageous to predict complex,
non-linear relationships between soil-forming factors and soil properties in
2D space67. Our study represents a next step in extending the predictive
powerofmachine learning to 3D+T. In doing so, the 3D+Tmodelwas able

Table 3 | Model accuracy metrics of SOM [%] predictions using 10-fold cross-validation with laboratory measurements from
1953–2011 and design-based inference of an independent probability sample using measurements from 1993–2000 and 2018,
respectively (Methods)

Years Depth (cm) n ME CI95 of ME RMSE CI95 of RMSE MEC CI95 of MEC PICP

1953–2011 0–30 6264 1.97 - 9.04 - 0.65 - 0.88

1953–2011 30–100 7526 0.38 - 10.02 - 0.65 - 0.87

1953–2011 100–200 1509 0.00 - 10.33 - 0.29 - 0.88

1993–2000 0–30 1185 1.29 1.05, 1.54 4.87 4.23, 5.44 0.49 0.36, 0.59 0.76

1993–2000 30–100 1172 0.20 −0.34, 0.74 9.79 8.36, 11.03 0.50 0.18, 0.65 0.91

1993–2000 100–200 808 0.82 0.04, 1.60 9.63 6.82, 11.79 0.52 0.39, 0.67 0.96

2018 0–30 1143 1.15 0.89, 1.42 5.58 4.85, 6.22 0.44 0.27, 0.56 0.85

2018 30–100 1139 −4.28 −4.89, −3.67 15.28 14.05, 16.43 −0.93 −1.39, −0.53 0.96

The lower andupper 97.5%confidence limits of the accuracymetricswere computedusingdesign-based inferenceaccording todeGruijter et al.113,which together give the 95%confidence intervals (CI95;
Methods).
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to detect complex relationships between SOM and peat occurrence, which
varied considerably in space, depth and time. The 3D+T covariate was the
most important covariate in themodel (Fig. S3). As a result, we foundmajor
changes in SOMnot only in space but also over depth and time, especially in
peatlands and reclaimed land. Therefore, we recommend that 3D+T
modeling approaches be incorporated in SOM reporting alongside point
monitoring networks to provide spatially explicit information. This is key
for facilitatingmulti-functional land use policies andmanagement practices
based on local soil conditions. The 3D+T SOM maps with quantified
uncertainty can aid decision-making. It can support decision-making on
where to implement measures to increase SOM stocks to address the 4 per
mille initiative and incorporate carbon farming in agricultural practices.
They are also an important first step towards providing spatially explicit
changes in soil carbon stocks and CO2 emissions from soils. As stated in the
Climate Agreement of the Netherlands, the emissions of peat soils must be
reduced with 1 Mton CO2-eq and of mineral agricultural soils by 0.4–0.6
Mton CO2-eq before 203068. Moreover, these maps identify where SOM-
related soil health has declined most in the past 70 years and where
restoration potential is highest and most urgent. Finally, the 3D+T SOM
maps can serve as visual tools to raise awareness of the importance of soils
for society, which is the Soil Deal’s eighth mission objective.

This research goes beyond the mere mapping of SOM between 1953
and 2022, as it has far-reaching implications for the future. With
advancements in the explainable machine learning research domain,
models using algorithms such as quantile regression forest are no longer
considered black-boxmodels. Recently, thesemethods have been applied in
soil science to gain new insights into the complex relationship between
covariates and soil properties69,70. Future studies could identify potential
local drivers of SOM dynamics by using explainable machine learning
methods69,70 to study the relationship between covariates and changes in
SOMover time using the 3D+Tmethodology. Furthermore, this will allow
the prediction of potential future changes in SOM. For example, by con-
sidering various scenarios involving groundwater levels, land use changes,
or climatic indicators71, we can forecast changes in SOM25, providing crucial
insights into the measures necessary to restore soil health.

The implications of the findings reported in this study also extend
beyond the Netherlands. Peatland conversion72,73, land reclamation74, and
agricultural intensification75 are ongoing in many parts of the world, but
there is a lack of spatio-temporal soil and land use data in many of these
regions. Moreover, the mechanisms underlying SOM dynamics apply to
other bioclimatic zones as well, suggesting that the changes observed in the
Netherlandsmaybe relevant to less data-rich regions across the globe. These
findings are particularly relevant to deltas worldwide, which often share
similar geographic features and are home to ~350 million people76,77.

Materials and methods
Soil point data
We obtained 869 094 observations of SOM from 339,231 point locations
using different datasets, most of which are part of the Dutch soil database
(BIS; Fig. 2&Tables 4, 5). SOMobservations consist of eithermeasurements
in the laboratory using loss on ignition at 550 ∘C78 or field estimates.
Regarding the latter, soil surveyors estimated SOM in the field by looking
and touching the soil sample for its color and texture. An expert estimation
is then made, also based on their extensive, regional pedological knowledge
of the soil-forming factors, soil texture, expected soil type and using SOM
laboratory measurements at nearby locations. In instances where multiple
soil surveyorsmade estimates at the same location and depth, the individual
estimates were merged and the median value recorded79–81. Based on
approximately eight thousand paired laboratory measurements and field
estimates, and assuming that the laboratorymeasurement error is negligible
compared to the field estimation error, themean error, mean absolute error
and standard deviation of the field estimation error were 0.23%, 2.09%, and
4.6%SOM, respectively.Hence, these errorswerewithin anacceptable range
for our purpose, considering that laboratory measurements themselves are
also subject to errors82. Field estimates were discarded from all modeling T
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steps whenever laboratory measurements from the same 3D location were
available. Only the PFB and BPK datasets of BIS were used for model
calibration because the probability sampling design of the LSK and CCNL
datasets was ideal to independently assessmapping accuracy66,83,84 (Table 4).

Soil point data for model calibration. For model calibration, we used
15,312 laboratory measurements from 4298 locations (PFB) and 840,638
field estimates from 334,668 locations (PFB and BPK; Fig. 2a; Table 4).
The locations with laboratory measurements, arranged in a purposive
sampling design, were selected in the past to create the national soil map
(1:50,000)85, meaning that soil variability is well covered. Soil samples
measured in the laboratorywere collected by genetic soil horizon between
1953 and 2011 (PFB; Fig. 2b).

In contrast to the laboratory measurements, the majority of field
estimates (BPK) were spatially clustered in specific areas for regional soil
mapping purposes. SOM field estimates were removed if there was a
laboratory measurement available from the same location and genetic soil
horizon. We decided to include field estimates in model calibration due to
the additional spatio-temporal coverage (1953–2022), especially in recent
years (Fig. 2b). However, since field estimates are less accurate than
laboratory measurements and due to their clustered spatial distribution, we
tested excluding field estimates and assigning them lower weights during
model tuning (see below).

Soil point data for model accuracy assessment. Four different data-
sets were used for statistical validation to assessmodel accuracy (Table 4).
The first dataset (PFB) consisted of the same 15,312 laboratory mea-
surements used duringmodel calibration. Formodel tuning and accuracy
assessment purposes, this dataset was used for cross-validation
(see below).

We further had the LSK and CCNL datasets available specifically
collected for validation purposes of the national soil map (1:50,000)85. The
LSK consisted of 4952 SOM laboratory measurements from 1185 locations
sampled by horizon between 1993 and 2000. These soil sampling locations
were determined using a national probability sample, more specifically a
stratified simple random sample. The dataset is described in more detail in
Finke et al.83 and Visschers et al.84 and its use for validating digital soil maps
in Section 2.1 of Helfenstein et al.66.

All LSK locations that were still accessible were re-sampled at two fixed
depth increments (0–30 cm and 30–100 cm) in 201831,86–88. This so-called
CCNL dataset consists of 2295 laboratory measurements from 1144 loca-
tions. In terms of space-time design, the LSK and CCNL datasets are
therefore a supplemented panel because only a subset of the sampling
locations of the first survey were re-visited ~20 years later89. Despite the
supplemented panel design, substantial methodological differences in the
LSK and CCNL datasets prevents a temporal assessment at point scale90, as
described in more detail in Section 2.1 and Appendix C of Knotters et al.31,
whoused these data to study temporal SOMchangeswithindomains (not at
point scale).

We will refer to the three datasets described above by their measure-
ment years, i.e., 1953–2011, 1993–2000 and 2018.

In order to also assess changes in SOM over time (ΔSOM) at point
locations, we re-sampled the same 1–3 uppermost genetic soil horizons

from 63 PFB locations in 2022, leading to a total of 127 samples (Fig. 3c;
Table 4). These PFB locations were first sampled between 1953-1999
(depending on the location) and because all locations were re-sampled in
2022, it can be termed a pure panel space-time design89. In contrast to LSK
and CCNL, we sampled identical legacy soil horizons as in the past to the
best of our abilities. The purposive sampling design of ΔSOM locations is
described in detail in SI 3. The 127 samples used for statistical validation of
ΔSOMwere removed from the PFB dataset to avoid their use duringmodel
calibration and 10-fold cross-validation (see above).

Covariates
In line with the digital soil mapping methodology91, we used covariates as
model independent variables (i.e., explanatory variables or features) that
were representative of the soil-forming factors: climate, organisms, relief
(topography), parentmaterial (geology) and time92,93. In order tomap SOM
in 3D space and time, we extended upon established methods by using
covariates that were static (2D), variable in time (2D+T)20,21 and variable
over depth and time (3D+T). All covariates were prepared at 25 m reso-
lution, for the standard depth layers specified by GlobalSoilMap94 (GSM;
0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm and 100–200 cm) in the
case of the 3D+T covariate, and for every year from1953 to 2022 for 2D+T
and 3D+T covariates.

Static covariates. Covariates were designated as static based on limited
temporal variation or unavailable data over the 70-year period. Specifi-
cally, climate, relief, and parent material exhibited little temporal varia-
bility, while satellite-derived land cover indices were incomplete for the
entire 70-year period. Although climate change may have impacted
SOM, its effects were considered smaller than that of the dynamic cov-
ariates we selected (see below). Table 2 and Supplement S2 of Helfenstein
et al.66 provide an overview of the static covariates. Additionally, we
obtained monthly mosaics of Sentinel 2 RGB and NIR bands from 2015
onwards, removing monthly mosaics with more than 1% clouds. We
computed eight indices from these mosaics: Brightness Index, Saturation
Index (SI), Hue Index, Coloration Index, Redness Index, Carbonate
Index, Grain Size Index, and Normalized Difference Vegetation Index,
following Loiseau et al.95. To improve the signal-to-noise ratio and reduce
data volume, we further processed the spectral indices into the first three
principal components over all months and years (long-term yearly
aggregates), as well as the long-term monthly mean and standard
deviation. In total, we considered 318 static covariates for further model
selection.

Dynamic 2D+T and 3D+T covariates. In recent decades and perhaps
even centuries, anthropogenic activity has arguably altered soil char-
acteristics more than any natural soil-forming factor96. To account for
SOM changes between 1953 and 2022 in the Netherlands, we chose land
use and the occurrence of peat as dynamic covariates due to their
important link to SOM and high temporal variability.

Acquiring harmonized and spatially exhaustive information on land
use changes from the 1950s to the present is difficult, as high resolution
remote sensingproducts arenot available prior to the1980s.However, in the
Netherlands, the main land use categories were carefully mapped using

Table 5 | Descriptive statistics of SOM observation datasets shown in Table 4

Dataset Temporal coverage Min. 1st Qu. Median Mean 3rd Qu. Max. Skewness

PFB 1953–2011 0.00 0.60 2.00 8.39 5.10 99.90 3.29

BPK 1953–2022 0.00 1.50 4.00 15.47 10.00 99.00 1.82

LSK 1993–2000 0.00 0.90 2.30 7.70 5.10 95.00 3.47

CCNL 2018 0.50 1.80 3.40 7.51 6.80 78.70 3.09

ΔSOM 1953–1999; 2022 0.00 0.60 1.80 10.07 5.40 96.90 2.84

Min. minimum, Qu. quartile, Max. maximum.
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topographic maps since the 1900s. Largely based on these maps, digital
historical landusemapswere created for around1900,1960, 1970, 1980, and
199097 (Table 6). Since the 1980s, national land use maps have been
developed by combining information from the Dutch key registries for
topography, land cover, agricultural parcels, urban areas, and nature, as well
as remote sensing data, to provide greater detail98. These maps have been
regularly updated using the latest data and improved methods and since
2018 are updated annually. In total, we used five historical land use maps
(1900, 1960, 1970, 1980, and 1990) and eleven recent land use maps from
1984 to 2021 to derive dynamic land use covariates.

All land use maps were reclassified into nine general classes (Fig. 1a, b;
Table 6),whichwere limited by the classes contained in thehistorical landuse
maps. We obtained the land use for every location, with coordinates x and y
for every year t between 1953 and 2022 (LUxyt), by assigning the same class as
in the temporallynearest year forwhichamapwasavailable. If twas exactly in
between2 years forwhich amapwas available, the oldermapwasused. In the
same manner, we further defined LUxyt_Δ5, LUxyt_Δ10, LUxyt_Δ20, and
LUxyt_Δ40byassigning the landuse class that occurredmost frequently in the
5, 10, 20, and 40 years prior to and including year t, respectively. Thesemodal
classes were assigned to account for the delayed response of SOM to land use
change. An example of a 2D+Tdynamic land use covariate (LUxyt) is shown
in Fig. 1a, b for the years 1953 and 2022, respectively. Previous studies have
employed comparable approaches to derive dynamic covariates that serve as
proxies for land cover and land cover changes, however, they utilized con-
tinuous covariates sourced fromLandsat,MODIS orAVHRRproducts from
more recent years20,21.

Furthermore, we derived dynamic covariates for peat occurrence,
considering that the majority of SOM in the Netherlands is found in soils
with a peat layer. Peat soils have undergone substantial changes over time
due to historical excavation, drainage, compaction, and agricultural
management31,33–35,37,38,42. In order to account for temporal changes in peat
soil horizons, we used the original and updated version of the national soil
map of the Netherlands (1:50,000)85 (Fig. 5), which is available at BROloket
and bodemdata.nl.We included 2D+Tdynamic covariates of different peat
classes and a3D+Tcovariateof peat occurrence because the combinationof
both helped explain SOM variability.

For deriving 2D+T dynamic covariates of the occurrence of different
peat classes,weused the concept of fuzzymembership99, whichhas alsobeen
widelyused in soil classificationandmapping100. Letp(x, y, t) denote thepeat
class at a location with coordinates x and y at time t, where t is any year
between 1953 and 2022. In the Dutch soil classification system, used in the
national soil map, soils containing peat can be designated into eight sub-
classes, based on the starting depth and thickness of peat horizons (Fig. 5).

Thus, each p(x, y, t)∈ {1, 2, 3, 4, 5, 6, 7, 8}, where the first seven classes refer
to different peat soils and where class 8 contains no peat within 0–120 cm
(i.e., mineral soil). The information about which peat class occurs at a
particular locationwas limited to amaximumof twopoints in time, to for the
original mapping year, and tu for the year the map was updated. to and tu
varied in space and tu was only available for part of the country, since the
soils of the Netherlands were systematically mapped, region by region,
between the 1960s and 1990s, and some regionswere updated once between
2014–2021. Many of the updated regions were areas with less than 2m of
peat within the top 2m and reclaimed land, where soil characteristics or the
depths at which these characteristics occur have substantially changed since
the original map was made due to peat oxidation, compaction and land
subsidence. For regions that were not updated, the old and updated maps
were the same. For t < to, we assumed p(x, y, t) = p(x, y, to), i.e., for years
between 1953 and the first mapping campaign we designated the same peat
class as in the original map. For t > tu, we assumed p(x, y, t) = p(x, y, tu), i.e.,
for years between which a region was updated and 2022, we designated the
same peat class as in the updatedmap.However, for to≤ t≤ tu, peat class was
designated a fuzzy membership value that was a combination of the classes
at to and at tu.We let themembership of the class at to linearly decrease from
one to zero in the period from to to tu, and similarly we let it linearly increase
from zero to one for the observed class at tu, so that the sum of the mem-
bershipswas always one.We used the 2D+Tmembership values for eachof
the eight peat classes as covariates in the random forest model.

For deriving the 3D+T dynamic covariate of peat occurrence, we used
the peat starting depth and thickness information contained in the peat
classes to derive another fuzzy variable of the occurrence of peat depending
on location, depth and time. The fuzzymembership that was derivedwas as
before a number between 0 and 1, where 0 means that peat does not occur,
and 1 means that peat occurs. Any membership value in between 0 and 1
means that the soil at that location, depth and timewas in a transitionperiod
from peat to non-peat or vice versa, in accordance with the soil peat class
membership value at that location and time.

Note that some assumptions were needed to derive 3D+T peat occur-
rence depending on the peat class, depth and expert knowledge. For example,
if p(x, y, t) = 4, which is the peat class for peat starting between 15 and 40 cm
and having a thickness between 15-40 cm (Fig. 5), we assumed that peat
occurs between 15≤ d≤80 cmbecause the exact depth range of peat between
this minimum and maximum depth were not known more precisely. Like-
wise, for p(x, y, t)∈ {1, 3, 5, 7}, where peat thickness >40 cm,we assumed that
peat occurs for the entire depth range between the minimum starting depth
for each class, that is 0, 15, 40, and 80 cm, respectively, and the maximum
depth modeled (200 cm; Fig. 5). We made this assumption based on expla-
nations from soil surveyors, who informed us that areas mapped with peat
layers thicker than 40 cm tend to have substantially greater thicknesses. In
order to predict at the standarddepth layer specifiedbyGSM94, theupper and
lower depth boundaries of 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm,
60–100 cm and 100–200 cm layers were used for each year to derive peat
occurrence according to t and d. During this step, assumptions were made
regarding the overlap between GSM depth layers and defined depths of peat
classes.Whenpeatoccurrencewas>0, theGSMdepth layerneeded tooverlap
by≥1cmwith thepeat layer,whereaswhenpeatoccurrencewasequal to0,we
permitted no overlap with the peat layer. These assumptions were made
because even if there is only a small overlap of peat, it will lead to substantially
higher SOM values than on purely mineral soils.

Depending on the peat class in the original and updated national soil
map, d, t and the location, this ultimately resulted in one of three possible
outcomes: no changes in peat occurrence, peat “appearing” or peat “dis-
appearing”. An example of the 3D+T dynamic peat occurrence covariate is
shown in Fig. 1d, e for the year 1987 for depths 5–15 cm (d) and
60–100 cm (e).

Overlay and regression matrix
We created a regression matrix containing SOM and covariate values by
performing a spatial overlay for static covariates, a space-timeoverlay for 2D

Table 6 | Table of the dynamic covariates variable in time
(2D+T) related to land use (LU)

Name Categories Derived from

LU_xyt Grassland

Cropland Historical land use
maps97:

LU_xyt_delta5 Fruit orchards and tree
nurseries

1900, 1960, 1970,
1980, 1990

Forest

LU_xyt_delta10 Heathland Land use maps98:

Sand and dunes 1984–2021

LU_xyt_delta20 Swamps, marshes
and fens

(since 2018 annual)

Bogs

LU_xyt_delta40 Built-up

Names denote the names used in the model code. Note that categories in more recent land use
maps (1984–2021)98 were aggregated to the nine classes of the historical land use maps97

shown here.
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+T covariates and a space-depth-time overlay for 3D+T covariates. t was
equal to the year at which a SOM observation was made. For deriving peat
occurrence according to t and d, the upper and lower sampled horizon
boundaries were used, whereby the same assumptionsweremade regarding
the overlap of depth layers as when deriving peat occurrence for the GSM
depth layers (see above).

Sampling depth information, more specifically the upper and lower
boundary and midpoint of each sampled horizon, were included as cov-
ariates in the regression matrix so that predictions could easily be made at
any chosen depth and depth interval. Including these as covariates also
supported accounting for changes in SOM over depth, in addition to the
other 3D covariate. SeeMa et al.101 for an overview ofmodels using depth as
a covariate in comparison to non-3D digital soil mapping methods.

Model selection, tuning and calibration
For model selection, defined here as selecting the best model based on
their performance102, we first reduced the number of static covariates (n =
318). We removed covariates in a two-step procedure using de-
correlation followed by recursive feature elimination as in Poggio
et al.59. From any pair of covariates for which the Pearson correlation
coefficient was >0.85 or <−0.85, the covariate that was more correlated
with all remaining covariates was removed. Recursive feature
elimination103 was implemented using the caret package104. This
resulted in a set of 16 static covariates. These, in addition to the three
depth covariates, the five 2D+T covariates of land use, eight 2D+T
covariates of peat classes and the 3D+T covariate of peat occurrence,
were selected for model tuning and calibration and can be found in the
variable importance plot (SI 2; Fig. S3).

For model tuning, we grew random forest models105 with the goal of
optimizing hyper-parameters for mean predictions. Model tuning was
performed using a location-grouped 10-fold cross-validation of the cali-
bration data, wherein all observations from the same locationwere forced to
be in the same fold. Each hold-in fold contained a random selection of 90%
of the laboratory measurements and all field observations. Each hold-out
fold contained the remaining 10% of laboratorymeasurements. In this way,
models were calibrated using both laboratory measurements and field
estimates, while performance to optimize hyperparameters was assessed
only using laboratory measurements. We evaluated all combinations of the
same hyper-parameters as in Section 2.4 of Helfenstein et al.66 and selected
the combination with the best performance.

In order to account for the lower accuracy of field estimates compared
to laboratory measurements, we assigned larger weights to the laboratory
measurements.Weight values of two,five, ten andfifteen times theweight of
field estimates were tested. The final set of weights and other hyper-
parameters was chosen based on the lowest root mean squared error
(RMSE; Equation (3)) across the cross-validation. When the increase in
RMSE was below 0.1%, the model with fewer trees was chosen to reduce
computation time.Note that an alternativeway to account for differences in
observation quality would be to derive the weights from the measurement
error and residual variance, as in error-filtered machine learning106.

Thefinal quantile regression forest used formodelpredictionwasfitted
using all soil observations in the calibration set (n = 15,312 laboratory
measurements and 840,638 field estimates), 33 covariates and the final set of
hyper-parameters, as optimizedusing random forest.We used theranger
package107 with the option “quantreg” to grow a quantile regression forest
and without it to grow random forest models.

Variable importance
Duringmodelfitting, we used impurity as ameasure of variable importance
(SI 2; Fig. S3). Impurity assesses the total reduction in heterogeneity that a
covariate generates on the response variable. It is calculated by summing up
all the reductions in the heterogeneity index in the tree nodes where a
covariate was selected for splitting108. It is important to note that impurity
has a bias towards covariates withmore distinct values, making it negatively
biased towards categorical covariates, as they have a finite number of binary

splits due to their limitednumber of classes109,110.While impuritywas used in
this study, the more appropriate permutation measure to assess variable
importance is dependent on the out-of-bag error108. As we assigned larger
weights to labmeasurements, therewere not enoughunselected soil samples
available to calculate the out-of-bag error, making it impossible to use
permutation to measure variable importance.

Prediction maps
The calibratedquantile regression forestwas used to derive themedian (0.50
quantile; q0.50), 0.05 quantile (q0.05) and 0.95 quantile (q0.95) at every 25 m
pixel and each standard depth layer specified byGSM94 for every year t from
1953 to 2022 over the Netherlands. In addition, spatially explicit 90% pre-
diction intervals (PI90) were obtained at every 25m pixel as a measure of
prediction uncertainty as follows:

PI90 ¼ q0:95 � q0:05 ð1Þ

Absolute mass percentage changes in SOM (ΔSOM) over the 70-year
period were mapped by subtracting the 2022 and 1953 SOM [%] median
prediction maps. For prediction, the depth covariates were equal to the
upper and lower boundary and midpoint of each standard depth layer
specified by GSM94. However, note that themodel can predict at any depth,
so in order to analyze changes in SOM over smaller depth increments, we
also predicted SOM [%] at 5 cm depth intervals between 0 and 2m along a
transect (Fig. 3e, f). The location of this transect was chosen such that it
contained fen and bog peat soils of varying thickness, reclaimed land and
mineral soil under different land use types.

SOM changes based on soil type and land use
In order to gain insight into average changes in peat vs.mineral soils and the
dominant land uses in the Netherlands (grassland, cropland and forest), we
computed average ΔSOM values between 1953 and 2022 for each combi-
nation of these soil types and land uses for the top 30 cm (Table 2). This
depth interval was chosen because the topsoil is usually most relevant for
agricultural and ecological purposes.Weighted averageswere computed for
the upper layers using the ΔSOM maps from 0–5 cm, 5–15 cm, 15–30 cm.

In order to compare our findings with other studies13,31,36,45,46, conver-
sions from soil organic carbon to SOM were necessary. We used the same
conversion factor that was used for soils in the Netherlands in Knotters
et al.31, so soil organic carbon values reported in other studies were multi-
plied by 2.000. Note that this conversion ratio depends on the soil type and
we did not account for its uncertainty, as shown for soils in the Netherlands
in Fig. 53 of vanTol-Leenders et al.86. If other studies reported values in g/kg,
values were divided by 10 to obtain absolute mass percentages.

Model accuracy assessment
In order to assess model accuracy, we used prediction uncertainty, cross-
validation (1953–2011), design-based inference (1993–2000 and 2018) and
non-design based inference to evaluate SOM temporal changes (ΔSOM;
Table 4).

Prediction uncertainty. At the location, depth and year of a SOM
measurement, all quantiles from 0 to 1 at steps of 0.01 were predicted to
obtain the PI90 (Equ. (1)) as well as the prediction interval coverage
probability (PICP) of all prediction intervals. The PICP is the proportion
of observations that fall into the corresponding prediction interval111. It is
an indication of how accurately quantile regression forest quantifies
uncertainty. Prediction uncertainty using PI90 is an example of model
internal accuracy assessment since it is model (quantile regression forest)
dependent.

Cross-validation (1953–2011). In order to obtain an overall indication
of 3D+T SOM mapping accuracy, we used a location-grouped 10-fold
cross-validation with only laboratorymeasurements from the 1953–2011
dataset in the hold-out folds, similar as during model tuning (see above).
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Cross-validation is commonly used for digital soil mapping assessment112

and was also used in other space-time soil mapping studies20.
To obtain commonly used accuracy metrics, median predictions were

used to calculate residuals. From these residuals we estimated the mean
error (ME or bias), the RMSE and the model efficiency coefficient (MEC):

cME ¼ 1
n

X
n

i¼1

yi � byi
� �

ð2Þ

dRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

X
n

i¼1

yi � byi
� �2

s

ð3Þ

dMEC ¼ 1�
Pn

i¼1 yi � byi
� �2

Pn
i¼1 yi � y

� �2 ð4Þ

where n is the number of observations, yi andbyi are the ith observation and
prediction, respectively, at a certain location, depth and year, and y is the
mean of all test set observations.We computed these accuracymetrics for all
observations (Fig. 4a) and separated into observations in 0–30, 30–100 and
100–200 cm depth layers (Table 3), as the latter was necessary for design-
based inference (see below). The midpoint of the depth layer was used to
designate it into the corresponding depth layer. For example, an observation
from 20–60 cm, having a midpoint of 40 cm, was designated to the depth
layer 30–100 cm.

Design-based inference (1993-2000 and 2018). Since the 1993–2000
and 2018 datasets are probability samples over 2D space (see “Soil point
data for model accuracy assessment”), we used design-based inference to
compute accuracy metrics for 0-30, 30-100 and 100-200 cm depth layers
(Table 3), in the same manner as in Section 2.6.2 of Helfenstein et al.66.
This included the lower and upper 97.5% confidence limits of the accu-
racy metrics, which together give the 95% confidence intervals (de
Gruijter et al.113; Section 7.2.4). Design-based inference using a prob-
ability sample is recommended for map validation because it yields
unbiased estimates of the accuracy metrics and allows computing con-
fidence intervals89,114,115.

Evaluation of SOM temporal changes (ΔSOM). Using the ΔSOM
validation dataset (see “Soil point data for model accuracy assessment”
and locations in Fig. 3c), we computed the difference between a SOM-
measurement in 2022 and a legacy SOM measurement called Δy as
follows:

Δy ¼ yðx; y; d; t2022Þ � yðx; y; d; tiÞ ð5Þ

where y is a SOM observation, x and y are the coordinates of a location, d is
the sampled depth and ti is the year between 1953 and 1999when the legacy
soil sample was collected before at that location and depth. We compared
predictions to observations and also computed accuracy metrics using
Equations (2)–(4), except that yi and byi were the ith ΔSOM measurement
and prediction, respectively (Fig. 4b).

Data availability
For anoverviewof soil data in theNetherlands fromtheDutchNationalKey
Registry of the Subsurface (BRO, in Dutch), please visit https://bodemdata.
nl/. Soil data in the Netherlands is maintained within the BIS database by
Wageningen Environmental Research (https://www.wur.nl/nl/Onderzoek-
Resultaten/Onderzoeksinstituten/Environmental-Research/Faciliteiten-
tools/Bodemkundig-Informatie-Systeem-BIS-Nederland.htm).

Code availability
An adapted version of the code used in this scientificmanuscript is available
at the following repository: https://git.wur.nl/helfe001/bis-4d_masterclass,

which also includes a hands-on tutorial (00_TUTORIAL_guide.html) and
an extensive readme describing the code scripts and datasets. In the interest
of facilitating reproducibility in the modeling workflow and decreasing the
computational demand, some minor adjustments were made compared to
the original code and data used for the research presented herein. These
adjustments within the code and data repository encompass the following:
(a) The resolution of covariates and prediction maps were aggregated to 1
km, as opposed to the 25 m resolution utilized in the paper. (b) SOM field
estimates from the BPK dataset (Table 4) were not included in model
calibration (Methods). (c) The LSK and CCNL datasets (Table 4) are not
included in the repository, as they are not publicly available. Due to these
changes, the results (e.g., prediction maps and accuracy metrics) are also
slightly different than in the paper. However, besides these adjustments, the
underlying code remains unaltered.
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